- Computer Networks
- Al-Mustansiryah University
- Elec. Eng. Department College of Engineering Fourth Year Class

Chapter 6

Connecting Device

- Functions of network devices
- Separating (connecting) networks or expanding network
- e.g. repeaters, hubs, bridges, routers, switches

- 6.1 Connecting Devices

- Five connecting devices
- Repeaters
- Hubs
- Bridges
- Switches
- Routers

Figure 6.1 Five categories of connecting devices

Application
Transport
Network
Data link
Physical

Application
Transport
Network
Data link
Physical

1)Repeaters

- A physical layer device the acts on bits not on frames or packets
- When a bit $(0,1)$ arrives, the repeater receives it and regenerates it, the transmits it onto all other interfaces
- Used in LAN to connect cable segments and extend the maximum cable length \rightarrow extending the geographical LAN range
- Repeaters do not implement any access method
- If any two nodes on any two connected segments transmit at the same time collision will happen

6.6

Figure 6.2 A repeater connecting two segments of a LAN

Figure 6.3 Function of a repeater

a. Right-to-left transmission.

b. Left-to-right transmission.

2)Hubs

- Acts on the physical layer
- Operate on bits rather than frames
- Used to connect stations adapters in a physical star topology but logically bus
- Hub receives a bit from an adapter and sends it to all the other adapters without implementing any access method.
- does not do filtering (forward a frame into a specific destination or drop it) just it copy the received frame onto all other links
- Multiple Hubs can be used to extend the network length

Hubs

- The entire hub forms a single collision domain, and a single Broadcast domain
- Collision domain: is that part of the network when two or more nodes transmit at the same time collision will happen.
- Broadcast domain: is that part of the network where each NIC can 'see' other NICs' traffic broadcast messages.

Interconnecting with hubs

- Backbone hub interconnects LAN segments
- Advantage:
- Extends max distance between nodes
- Disadvantages
- Individual segment collision domains become one large collision domain \rightarrow (reduce the performance)
- Can't interconnect different Ethernet technologies because no buffering at the hub

6.11

3)Bridges

- Acts on the data link layer (MAC address level)
- Used to divide (segment) the LAN into smaller LANs segments, or to connect LANs that use identical physical and data link layers protocol
- Each LAN segment is a separate collision domain
- Bridge does not send the received frame to all other interfaces like hubs and repeaters, but it performs filtering which means:
- Whether a frame should be forwarded to another interface that leads to the destination or dropped
- A bridge has a table used in filtering decisions.

Figure 6.5 A bridge connecting two LANs

Address	Port
71:2B:13:45:61:41	1
71:2B:13:45:61:42	1
64:2B:13:45:61:12	2
64:2B:13:45:61:13	2

Bridges Vs. Hubs

A bridge sending a packet from F to C

4)Switches

- Usually used to connect individual computers not LANs like bridge.
- Allows more than one device connected to the switch directly to transmit simultaneously .
- Can operates in Full-duplex mode (can send and receive frames at the same time over the same interface).
- Performs MAC address recognition and frame forwarding in hardware.

6.16

Ethernet hub

Ethernet switch

Types of Switches

- Switches can use different forwarding techniques-two of these are store-and-forward switching and cut-through switching.
- In store-and-forward switching, an entire frame must be received before it is forwarded.
- Cut-through switching allows the switch to begin forwarding the frame when enough of the frame is received to make a forwarding decision. This reduces the latency through the switch.
- Store-and-forward switching gives the switch the opportunity to evaluate the frame for errors before forwarding it.
- Cut-through switching does not offer this advantage, so the switch might forward frames containing errors.

5) Routers

- Operates at network layer = deals with packets not frames.
- Connect LANs and WANs with similar or different protocols together.
- Switches and bridges isolate collision domains but forward broadcast messages to all LANs connected to them. Routers isolate both collision domains and broadcast domains.
- Acts like normal stations on a network, but have more than one network address (an address to each connected network).
- Routers Communicate with each other and exchange routing information.
- Determine best route using routing algorithm by special software installed on them.

Figure 6.11 Routers connecting independent LANs and WANs

