Al-Mustansiriyah University

College of Engineering

Mechanical Engineering Dept.

Class: 2 nd

Mechanical Drawing

Lect. Saad Najeeb Shehab

Auxiliary Views:

I. Inclined Surface:-

304 250rill 30 23 23 19
304 250rill 300 25 19

Fig. (2)

R25

R26

R36

R36

R36

R35

Fig. (4)

Fig. (3)

Fig. (11)

Fig. (12)

Fig. (13)

II. Skew Surface :-

Fig. (15)

Fig. (17)

Tolerance and Fit:

I. Tolerance:-

Tol. = max. diam. – min. diam.

Max. diam. = nominal size + upper allowance

Min. diam. = nominal size + lower allowance

7

Clearance fit:

Max. clearance = max. diam. of hole - min. diam. of shaft Min. clearance = min. diam. of hole - max. diam. of shaft

Transition fit:

Max. clearance = max. diam. of hole - min. diam. of shaft Max. interference = min. diam. of hole - max. diam. of shaft Interference fit:

Max. interference = min. diam. of hole - max. diam. of shaft Min. interference = max. diam. of hole - min. diam. of shaft

NII OII NII HII 5|2 H11 D10 0 2 # | ° 2|2 되: F 2 | 2 2 | b Clearances and interference to pm Tit tolorance mans =|2 \exists C7 47 47 47 47 47 口 口 ĒļĒ 1-1-1-E 2 F 2 2 Fits from telecture sense of Ranges 1 and 2 Fits from telecture sense of Range 2 2 2 F 1111111111 file from tolorasco none of Rage ! 기의 10 H H87H87 H7 H7 日日日 88+ +300+ -100 81+ 89+ 8 8 89+ Ti (-) 12/21- (+) C1-12-12-12-12-13

10

				-																		
TOLER	0.001 mm.	1	ARSE	-	OSE	E/	ASY:	NOR	MAL	PREC	ISION	AVI	ERAGE	E LI	GHT	HE	AVV	Topses				
			RANCE	R	UNNIN	G FI	T	RUN		KUNN	ING.	1	CATIO	-		I FIT		7	- 1			ESS FIT
	SIZES (mm	H11	- c11	Luc) - d10	Tue) - e S			T			1			7 711	-	IFERR	OUSI	INON	- FE	RROUS
OVER	70	+60	1-60			1		_L	8 - f	7 1	17 -	g 6	H7	- h6	Н:	7 - k6	Н	7 – ne	5 H	7 - p	6 F	17 - sé l
<u> </u>	3	+75	-120	+25 0	-20 -60	+25	-14 -39	+14	-16		0 -2	2	+10	0	+10		+10	+10	+10	+12	+1	0 +20
3	6	Ō	-70 -145	+30	-30 -78	+30	-20 -50	+18	-10 -28	+1			+12	-6	+12	O	+12	+16	+12	+6 +20		1+14
6	10	+90	-80 -170	+36	-40 -98	+36	-25 -61	+22	-13	+1	5 -E		+15	-8	+15	+10	+15	+8	+15	+12		+19
10	18	+110		+43	-50 -120	+43	-32 -75	+27	-28 -16	+1	0 -1 8 -6		+18	9	+18	+1	10	+10	Lō	+15	+1	1 +23
18	30	+130	-110	+52	-65	+52	-40	+33	-34 -20 -41	+2	0 -1	7	+21	-11 0	ا م	+12 +1	+18 0	+23 +12	+18	+29 +18	+1	+28
30	40	+160	-120	+62	149	+62	-92	10			0 -2	0	0	-13	+21	+15 +2	⁺²¹ 0	+28 +15	+21	+35 +22	+2	
40	50	D	-290 -130 -290	Õ	-80 -180	ő	-50 -112	+39	-25 -50	+2	5 -9 0 -2	5	+25 0	.16	+25 0	+18 +2	+25	+33 +17	+25 0	+42 +26	+25	+59 +43
50	65	+190	-140	+74	-100	+74	-80	+46	- 20	+30		\neg			-		<u> </u>		<u> </u>		_	$\perp \perp$
65	80	0	330 150 340	0	-220	+74	-60 -134	0	-30 -60) -10) -29	3	+30	0 -19	+30	+21 +2	+30	+39 +20	+30	+51 +32	+30	+72 +53 +78
80	100	+220	-170 -390	+87	-120 -260	+87	-72 -159	+54	-36	1+30		,	+35		+35				<u> </u>		-	+59
100	120	0	-390 -180 -400	0	-260	0	-159	0	-36 -71	+35	-12	•	730	0 -22	0	+25 +3	+35	+45 +23	+35	+59 +37	+35	+71 +101
120	140		-200 -450					 		+-		-			├				<u> </u>			+79
140	160	+250 0	-210 -460		-145 -305	+100	-84 -185	+63	-43 -83	+40			+40 0	0 -25	+40	+28 +3	+40	+52 +27	+40	+68 +43	+40	+117 +92 +125
160	180		-230 -480									1			_		-			743	0	+100
180	200		-240 -530					† —		+-		+									ļ	+108
200	225	+290	-260 -550		-170 -355	+115 0	-100 -215	+72 0	-50 -96	+46				0 29	+46 0	+33 +4	+46	+60 +31	+46 0	+79 +50	+46	+151 +122 +159
225	250	١	-280 -570													1						+130
250	280	+320	-300 -620	+130	-190	+130	-110	+81	-56	+52	-17	+;	+52	0	+52	+36	+52		. =0		-	+140 +190
280	315	0	-330 -650	ő	-400	ő	-240	Ö	-108	ō]		32	0 -	+4	0	+66 +34	+52 0	+88 +56	+52 0	+158 +202
315	355	+360	-360 -720	+140	-210	+140	-125	+89	-62	+57	-18	1	157	. 1	+57	+40	-57	172				+170 +226
355	400	٥	-400 -760		440	ŏ	-265	0	-119	1.50	-54			36	0	+4	0	+73 +37	+57 D	+98 +62	+57 0	+190
400	450	+400	-440 -840	+155	-230	+155	-135	+97	-68	+63	-20	+	63 (+63	+45 +	63 -	+80			162	+208 +272
450	500	0	-480 -880		-480		-290	Ö	-131	0	-60	1	0 -	40		45		+40	63 0	+108 +68	+63	+232 +292 +252

Table (1) Tolerances of Holes

FOR DIAMETER		ISO - TOL	ERAN	CE ZO	NE FO	R HOLE			VALUE	S OF DE	4CITAIV	IS IN MI	RONS (1μ = 0.001 mm)
	A ₁₁ B ₁₁	C ₁₁ D ₁₀	Eg	· F8	G ₇	Н ₁₁	. Hg	Н8	Н7	J _{s7}	К7	N ₇	P7	R ₇ S ₇
- 3	+ 330 + 200 + 270 + 140	+ 120 + 60 + 60 + 20	+ 39	+ 20 + 6	+ 12 + 2	+ 60 0	+ 25 0	+ 14	+ 10 0	+ 5 - 5	- 10	- 14	- 6 - 16	- 10 - 14 - 20 - 24
> 3 - 6	+ 345 + 215 + 270 + 140	+ 145 + 78 + 70 + 30	+ 50 + 20	+ 28 + 10	+ 16	+ 75 0	+ 30	+ 18	+ 12 0	+ 6	+ 3	- 4 - 16	- 8 - 20	- 11 - 15 - 23 - 27
> 6 - 10	+ 370 + 240 + 280 + 150	+ 170 + 98 + 80 + 40	+ 61 + 25	+ 35 + 13	+ 20 + 5	+ 90 0	+ 36	+ 22 0	† 15 0	+ 75 - 75	+ 5 - 10	- 19	- 9 - 24	- 13 - 17 - 28 - 32
> 10 - 18	+ 400 + 260 + 290 + 150	+ 205 + 120 + 95 + 50	+ 75 + 32	+ 43	+ 24 + 6	+ 110 0	+ 43	+ 27 0	+ 18 0	+ 9	+ 6	- 5 - 23	- 11 - 29	- 16 - 21 - 34 - 39
> 18 - 30	+ 430 + 290 + 300 + 160	+ 240 + 149 + 110 + 65	+ 92 + 40	+ 53 + 20	+ 28 + 7	+ 130	+ 52	+ 33	+ 21 0	+ 10.5 - 10.5	+ 6	- 7 - 28	- 35	- 20 - 27 - 41 - 48
> 30 - 40	+ 470 + 330 + 310 + 170	+ 280 + 120 + 180	+ 112	+ 64	+ 34	+ 160	+ 52	+ 39	+ 25	+ 12-5	+ 7	- 8	~ 17	- 25 - 34
> 40 - 50	+ 480 + 340 + 320 + 180	+ 290 + 130 + 80	+ 50	+ 25	+ 9	0	0	0	0	- 12.5	- 18	- 33	- 42	- 50 - 59
> 50 - 65	+ 530 + 380 + 340 + 190	+ 330 + 220	+ 134	+ 76	+ 40	+ 190	+ 74	+ 46	+ 30	+ 15	+ 9	- 9	- 21	- 60 - 72 - 32 - 48
> 65 - 80	+ 550 + 390 + 360 + 200	+ 340 + 100 + 150	+ 60	+ 30	+ 10	0	0	0	0	- 15	- 21	- 39	- 51	- 62 - 78 - 38 - 58
> 80 - 100	+ 600 + 440 + 380 + 220	+ 390 + 170 + 260	+ 159	+ 90	+ 47	+ 220	+ 87	+ 54	+ 35	+ 17.5	+ 10	- 10	- 24	~ 73 - 93
>100 - 120	+ 630 + 460 + 410 + 240 + 710 + 510	+ 400 + 120	+ 72	+ 36	+ 12	0	0	0	0	- 17-5	- 25	- 45	- 59	- 41 - 66 - 76 - 101 - 48 - 77
> 120 - 140	+ 460 + 260	+ 450 + 200 + 305	+ 185	+ 106	+ 54	+ 250	+ 100	+ 63	+ 40	+ 20	+ 12	- 12	- 23	- 88 - 117
> 140 - 160	+ 770 + 530 + 520 + 280	+ 460 + 210 + 145	+ 85	+ 43	+ 14	0	0	0	0	- 20	~ 28	- 52	- 63	- 90 - 125
> 160 - 180	+ 830 + 560 + 580 + 310	+ 480 + 230		-										- 93 - 133
> 180 - 200	+ 950 + 630 + 660 + 340	+ 530 + 240 + 355	+ 215	+ 122	+ 61	+ 290	+ 115	+ 72	+ 46	+ 23	+ 13	~ 14	- 33	- 106 - 151
>200 - 225	+1030 + 670 + 740 + 380	+ 550 + 260 + 170	+ 100	+ 50	+ 15		0	0	0	- 23	- 33	- 60	- 79	- 63 - 113 - 109 - 159
>225 - 250	+1110 + 710 + 820 + 420	+ 280												- 113 - 169
>250 - 280	+1240 + 800 + 920 + 480	+ 620 + 300 + 400	+ 240	+ 137	+ 69	+ 320	+ 130	+ 81	+ 52	+ 26	+ 16	- 14	- 36	- 74 - 138 - 126 - 190
>280 - 315	+1370 + 860 +1050 + 540	+ 650 + 190 + 330	+ 110	+ 56	+ 17	0	0	0	0	- 26	- 36	- 66	- 83	- 78 - 150 - 130 - 202
>315 - 355	+1560 + 960 +1200 + 600	+ 720 + 360 + 440	+ 260	+ 151	+ 75	+360	+ 140	+ 89	+ 57	+ 28-5	+ 17	16	- 41	- 87 - 169 - 144 - 226
>355 - 400	+1710 + 1040 +1350 + 680	+ 760 + 210 + 400	+ 125	+ 62	+ 18	0	0	0	0	- 28-5	- 40	- 73	- 95	- 93 - 187 - 150 - 244 - 103 - 209
>400 - 450	+1900 + 1160 +1500 + 760	+ 840 + 480	+ 290	+ 165	+ 83	+ 400	+ 155 0	+ 97 0	+ 63	+ 31-5	+ 18	- 17	- 45	- 166 - 272
>450 - 500	+2050 + 1240 +1650 + 840	+ 880 + 230 + 480	+ 135	+ 68	+ 20				0	- 31.5	- 45	- 80	- 108	- 109 - 229 - 172 - 292

Table (2) Tolerances of Shafts

FOR DIAMETER			ISO	-TOLI	FRAN	CF 701	NE FOR	SHAF	T			VALUES	OF DEV	IATION II	N MICRO	NS (Ιμ	= 0.001	mmt)
STEPS IN MILIMET	ER	011	b ₁₁	c ₁₁	dg	e ₈	17	96	h ₁₁	hg	h ₇	h ₆	js ₆	k ₆	ng	P ₅	r ₆	s6
	3	- 270 - 330	- 140 - 200	- 60 - 120	- 20 - 45	- 14 - 28	- 6 - 16	~ 2 - 8	- 60	- 25	- 10	- 0 - 6	+ 3	+ 6	+ 10	+ 12 + 6		+ 20
> 3 -	6	- 270 - 345	- 140 - 215	- 70 - 145	- 30 - 60	- 20 - 38	- 10 - 22	- 4	0 - 75	- 30	- 12	- 8	+ 4	+ 9	+ 16 + 8	+ 20 + 12	+ 15	+ 27 + 14
> 6 -	10	- 280 - 370	- 150 - 249	- 80 - 170	- 40 - 76	- 25 - 47	- 13 - 28	- 5 - 14	- 90 - 90	- 36	- 15	_ 0 _ 9	+ 4.5 - 4.5	+ 10 + 1	+ 19 + 10	+ 24 + 15	+ 19	+ 32 + 23
> 10 -	18	- 290 - 400	- 15C - 260	- 95 - 205	- 50 - 93	- 32 - 59	- 16 - 34	- 6 - 17	0 - 110	- 43	- 18	- 11	+ 5.5 - 5.5	+ 12 + 1	+ 23 + 12	+ 29 + 18		+ 39 + 28
> 18 - 3	30	- 300 - 430	- 160 - 290	- 110 - 240	- 65 - 117	- 40 - 73	- 20 41	- 7 - 20	- 130	- 52	- 21	- 13	+ 6.5 - 6.5	+ 15 + 2	+ 28 + 15	+ 35 + 22		÷ 48 • 35
> 30 - 4	40	- 310 - 470	- 170 - 330	- 120 - 280	- 80	50	- 23	- 9	0	0	0	0	+ 8	+ 18	+ 33	+ 42	+ 50	+ 59
> 40 - 5	50	- 320 - 480	- 180 - 340	- 130 - 290	- 142	- 89	- 50	- 25	- 160	- 62	- 25	16	- 8	+ 2	+ 17	+ 25 ·	+ 34	+ 42
> 50 - 6	55	- 340 - 530	- 190 - 380	- 140 - 330	- 100	- 60	- 30	- 10	0	0	0	0	+ 9.5	+ 21	+ 39	+ 51	+ 41	+ 53
> 65 - 8	80	- 360 - 550	- 200 - 390	- 150 - 340	- 174	- 106	- 60	- 29	- 190	- 74	- 30	- 19	- 9.5	+ 2	+ 20	+ 32	+ 43	+ 78 + 59 + 93
> 80 - 10	00	- 380 - 600	- 220 - 440	- 170 - 390	- 120	- 72	- 36	- 12	0	0	0	0	+ 11	+ 25	+ 45	+ 59	+ 51	77
>100 - 12	20	- 410 - 630	- 240 - 460	- 180 - 400	- 207	- 126	- 71	- 34	- 220	- 87	~ 35	- 22	- 11	+ 3	+ 23	+ 37	+ 54	+ 79
>120 - 1	40	- 460 - 710	- 260 - 510	- 200 - 450	- 145	- 85	- 43	- 14	0	0	0	0	+12-5	+ 28	+ 52	+ 68	+ 63	92
	60	- 520 - 770	- 280 - 530	- 210 - 460			- 83	- 39	- 250	- 100	- 40	- 25	- 12-5	+ 3	+ 27	+ 43	+ 65	+ 100
	80	- 580 - 830 - 660	- 310 - 560 - 340	-230 -480 -240	- 245	- 148	- 83	39	- 230	100		- 23	- 12-5				+ 68	+ 108 + 151
	00	- 950 - 740	- 630 - 380	-530	- 170	- 100	- 50	- 15	0	0	0	0	+14.5	+ 33	+ 60	• 7 9	+ 77	+ 122
	25	- 1030 - 820	- 670 - 420	- 550	- 285	- 172	- 96	- 44	~ 290	- 115	- 46	- 29	-14.5	+ 4	+ 31	+ 50	+ 113	+ 130 + 169
	50	- 1110	- 710	- 570	<u> </u>		- 80			-	-		+ 18	+ 38	+ 86	+ 88	+ 126	+ 140
	80 15	-1278 -1050	- 480 - 800 - 520	-300 -620 -330	- 190 - 320	- 11 0	- 108	- 17 - 49	- 320	- 130	- 52	- 32	- 15	+ 4	+ 34	+ 56	+ 130	+ 15B + 202
		-1470	- 860 - 600	-650 -360				- 18	0		<u> </u>	0	+ 18	+ 40	+ 73	+ 98	+144	+ 170
	55 00	-1560 -1350	- 960 - 680	- 720	- 210 - 350	- 125 - 214	- 52 - 119	- 54	- 360	- 140	- 53	- 36	- 18	+ 40	+ 37	+ 62	+150	+ 190 + 244
	50	-1710 -1500	-1640 - 710	- 760 - 440			-		-	0	_	-				. 400	+156	+ 208 + 272
	00	-1900 -1650 -2050	-11 60 - 840	-840 -480	-230 -385	- 135 - 232	- 68 - 13 i	- 20 - 60	- 400	- 155	- 63	- 40	+ 20 - 20	+ 45	+ 80	+ 108	+126 +172 +132	+ 232 + 292 + 252
		1-2050	-1240	-880		<u></u>			1		ــــــــــــــــــــــــــــــــــــــ	<u> </u>			٠		1	

مرطه کانیه مسم الیکائیل/جم میکائیکی آرجع جنیب

Al-Mustansiriya University
College of Engineering
Mechanical Eng. Department
Mechanical Drawing Sheet No. (2)

Lect. Saad N. Shehab

Screw and Nuts :-

Standard Types of Bolt and Screw Heads:-

The preferred diameters and minimum lengths for machine screws are:—
DIAMETER M1,6 M2 M2,5 M3 M4 M5 M6 M8
LENGTH 15 16 18 19 22 25 28 34 M12 M16 M20 46 58 70

Set Screws :-

Bolts, Cap Screw, and Studs:-

Drilled and Tapped Holes :-- Cap Screw:

Bolt :-

$$\begin{split} L_O &= 2d & \text{to } 2.8d \\ K &= 3d \\ d_O &= 1.1d \\ d_W &= 2.2 \ d \\ S &= 0.15d \\ C &= 0.1d \end{split}$$

Stud :-

 $L_1 = 1.25d$ $L_2 = L_1 + 0.5d$ K = 3d $d_0 = 1.1d$ $d_W = 2.2 d$ S = 0.15d

Keys :-

Types of Keys :-

Pins and Cotters :-Types of Pins :-

Cotters :-

Springs :-

Flat springs - Leaf spring - power spring - Dish Spring Springs Helical springs Compression Spring Tension Spring Torsion spring

	Compress	ion Spring
	Section	View
Circular section		
Rectangular section		

Tensio	n Spring
Section	View

Torsio	n spring
Section	View

Compression Springs:-

$L_0 = n \times p + d$
$\mathbf{n} = \mathbf{n}_1 - 2$
$\mathbf{L} = \mathbf{X} \ \mathbf{n}_1 \ \mathbf{D}_{m}$
$\mathbf{D}_{m} = \mathbf{D}_{o} - \mathbf{d}$

قسم، لهذرة اليكانيكية الرحلة: المنافية المادة: رسم ميكانيكي / sheet No.3 أنسعد نجيب

Al-Mustansiriya University College of Engineering Mechanical Eng. Department Mechanical Drawing

Sheet No. (3)

Lect. Saad N. Shehab

Rivets and Rivet Joints:

Rivet Types:

Rivet Joints:

i. Lap Joint:

ii. Butt Joint:

Welding and Welding Joints:-

Types of Welding Joints:

Symbols of Arc and Gas Welding:

SUPPLEMENTARY SYMBOLS									
WELD ALL AROUND	FIELD WELD		FLUSH	CONTOUR	CONCAVE				
0	<u>, </u>			<u></u>	~				

Supplementary Symbols

Applications :

Arrow Side and Other Side.

Spot, Seam, and Flash Weld Symbols.

Gears :-

Gears

Cylindrical Gear

Bevel Gear

worm &worm gear

- spur gear

Helical gear

Straight bevel gear

L Spiral bevel gear

Rack & Pinion Gear

An Assortment of Gears

GEAR

1. Spur Gear :

- External
- Internal

Spur Gear

Assembly of Spur Gear:

The Basic Relationships for Spur Gear:

$$M = P / \pi = d_{P} / Z$$

$$A = (d_{T} - d_{P}) / 2 = 0.3138 P$$

$$D = (d_{P} - d_{R}) / 2 = 0.3683 P$$

$$X = (d_{P} + d_{P}) / 2$$

$$P = \pi d_{P} / Z$$

$$c = P / 20$$

$$h = A + D + c$$

$$t = P / 2$$

$$W = (6 \rightarrow 10) M$$

$$Y = \frac{1}{6} M$$

Where:-

= Modul.

= pitch diam. d_P

= No. of teeth.

= Addendum.

D = Dedendum.

 $\mathbf{d}_{\,\mathbf{R}}$ = root diam.

= tip diam.

 d_{P_1} , d_{P_2} = pitch diam. For pinion & gear.

= clearance. = whole depth of tooth.

= mean thickness of tooth.

= face width.

= fillet radius.

P = Circular pitch .

2. Straight Bevel Gear:

Assembly of Straight Bevel Gear :

The Basic Relationships for Straight Bevel Gear:

d _p = M x Z
P= x dp/2
$X_c = d_P/2 \sin \alpha_P$
$\tan \alpha_A = A / X_C$
$\tan \alpha_{D} = .D / X_{c}$
$d_R = d_P - d_D$
KF = KP+KA
QP= NB
$W = X_c / 3$

Where:-

 $d_p = \text{pitch diam.}$ M = Module.

Z = No. Of teeth.

 α_p = pitch angle.

 r_{p_2} , r_{p_1} = pitch radii of big & small gear. X_c = Cone distance. A_c = Add. Angle. A_c = Ded. Angle.

= root angle

= face angle .

A = Addendum.

= Dedendum. D

= angular Addendum.

= face width.

Al-Mustansiriya University College of Engineering Mechanical Eng. Department Mechanical Drawing

Sheet No. (4)

Lect. Saad N. Shehab

Assembly Drawing :-

Grinding Tool Holder

Assembly (2) Clamp Stop

Pully Carrier

Gear Box

Vice