Al-Mustansiriyah University
College of Engineering
Mechanical Engineering Dept.
Class : 2nd

Mechanical Drawing

Lect. Saad Najeeb Shehab
Auxiliary Views:

1. Inclined Surface:

Fig. (1)

Fig. (2)

Fig. (3)

Fig. (4)
II. Skew Surface:

Fig. (14)

Fig. (15)
Fig. (16)

Fig. (17)
Tolerance and Fit:

I. Tolerance:

Hole tolerance zone

Ref. line

Shaft tolerance zone

Tol. = max. diam. - min. diam.
Max. diam. = nominal size + upper allowance
Min. diam. = nominal size + lower allowance
II. Fit:

Fit

- interference fit
- transition fit
- clearance fit

Fit Types

<table>
<thead>
<tr>
<th>Fit Type</th>
<th>Maximum Clearance</th>
<th>Minimum Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interference fit</td>
<td>Max. interference</td>
<td>Min. interference</td>
</tr>
<tr>
<td>Transition fit</td>
<td>Max. clearance</td>
<td>Min. clearance</td>
</tr>
<tr>
<td>Clearance fit</td>
<td>Max. clearance</td>
<td>Min. clearance</td>
</tr>
</tbody>
</table>

- Clearance fit:
 Max. clearance = max. diam. of hole – min. diam. of shaft
 Min. clearance = min. diam. of hole – max. diam. of shaft

- Transition fit:
 Max. clearance = max. diam. of hole – min. diam. of shaft
 Max. interference = min. diam. of hole – max. diam. of shaft

- Interference fit:
 Max. interference = min. diam. of hole – max. diam. of shaft
 Min. interference = max. diam. of hole – min. diam. of shaft
Selection of Fits - Hole Basis System

Clearance

<table>
<thead>
<tr>
<th>BASIC SIZE</th>
<th>H11</th>
<th>H10</th>
<th>H9</th>
<th>H8</th>
<th>H7</th>
<th>H6</th>
<th>H5</th>
<th>H4</th>
<th>H3</th>
<th>H2</th>
<th>H1</th>
<th>h8</th>
<th>h7</th>
<th>h6</th>
<th>h5</th>
<th>h4</th>
<th>h3</th>
<th>h2</th>
<th>h1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-0.127</td>
<td>0</td>
<td>-0.068</td>
<td>0</td>
<td>-0.031</td>
<td>0</td>
<td>-0.011</td>
<td>0</td>
<td>-0.003</td>
<td>0</td>
<td>-0.001</td>
<td>0</td>
<td>-0.0005</td>
<td>0</td>
<td>-0.0003</td>
<td>0</td>
<td>-0.0001</td>
<td>0</td>
<td>-0.0001</td>
</tr>
<tr>
<td>20</td>
<td>-0.254</td>
<td>0</td>
<td>-0.132</td>
<td>0</td>
<td>-0.064</td>
<td>0</td>
<td>-0.023</td>
<td>0</td>
<td>-0.008</td>
<td>0</td>
<td>-0.004</td>
<td>0</td>
<td>-0.002</td>
<td>0</td>
<td>-0.001</td>
<td>0</td>
<td>-0.0007</td>
<td>0</td>
<td>-0.0004</td>
</tr>
<tr>
<td>30</td>
<td>-0.381</td>
<td>0</td>
<td>-0.201</td>
<td>0</td>
<td>-0.102</td>
<td>0</td>
<td>-0.036</td>
<td>0</td>
<td>-0.011</td>
<td>0</td>
<td>-0.006</td>
<td>0</td>
<td>-0.003</td>
<td>0</td>
<td>-0.002</td>
<td>0</td>
<td>-0.0015</td>
<td>0</td>
<td>-0.0009</td>
</tr>
<tr>
<td>40</td>
<td>-0.508</td>
<td>0</td>
<td>-0.280</td>
<td>0</td>
<td>-0.140</td>
<td>0</td>
<td>-0.055</td>
<td>0</td>
<td>-0.019</td>
<td>0</td>
<td>-0.011</td>
<td>0</td>
<td>-0.007</td>
<td>0</td>
<td>-0.005</td>
<td>0</td>
<td>-0.004</td>
<td>0</td>
<td>-0.0025</td>
</tr>
<tr>
<td>50</td>
<td>-0.635</td>
<td>0</td>
<td>-0.359</td>
<td>0</td>
<td>-0.189</td>
<td>0</td>
<td>-0.080</td>
<td>0</td>
<td>-0.030</td>
<td>0</td>
<td>-0.018</td>
<td>0</td>
<td>-0.013</td>
<td>0</td>
<td>-0.01 (\times 10^{-3})</td>
<td>0</td>
<td>-0.009</td>
<td>0</td>
<td>-0.005</td>
</tr>
<tr>
<td>60</td>
<td>-0.762</td>
<td>0</td>
<td>-0.438</td>
<td>0</td>
<td>-0.218</td>
<td>0</td>
<td>-0.104</td>
<td>0</td>
<td>-0.046</td>
<td>0</td>
<td>-0.031</td>
<td>0</td>
<td>-0.025</td>
<td>0</td>
<td>-0.023 (\times 10^{-3})</td>
<td>0</td>
<td>-0.016</td>
<td>0</td>
<td>-0.01</td>
</tr>
<tr>
<td>80</td>
<td>-0.980</td>
<td>0</td>
<td>-0.556</td>
<td>0</td>
<td>-0.278</td>
<td>0</td>
<td>-0.134</td>
<td>0</td>
<td>-0.064</td>
<td>0</td>
<td>-0.044</td>
<td>0</td>
<td>-0.037</td>
<td>0</td>
<td>-0.035 (\times 10^{-3})</td>
<td>0</td>
<td>-0.024</td>
<td>0</td>
<td>-0.018</td>
</tr>
<tr>
<td>100</td>
<td>-1.198</td>
<td>0</td>
<td>-0.674</td>
<td>0</td>
<td>-0.337</td>
<td>0</td>
<td>-0.173</td>
<td>0</td>
<td>-0.087</td>
<td>0</td>
<td>-0.064</td>
<td>0</td>
<td>-0.057</td>
<td>0</td>
<td>-0.055 (\times 10^{-3})</td>
<td>0</td>
<td>-0.036</td>
<td>0</td>
<td>-0.029</td>
</tr>
<tr>
<td>120</td>
<td>-1.416</td>
<td>0</td>
<td>-0.792</td>
<td>0</td>
<td>-0.396</td>
<td>0</td>
<td>-0.212</td>
<td>0</td>
<td>-0.107</td>
<td>0</td>
<td>-0.083</td>
<td>0</td>
<td>-0.076</td>
<td>0</td>
<td>-0.074 (\times 10^{-3})</td>
<td>0</td>
<td>-0.047</td>
<td>0</td>
<td>-0.04</td>
</tr>
<tr>
<td>140</td>
<td>-1.634</td>
<td>0</td>
<td>-0.910</td>
<td>0</td>
<td>-0.454</td>
<td>0</td>
<td>-0.251</td>
<td>0</td>
<td>-0.134</td>
<td>0</td>
<td>-0.109</td>
<td>0</td>
<td>-0.099</td>
<td>0</td>
<td>-0.097 (\times 10^{-3})</td>
<td>0</td>
<td>-0.069</td>
<td>0</td>
<td>-0.062</td>
</tr>
<tr>
<td>160</td>
<td>-1.852</td>
<td>0</td>
<td>-1.028</td>
<td>0</td>
<td>-0.512</td>
<td>0</td>
<td>-0.289</td>
<td>0</td>
<td>-0.160</td>
<td>0</td>
<td>-0.135</td>
<td>0</td>
<td>-0.124</td>
<td>0</td>
<td>-0.122 (\times 10^{-3})</td>
<td>0</td>
<td>-0.091</td>
<td>0</td>
<td>-0.084</td>
</tr>
<tr>
<td>180</td>
<td>-2.070</td>
<td>0</td>
<td>-1.146</td>
<td>0</td>
<td>-0.570</td>
<td>0</td>
<td>-0.327</td>
<td>0</td>
<td>-0.180</td>
<td>0</td>
<td>-0.155</td>
<td>0</td>
<td>-0.144</td>
<td>0</td>
<td>-0.142 (\times 10^{-3})</td>
<td>0</td>
<td>-0.103</td>
<td>0</td>
<td>-0.096</td>
</tr>
<tr>
<td>200</td>
<td>-2.288</td>
<td>0</td>
<td>-1.264</td>
<td>0</td>
<td>-0.628</td>
<td>0</td>
<td>-0.365</td>
<td>0</td>
<td>-0.204</td>
<td>0</td>
<td>-0.179</td>
<td>0</td>
<td>-0.168</td>
<td>0</td>
<td>-0.166 (\times 10^{-3})</td>
<td>0</td>
<td>-0.122</td>
<td>0</td>
<td>-0.115</td>
</tr>
<tr>
<td>220</td>
<td>-2.506</td>
<td>0</td>
<td>-1.382</td>
<td>0</td>
<td>-0.686</td>
<td>0</td>
<td>-0.403</td>
<td>0</td>
<td>-0.244</td>
<td>0</td>
<td>-0.219</td>
<td>0</td>
<td>-0.207</td>
<td>0</td>
<td>-0.206 (\times 10^{-3})</td>
<td>0</td>
<td>-0.155</td>
<td>0</td>
<td>-0.148</td>
</tr>
<tr>
<td>250</td>
<td>-2.824</td>
<td>0</td>
<td>-1.500</td>
<td>0</td>
<td>-0.744</td>
<td>0</td>
<td>-0.442</td>
<td>0</td>
<td>-0.284</td>
<td>0</td>
<td>-0.259</td>
<td>0</td>
<td>-0.246</td>
<td>0</td>
<td>-0.246 (\times 10^{-3})</td>
<td>0</td>
<td>-0.195</td>
<td>0</td>
<td>-0.187</td>
</tr>
<tr>
<td>300</td>
<td>-3.242</td>
<td>0</td>
<td>-1.618</td>
<td>0</td>
<td>-0.802</td>
<td>0</td>
<td>-0.480</td>
<td>0</td>
<td>-0.324</td>
<td>0</td>
<td>-0.299</td>
<td>0</td>
<td>-0.286</td>
<td>0</td>
<td>-0.286 (\times 10^{-3})</td>
<td>0</td>
<td>-0.235</td>
<td>0</td>
<td>-0.227</td>
</tr>
<tr>
<td>350</td>
<td>-3.660</td>
<td>0</td>
<td>-1.736</td>
<td>0</td>
<td>-0.860</td>
<td>0</td>
<td>-0.518</td>
<td>0</td>
<td>-0.364</td>
<td>0</td>
<td>-0.339</td>
<td>0</td>
<td>-0.326</td>
<td>0</td>
<td>-0.326 (\times 10^{-3})</td>
<td>0</td>
<td>-0.275</td>
<td>0</td>
<td>-0.267</td>
</tr>
<tr>
<td>400</td>
<td>-4.078</td>
<td>0</td>
<td>-1.854</td>
<td>0</td>
<td>-0.918</td>
<td>0</td>
<td>-0.556</td>
<td>0</td>
<td>-0.404</td>
<td>0</td>
<td>-0.379</td>
<td>0</td>
<td>-0.366</td>
<td>0</td>
<td>-0.366 (\times 10^{-3})</td>
<td>0</td>
<td>-0.315</td>
<td>0</td>
<td>-0.307</td>
</tr>
<tr>
<td>450</td>
<td>-4.496</td>
<td>0</td>
<td>-1.972</td>
<td>0</td>
<td>-0.976</td>
<td>0</td>
<td>-0.594</td>
<td>0</td>
<td>-0.444</td>
<td>0</td>
<td>-0.419</td>
<td>0</td>
<td>-0.406</td>
<td>0</td>
<td>-0.406 (\times 10^{-3})</td>
<td>0</td>
<td>-0.355</td>
<td>0</td>
<td>-0.347</td>
</tr>
</tbody>
</table>

The chart is to scale only for 20 mm basic size.
Table (1) Tolerances of Holes

<table>
<thead>
<tr>
<th>ISO - TOLERANCE ZONE FOR HOLE</th>
<th>VALUES OF DEVIATIONS IN MICRONS (t = 0.001 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>- 3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>> 6</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>> 18</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>> 60</td>
<td>120</td>
</tr>
<tr>
<td>> 120</td>
<td>240</td>
</tr>
</tbody>
</table>

Table (2) Tolerances of Shafts

<table>
<thead>
<tr>
<th>ISO - TOLERANCE ZONE FOR SHAFT</th>
<th>VALUES OF DEVIATIONS IN MICRONS (t = 0.001 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>- 3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>> 6</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>> 18</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>> 60</td>
<td>120</td>
</tr>
<tr>
<td>> 120</td>
<td>240</td>
</tr>
</tbody>
</table>

12
Screw and Nuts:

Screw-Thread Nomenclature

Screw-Thread Forms
Standard Types of Bolt and Screw Heads:

a. Square Head

b. Hexagon Head

c. Fillister Head
d. Round Head
e. Flat Head
Machine Screws:

The preferred diameters and minimum lengths for machine screws are:

<table>
<thead>
<tr>
<th>DIAMETER</th>
<th>M1.6</th>
<th>M2</th>
<th>M2.5</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M8</th>
<th>M10</th>
<th>M12</th>
<th>M16</th>
<th>M20</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td>25</td>
<td>28</td>
<td>34</td>
<td>40</td>
<td>48</td>
<td>56</td>
<td>70</td>
</tr>
</tbody>
</table>

Set Screws:

End of Set Screws:
- flat point
- cone point
- oval point
- full dog point
- half dog point
Bolts, Cap Screw, and Studs :-

a. Bolt
b. Cap Screw
c. Stud

Drilled and Tapped Holes :-
- Cap Screw :

(i)
(ii)
(iii)
(iv)
Bolt:

\[L_o = 2d \text{ to } 2.8d \]
\[K = 3d \]
\[d_o = 1.1d \]
\[d_w = 2.2 \, d \]
\[S = 0.15d \]
\[C = 0.1d \]
Stud :-

$L_1 = 1.25d$
$L_2 = L_1 + 0.5d$
$K = 3d$
$d_0 = 1.1d$
$d_w = 2.2d$
$S = 0.15d$
Keys :-

Types of Keys :-

<table>
<thead>
<tr>
<th></th>
<th>Square section</th>
<th>Rectangle section</th>
<th>Prismatic Key</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>a. Prismatic Key</td>
</tr>
<tr>
<td>W = d/4</td>
<td>H = d/6</td>
<td>R = d/8</td>
<td></td>
</tr>
<tr>
<td>d = Shaft diameter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Taper Key</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W = d/4</td>
</tr>
<tr>
<td></td>
<td>H = d/6</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>W</td>
<td>A - B = d/4 T = d/6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>d. Woodruff Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>W = d/4 R = d/2 H = 0.4d h = 0.3d E = 0.1d</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>e. Saddle Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>W = d/4 T = d/8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pins and Cotters :-
Types of Pins :-

<table>
<thead>
<tr>
<th>Using</th>
<th>Pin Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a. Cylindrical Pin</td>
</tr>
<tr>
<td></td>
<td>b. Taper Pin</td>
</tr>
<tr>
<td></td>
<td>c. Slot Pin</td>
</tr>
<tr>
<td></td>
<td>d. Joint Pin</td>
</tr>
<tr>
<td></td>
<td>e. Split Pin</td>
</tr>
</tbody>
</table>

Cotters :-

![Cotter Diagram](image)
Springs:

- Flat springs
 - Leaf spring
 - Power spring
 - Dish spring

- Helical springs
 - Compression spring
 - Tension spring
 - Torsion spring

<table>
<thead>
<tr>
<th>Compression Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
</tr>
<tr>
<td>Circular section</td>
</tr>
<tr>
<td>Rectangular section</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tension Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Torsion spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Compression Springs :-

\[L_0 = n \times p + d \]
\[n = n_1 - 2 \]
\[L = \pi \times n, \ D_m \]
\[D_m = D_o - d \]

Where :-
- \(L_0 \) = free length of spring.
- \(n \) = No. of active coils of spring.
- \(p \) = pitch.
- \(d \) = wire diam.
- \(n_1 \) = No. of total coils of spring.
- \(L \) = Length of wire spring.
- \(D_m \) = mean diam. of spring.
- \(D_o \) = outside diam. of spring.
Rivets and Rivet Joints:

Rivet Types:
Rivet Joints:

i. Lap Joint:

\[d = 1.2 \sqrt{t} \rightarrow 1.4 \sqrt{t} \]

(a) Single Riveted (b) Double Riveted

ii. Butt Joint:

(a) Single Riveted (b) Double Riveted

(\[Z \rightarrow Z_{\text{min}} \])
Welding and Welding Joints:

Types of Welding Joints:

Symbols of Arc and Gas Welding:

SUPPLEMENTARY SYMBOLS

Supplementary Symbols
Applications:

Vertical side always on left:

(a) (b) (c) (d) (e) Arrowside and Other Side.
Spot, Seam, and Flash Weld Symbols.

(a) Spot
(b) Seam
(c) Flash

Intermittent Welds.

Groove Welds.
Gears

<table>
<thead>
<tr>
<th>Cylindrical Gear</th>
<th>Bevel Gear</th>
<th>Worm & Worm Gear</th>
</tr>
</thead>
<tbody>
<tr>
<td>- spur gear</td>
<td>- Straight bevel gear</td>
<td></td>
</tr>
<tr>
<td>- Helical gear</td>
<td>- Spiral bevel gear</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rack & Pinion Gear</td>
</tr>
</tbody>
</table>

An Assortment of Gears

(a) Cylindrical Gear
(b) Bevel Gear
(c) Worm & Worm Gear
(d) Rack & Pinion Gear
1. Spur Gear:

- Tip diam.
- Pitch diam.
- Root diam.
- Face width
The Basic Relationships for Spur Gear:

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M = \frac{P}{\pi} = \frac{d_p}{Z})</td>
<td>Modul = Pitch Diameter / Number of Teeth</td>
</tr>
<tr>
<td>(A = \frac{d_T - d_p}{2} = 0.3138 \times P)</td>
<td>Addendum = Tip Diameter - Pitch Diameter / 2</td>
</tr>
<tr>
<td>(D = \frac{d_p - d_R}{2} = 0.3683 \times P)</td>
<td>Dedendum = Pitch Diameter - Root Diameter / 2</td>
</tr>
<tr>
<td>(X = \frac{d_{p1} + d_{p2}}{2})</td>
<td>Thickness of Tooth</td>
</tr>
<tr>
<td>(P = \pi \times \frac{d_p}{Z})</td>
<td>Pitch = Modul \times \frac{Pitch Diameter}{Number of Teeth}</td>
</tr>
<tr>
<td>(c = \frac{P}{20})</td>
<td>Clearance = Pitch / 20</td>
</tr>
<tr>
<td>(h = A + D + c)</td>
<td>Whole Depth of Tooth</td>
</tr>
<tr>
<td>(t = \frac{P}{2})</td>
<td>Mean Thickness of Tooth</td>
</tr>
<tr>
<td>(W = (L - 10) \times M)</td>
<td>Face Width</td>
</tr>
<tr>
<td>(r = \frac{1}{6} \times M)</td>
<td>Fillet Radius</td>
</tr>
</tbody>
</table>

Where:

- \(M \) = Modul
- \(d_p \) = Pitch Diameter
- \(Z \) = Number of Teeth
- \(A \) = Addendum
- \(D \) = Dedendum
- \(d_R \) = Root Diameter
- \(d_T \) = Tip Diameter
- \(d_{p1}, d_{p2} \) = Pitch Diameter for Pinion & Gear
- \(c \) = Clearance
- \(h \) = Whole Depth of Tooth
- \(t \) = Mean Thickness of Tooth
- \(W \) = Face Width
- \(r \) = Fillet Radius
- \(P \) = Circular Pitch
2. Straight Bevel Gear:

- **Angular addendum:** α_C
- **Addendum:** A
- **Dedendum:** D
- **Pitch cone angle:** θ
- **Addendum angle:** β

Diagram showing:
- Tooth diameter
- Pitch diameter
- Root diameter
- Common apex of gear
- Mounting distance
- Apex distance
- Rocking distance

Additional notes:
- d
- d_p
- d_r
- d_s
- a
- b
- c
- e
- f
- g
- h
- i
- j
- k
- l
- m
- n
- o
- p
- q
- r
- s
- t
- u
- v
- w
- x
- y
- z
Assembly of Straight Bevel Gear:
The Basic Relationships for Straight Bevel Gear:

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_p = M \times Z)</td>
<td>Pitch diameter</td>
</tr>
<tr>
<td>(P = \pi \times d_p / Z)</td>
<td>Pressure angle</td>
</tr>
<tr>
<td>(X_c = d_p / 2 \sin \alpha_p)</td>
<td>Cone distance</td>
</tr>
<tr>
<td>(\tan \alpha_A = A / X_c)</td>
<td>Addendum angle</td>
</tr>
<tr>
<td>(\tan \alpha_D = D / X_c)</td>
<td>Dedendum angle</td>
</tr>
<tr>
<td>(\alpha_R = \alpha_p - \alpha_D)</td>
<td>Root angle</td>
</tr>
<tr>
<td>(\alpha_F = \alpha_p + \alpha_A)</td>
<td>Face angle</td>
</tr>
<tr>
<td>(\alpha_{\beta} = \alpha_p)</td>
<td>Angle of bevel</td>
</tr>
<tr>
<td>(W = X_c / 3)</td>
<td>Face width</td>
</tr>
</tbody>
</table>

Where:
- \(d_p \) = pitch diameter.
- \(M \) = Module.
- \(Z \) = Number of teeth.
- \(\alpha_p \) = Pitch angle.
- \(r_{p1}, r_{p2} \) = Pitch radii of big & small gear.
- \(X_c \) = Cone distance.
- \(\alpha_A \) = Addendum angle.
- \(\alpha_D \) = Dedendum angle.
- \(\alpha_R \) = Root angle.
- \(\alpha_F \) = Face angle.
- \(A \) = Addendum.
- \(D \) = Dedendum.
- \(\alpha_C \) = Angular Addendum.
- \(W \) = Face width.
Assembly Drawing:

(1) shaft / st. / 1 Qty

(2) dish ST. 2 Qty

(3) Washer ST. 2 qty

(4) grinding wheel 1 Qty

(5) Nut(M12) ST. 1 Qty

Grinding Tool Holder
Assembly (2)

Clamp Stop
(1) Frame (welded joint) / steel / 1 Qty
NOTE: The frame consists of 2 parts; stand & base are welded by:
Concave fillet welding around the stand with thickness 8 mm.

(2) Screw shaft / steel / 1 Qty

(3) Cup / Cast iron / 1 Qty

(4) Special bolt / steel / 1 Qty

(5) Handle / steel / 1 Qty

JACK
(1) base/C.I./1 req. (2) cover/C.I./1 req. (3) half bush I /bronze/1 req. (4) half bush II /bronze/1 req. (5) hexagon head bolt M10x35/St./2 req. (6) washer 18x11x2/St./2 req.

Note: Unspecified Radii R2

Shaft Carrier
Knuckle Joint

(1) fork/st.
(2) rod/st.
(3) pin/st.
(4) washer/st.
(5) split pin/st.
(6) screw shaft/st.
(7) hex. Nut M 20/st.

M 20
(4) $\Delta 14$ (sphere)

(5) $\Delta 14$ (sphere)

(2) $\Delta 10.57$

(6) $\Delta 10.57$

(1) $\Delta 10.57$

(3) $\Delta 2.6$

(1) fork/St./1 req.
(2) jew/St./2 req.
(3) power screw/St./1 req.
(4) handle/St./1 req.
(5) sphere/St./1req.
(6) pin/St./2 req.

Note: All sharp edges chamfered with 1/45°.

Tension Tool
(with two jaws)
1 BRACKET (C.I.-1 REQD)

2 BASE (C.I.-1 REQD)

3 ROLLER (C.I.-1 REQD)

4 SPINDLE (S.E.N.S.-1 REQD)

5 BUSH (G.M.-2 REQD)

14" DRILL 2 HOLES

50 CRS

ALSO SUPPLY:
4 ONLY 12 DIA. x 38mm HEX. BOLTS AND NUTS

Pully Carrier
Gear Box

Z₁ = 20
Z₂ = 40
M = 2.5

Z₃ = 15
Z₄ = 60
M = 3

1. gear 1/st./1 req.
2. gear 2/st./1 req.
3. gear 3/st./1 req.
4. gear 4/st./1 req.
5. shaft 1/st./1 req.
6. shaft 1/st./1 req.
7. shaft 1/st./1 req.
8. key/st./4 req.
1- Vice base, C.I., 1 reqd.
2- Sliding jaw, C.I., 1 reqd.
3- Jaw plate, steel, 2 reqd.
4- Vice screw, steel, 1 reqd.
5- Vice nut, steel, 1 reqd.
6- Handle rod, steel, 1 reqd.
7- Handle ball, steel, 1 reqd.
8- Hex. screw M8x20, steel, 1 reqd.
9- Flat head cap screw, M8 X 15 steel, 4 reqd.
10- Washer, steel, 1 reqd.
11- Split pin, steel, 1 reqd.

Vice