Chapter (4)
 Additional Analysis Techniques

Here we will study four additional Techniques

- Superposition
- Source transformation
- Thevenin and Norton Theorems
- Maximum power principle

1. Superposition :

Definition :

Whenever a linear circuit is excited by more than one independent source, the total response is the algebraic sum of individual responses
The idea is to activate one independent source at a time to get individual response.
Then add the individual response to get total response

Note:

1. Dependent source are Never deactivated (always active)
2. When an independent voltage source is deactivated, it is set to zero.
\Rightarrow replaced by short circuit
3. When an independent current source is deactivated, it is set to zero. \Rightarrow replaced by open circuit

Example:

Use superposition to find $i_{1}, i_{2}, i_{3}, i_{4}$?

- Activate independent voltage source 120 V only

-Using KCL at V1 (nodal analysis)

$$
' i_{1}-i_{2}-i_{3}=0
$$

$$
\begin{aligned}
& \frac{120-\mathrm{V}_{1}}{6}-\frac{\mathrm{V}_{1}}{3}-\frac{\mathrm{V}_{1}}{2+4}=0 \\
& 20-\mathrm{V}_{1}\left(\frac{1}{6}+\frac{1}{3}+\frac{1}{6}\right)=0 \\
& \Rightarrow \mathrm{~V}_{1}=30 \mathrm{~V} \\
& \mathrm{i}_{1}=\frac{120-\mathrm{V}_{1}}{6}=\frac{90}{6}=15 \mathrm{~A} \\
& '_{2}=\frac{\mathrm{V}_{1}}{3}=\frac{30}{3}=10 \mathrm{~A} \\
& \mathrm{'i}_{3}=\mathrm{i}_{4}=\frac{\mathrm{V}_{1}}{6}=5 \mathrm{~A}
\end{aligned}
$$

* Activate the independent current source only

KCL at V4: $\quad i_{3}-" i_{4}-12=0$

$$
\begin{align*}
& \frac{V_{3}-V_{4}}{2}-\frac{V_{4}}{4}-12=0 \\
& 2 V_{3}-2 V_{4}-V_{4}=48 \\
& 2 V_{3}-3 V_{4}=48 \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{V}_{3}=-12 \mathrm{~V} \\
& \mathrm{~V}_{4}=-24 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& " i_{1}=\frac{-V_{3}}{6}=\frac{12}{6}=2 \mathrm{~A} \\
& " i_{2}=\frac{V_{3}}{3}=\frac{-12}{3}=-4 \mathrm{~A} \\
& " \mathrm{i}_{3}=\frac{\mathrm{V}_{3}-\mathrm{V}_{4}}{2}=\frac{-12+24}{2}=6 \mathrm{~A} \\
& \mathrm{i}_{4}=\frac{\mathrm{V}_{4}}{4}=\frac{-24}{4}=-6 \mathrm{~A} \\
& \mathrm{i}_{1}=\mathrm{i}_{1}+" \mathrm{i}_{1}=15+2=17 \mathrm{~A} \\
& \mathrm{i}_{2}=\mathrm{i}_{2}+\mathrm{i}_{2}=10-4=6 \mathrm{~A} \\
& \mathrm{i}_{3}=\mathrm{i}_{3}+\mathrm{i}_{3}=5+6=11 \mathrm{~A} \\
& \mathrm{i}_{4}=\mathrm{i}_{4}+\mathrm{i}_{4}=5-6=-1 \mathrm{~A}
\end{aligned}
$$

Example :

Use super position to find V_{0} ?

$$
\begin{aligned}
& \mathrm{V}_{\Phi}=10\left(0.4 \mathrm{~V}_{\Phi}\right)=4^{\prime} \mathrm{V}_{\Phi} \\
& \mathrm{V}_{\Phi}=4^{\prime} \mathrm{V}_{\Phi} \quad \Rightarrow \mathrm{V}_{\Phi}=0
\end{aligned}
$$

Dependent current source is open

Activate independent current source only:

KCL at node (y):
$\frac{-" \mathrm{~V}_{0}}{5}-\frac{" \mathrm{~V}_{0}}{20}+0.4 " \mathrm{~V}_{\Phi}=0$
$-4 " V_{0}-" V_{0}+8 " V_{\Phi}=0$
$-5 " V_{0}+8 " V_{\Phi}=0$

$$
\begin{aligned}
& 5+\frac{" \mathrm{~V}_{\Phi}}{10}+0.4 " \mathrm{~V}_{\Phi}=0 \\
& 0.5^{\prime \prime} \mathrm{V}_{\Phi}=-5 \quad \Rightarrow \quad " \mathrm{~V}_{\Phi}=-10 \mathrm{~V} \\
& \therefore \quad " \mathrm{~V}_{0}=\frac{8}{5} " \mathrm{~V}_{\Phi}=\frac{-80}{5}=-16 \mathrm{~V} \\
& \mathrm{~V}_{0}={ }^{\prime} \mathrm{V}_{0}+" \mathrm{~V}_{0}=8-16=-8 \mathrm{~V}
\end{aligned}
$$

Example:

Use superposition to find V ?

Consider the independent source only

Apply KCL at node (x) :

$$
\begin{aligned}
& \mathrm{i}_{1}-\mathrm{i}_{2}-\mathrm{i}_{3}=0 \\
& \frac{100-' \mathrm{~V}}{5}-\frac{\mathrm{V}}{10}-\frac{\mathrm{V}}{14}=0
\end{aligned}
$$

$22-\frac{\mathrm{V}}{5}-\frac{\mathrm{V}}{10}-\frac{\mathrm{V}}{14}=0$
$\mathrm{V}\left[\frac{1}{5}+\frac{1}{10}+\frac{1}{14}\right]=22 \quad \Rightarrow \quad \mathrm{~V}=59.23 \mathrm{~V}$

Consider the independent source only.

12Ω

2. Source Transformation:

A transformation that allow a voltage source in series with a resistor to be replaced by a current source in parallel with the same resistor or vice versa

KCT 2

We need to find I_{s} and V_{s} such that V_{L} and I_{L} is the same in both circuits

In KCT 1,

$$
I_{L}=\frac{V_{s}}{R_{L}+R}
$$

In KCT 2,

$$
I_{L}=\frac{R}{R_{L}+R} I_{s}
$$

For I_{L} to be the same, we need

$$
\mathrm{V}_{\mathrm{s}}=\mathrm{RI} \mathrm{I}_{\mathrm{s}}
$$

Where

$$
\mathrm{V}_{\mathrm{s}}=\mathrm{R} \mathrm{I}_{\mathrm{s}} \quad \text { or } \quad \mathrm{I}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{R}}
$$

Example :

Using source transformation, find the power associated with the 6 V source.

1. Consider the 40 V source in series with (5Ω)

2. Take ($5 / / 20 \Omega$)

3. Consider 8 A in parallel with (4Ω)

4. Take $(4+6+10)$ in series

5. Consider 32 V in series with (20Ω)

6. Take $(30 / / 20 \Omega)$

7. Consider 1.6 A in parallel with (15Ω)

$\mathrm{i}=\frac{19.2-6}{4+12}=0.825 \mathrm{~A} \quad \Rightarrow \quad \mathrm{P}_{6 \mathrm{~V}}=\mathrm{vi}=6(0.825)$
$\mathrm{P}_{6 \mathrm{v}}=4.95 \mathrm{~W}$ (absorbing)

Example :

Use source transformation to find V_{0}

1. Take $(5 / / 15) / / 100=6.66 \Omega$

2. Consider $(250 \mathrm{~V})$ in series with (25Ω)

3. Find equivalent

$$
\mathrm{V}_{0}=\mathrm{i} \mathrm{R}=(2 \mathrm{~A})(10 \Omega)=20 \mathrm{~V}
$$

Example:

Use source transformation to find V_{0}
1.6Ω

$$
\begin{aligned}
& =36+6-12 \\
& =30 \mathrm{~A}
\end{aligned}
$$

Example : Use source transformation to find V_{0} ?

Consider $(10 \mathrm{~V})$ in series with $(1 \Omega)_{1}$ ohm

Take (1//1)=0.5
1 ohm

Consider (10A) in parallel with (0.5Ω)

Take 0.5Ω in series with 1Ω

Consider 5V in series with 1.5Ω

7. Take $(4 / 3 \mathrm{~A})$ in parallel with ($3 / 2 \Omega$)

Thevenin and Norton Theorems

Thevenin Theorem:

A portion of the circuit at a pair of nodes can be replaced by a voltage source V_{oc} in series with a resistor R_{TH}, where V_{oc} is the open circuit voltage and R_{TH} is the Thevenin's equivalent resistance obtained by considering the open circuit with all independent sources made zero

b

Norton Theorem :

A portion of the circuit at pair of nodes can be replaced by a current source $I_{s c}$ in a parallel with a resistor $R_{T H} . I_{s c}$ is the short circuit current at the terminals, and $R_{T H}$ is the Thevenin's equivalent resistance

Here we will consider (3) cases :

1. Circuit containing only independent sources.
2. Circuit containing only dependent sources.
3. Circuit containing both independent and dependent sources.

Case (1): Circuit containing only independent sources:

- Procedure of Thevenin's Theorm:
a. Find the open circuit voltage at the terminals, Voc.
b. Find the Thevenin's equivalent resistance, RTH at the terminals when all independent sources are zero:
$>$ Replacing independent voltage sources by short circuit
$>$ Replacing independent current sources by open circuit
c. Reconnect the load to the Thevenin equivalent circuit
- Procedure of Norton's Theorm:
a. Find the short circuit current at the terminals, I_{sc}.
b. Find Thevenin's equivalent resistance, R_{TH} (as before).
c. Reconnect the load to Norton's equivalent circuit.

Example :
Use Thevenin's and Norton Theorms to find V_{0}

Using Thevenin Theorm:

First find V_{OC} :

$$
i_{1}=\frac{6 \mathrm{~V}}{2 \mathrm{k}+4 \mathrm{k}}=1 \mathrm{~m} \mathrm{~A} \quad \Rightarrow \quad V_{4 k \Omega}=i_{1}(4 \mathrm{k})=-4 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{oc}}=12 \mathrm{~V}-4 \mathrm{~V}=8 \mathrm{~V}
$$

Second, find R_{TH}

$$
\mathrm{R}_{\mathrm{TH}}=2 \mathrm{k} / / 4 \mathrm{k}=4 / 3 \mathrm{k} \Omega
$$

Thevenin equivalent circuit is

$$
\begin{aligned}
\mathrm{V}_{0} & =\frac{2 \mathrm{k} \Omega}{2 \mathrm{k}+\mathrm{R}_{\mathrm{TH}}} \mathrm{~V}_{\text {oc }} \\
& =\frac{2 \mathrm{k}}{10 / 3 \mathrm{k}}(8 \mathrm{~V}) \\
\mathrm{V}_{0} & =4.8 \mathrm{~V}
\end{aligned}
$$

Using Norton Theorm

First find I_{sc}

$\mathrm{i}_{1}=\frac{12 \mathrm{~V}}{4 \mathrm{k}}=3 \mathrm{~m} \mathrm{~A}$

KVL around outer loop:

$$
\begin{aligned}
& 12-6+V_{2 k}=0 \quad \Rightarrow V_{2 k}=-6 \mathrm{~V} \\
& \mathrm{i}_{2}=\frac{\mathrm{V}_{2 \mathrm{k}}}{2 \mathrm{k}}=\frac{-6}{2 \mathrm{k}}=-3 \mathrm{~mA}
\end{aligned}
$$

KCL at x :
$\mathrm{i}_{1}-\mathrm{i}_{2}-\mathrm{i}=0$
$3 \mathrm{~m}+3 \mathrm{~m}-\mathrm{i}=0 \quad \Rightarrow \quad \mathrm{i}=6 \mathrm{mAA} \quad \Rightarrow \mathrm{I}_{\mathrm{sc}}=6 \mathrm{~mA}$
R_{TH} is the same as before:

$$
I_{0}=\frac{R_{\mathrm{TH}}}{R_{\mathrm{TH}}+2 \mathrm{k}}\left(\mathrm{I}_{\mathrm{sc}}\right)=\frac{4 / 3 \mathrm{k}}{4 / 3 \mathrm{k}+2 \mathrm{k}}(6 \mathrm{~m})=2.4 \mathrm{~m} \mathrm{~A}
$$

$$
\mathrm{V}_{0}=\mathrm{I}_{0}(2 \mathrm{k})=(2.4 \mathrm{~m})(2 \mathrm{k})=4.8 \mathrm{~V}
$$

Example :

Use Thevenin and Norton to find V_{0}
12Ω

Using Thevenin Theorm:

1. Find V_{oc} :
12Ω

KVL around the upper loop :

$$
\begin{aligned}
& 12 i_{1}+8 i_{1}+5\left(i_{1}-i_{2}\right)=0 \\
& 25 i_{1}-5 i_{2}=0 \quad \ldots \ldots(1)
\end{aligned}
$$

KCL around lower loop :

$$
\begin{aligned}
& 5\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right)+20 \mathrm{i}_{2}=72 \\
& -5 \mathrm{i}_{1}+25 \mathrm{i}_{2}=72 . . \\
& \mathrm{i}_{1}=0.6 \mathrm{~A}, \quad \mathrm{i}_{2}=3 \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{oc}}=8 \mathrm{i}_{1}+20 \mathrm{i}_{2} \\
& \quad=8(0.6)+20(3) \\
& \mathrm{V}_{\mathrm{oc}}=64.8 \mathrm{~V}
\end{aligned}
$$

2. Find R_{TH}

$$
\mathrm{R}_{\mathrm{TH}}=(8+4) / / 12=12 / / 12=6 \Omega
$$

3. Reconnect the load :

$$
\begin{aligned}
\mathrm{V}_{\mathrm{o}} & =\frac{4}{4+\mathrm{R}_{\mathrm{TH}}} \mathrm{~V}_{\mathrm{oc}} \\
& =\frac{4}{4+6}(64.8) \\
\mathrm{V}_{\mathrm{o}} & =25.92 \mathrm{~V}
\end{aligned}
$$

Using Norton Theorm:
12Ω

1. Find I_{SC} :

KVL around upper loop :

$$
\begin{aligned}
& 12 i_{1}+8\left(i_{1}-i_{3}\right)+5\left(i_{1}-i_{2}\right)=0 \\
& 25 i_{1}-5 i_{2}-8 i_{3}=0 \quad \ldots \ldots(1)
\end{aligned}
$$

KVL around lower loop :

$$
\begin{align*}
& 5\left(i_{2}-i_{1}\right)+20\left(i_{2}-i_{3}\right)=72 \\
& -5 i_{1}+25 i_{2}-20 i_{3}=72 \tag{2}
\end{align*}
$$

KVL around right loop :

$$
\begin{align*}
& \quad 8\left(\mathrm{i}_{3}-\mathrm{i}_{1}\right)+20\left(\mathrm{i}_{3}-\mathrm{i}_{2}\right)=0 \\
& -8 \mathrm{i}_{1}-20 \mathrm{i}_{2}+28 \mathrm{i}_{3}=0 \tag{3}\\
& \mathrm{i}_{1}=6 \mathrm{~A}, \quad \mathrm{i}_{2}=12.72 \mathrm{~A}, \quad \mathrm{i}_{3}=10.8 \mathrm{~A} \\
& \Rightarrow \\
& \quad \mathrm{I}_{\mathrm{SC}}=10.8 \mathrm{~A}
\end{align*}
$$

2. Find $\mathrm{R}_{\text {TH }}$

From before , $\mathrm{R}_{\mathrm{TH}}=6 \Omega$
3. Reconnect the load

$$
\begin{aligned}
\mathrm{V}_{\mathrm{o}} & =(4 \Omega) \mathrm{i}_{2} \\
& =(4 \Omega)\left(\frac{\mathrm{R}_{\mathrm{TH}}}{\mathrm{R}_{\mathrm{TH}}+4}\right) \mathrm{I}_{\mathrm{SC}} \\
\mathrm{~V}_{\mathrm{o}} & =4\left(\frac{6}{6+4}\right)(10.8)=25.92 \mathrm{~V}
\end{aligned}
$$

Case(2): Circuits containing only dependent sources

Here there is NO energy source in the circuit.
$>\mathrm{V}_{\mathrm{OC}}$ is always zero and I_{SC} is always zero
\Rightarrow So we can only find R_{TH}

Procedure for finding $\mathbf{R}_{\underline{T H}}$

1. Connect an independent voltage (or current) source at the terminals, Vx (or Ix)
2. Find the corresponding current (or voltage) at the terminal , $\mathrm{I}_{\mathrm{o}}\left(\right.$ or $\left.\mathrm{V}_{\mathrm{o}}\right)$
3. Find $\mathrm{R}_{\mathrm{TH}}=\mathrm{Vx}_{\mathrm{x}} / \mathrm{I}_{\mathrm{o}}$ or $\mathrm{R}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{o}} / \mathrm{Ix}$

Example:

1. Apply voltage source at the terminals $(\mathrm{Vx}=1 \mathrm{~V})$

KCL at node V1 :

$$
\begin{aligned}
& \mathrm{i}_{1}+\mathrm{i}_{2}-\mathrm{I}_{\mathrm{X}}=0 \\
& \frac{2000 \mathrm{I}_{\mathrm{X}}-\mathrm{V}_{1}}{2 \mathrm{k}}+\frac{1-\mathrm{V}_{1}}{3 \mathrm{k}}-\mathrm{I}_{\mathrm{X}}=0
\end{aligned}
$$

where $\quad V_{1}=(4 \mathrm{k}) \mathrm{I}_{\mathrm{X}}$
$\frac{2000 \mathrm{I}_{\mathrm{X}}-4000 \mathrm{I}_{\mathrm{X}}}{2000}+\frac{1-4000 \mathrm{I}_{\mathrm{X}}}{3000}-\mathrm{I}_{\mathrm{X}}=0$
$I_{X}-2 I_{X}+\frac{1}{3 k}-\frac{4}{3 k} I_{X}-I_{X}=0$
$I_{X}\left[2+\frac{4}{3}\right]=\frac{1}{3000}$
$\mathrm{I}_{\mathrm{X}}=0.1 \mathrm{~m} \mathrm{~A}$

$$
\begin{aligned}
\mathrm{i}_{2} & =\frac{\mathrm{V}_{\mathrm{X}}-\mathrm{V}_{1}}{3 \mathrm{k}} \\
& =\frac{\mathrm{V}_{\mathrm{X}}-(4 \mathrm{k}) \mathrm{I}_{\mathrm{X}}}{3 \mathrm{k}}=\frac{1-(4 \mathrm{k})(0.1 \mathrm{~mA})}{3 \mathrm{k}}
\end{aligned}
$$

$$
\mathrm{i}_{2}=0.2 \mathrm{~m} \mathrm{~A}
$$

$$
\mathrm{R}_{\mathrm{TH}}=\frac{\mathrm{V}_{\mathrm{X}}}{\mathrm{i}_{2}}=\frac{1 \mathrm{~V}}{0.2 \mathrm{~m} \mathrm{~A}}=5 \mathrm{k} \Omega
$$

Case (3) : Circuits containing both independent and

 dependent sources
Procedure of Thevenin or Norton Theorms:

a. Find the open circuit voltage and the terminals , V_{OC}
b. Find the short circuit current at the terminals, I_{SC}.
c. Compute $\mathrm{R}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{OC}} / \mathrm{I}_{\mathrm{SC}}$

Note :

R_{TH} can not be found as in the case of only independent sources
d. Construct the Thevenin or Norton circuits

Norton circuit

Example :

Find the Thevenin equivalent circuit with respect to the terminals a, b

1. Find V_{OC} :

KVL around the lift loop :

$$
\begin{align*}
& -240+80 i_{i}+160 i_{x}+40 i_{x}=0 \\
& 80 i^{2}+200 i_{x}=240 \quad \ldots \ldots(1) \tag{1}
\end{align*}
$$

KVL around right loop :

$$
\begin{align*}
& 80 i_{1}=40 i_{x} \\
& 2 i_{1}-i_{x}=0 \tag{2}
\end{align*}
$$

KCL at Z :

$$
\begin{equation*}
\mathrm{i}-\mathrm{i}_{1}-\mathrm{i}_{\mathrm{x}}=0 \tag{3}
\end{equation*}
$$

$\mathrm{i}=1.125 \mathrm{~A}$
$\mathrm{i}_{1}=0.375 \mathrm{~A}$
$\mathrm{i}_{\mathrm{x}}=0.75 \mathrm{~A}$

$$
\begin{aligned}
& \therefore \quad \mathrm{V}_{\mathrm{OC}}=\mathrm{i}_{\mathrm{x}}(40 \Omega) \\
& \quad=(0.75 \mathrm{~A})(40 \Omega) \\
& \\
& \mathrm{V}_{\mathrm{OC}}=30 \mathrm{~V}
\end{aligned}
$$

2. Find $I_{S C}$:

Since we have short circuit , $80 / / 40 / / 0=0$
$\Longrightarrow i_{x}=0$
$\Longrightarrow 160 \mathrm{i}_{\mathrm{x}}$ source is zero

$$
I_{S C}=\frac{60}{60+20}(4)=3 \mathrm{~A}
$$

3. Find R_{TH}

$$
\mathrm{R}_{\mathrm{TH}}=\frac{\mathrm{V}_{\mathrm{OC}}}{\mathrm{I}_{\mathrm{SC}}}=\frac{30 \mathrm{~V}}{3 \mathrm{~A}}=10 \Omega
$$

4.

Current divider

Example :

Use Thevenin theorem to find the Thevenin equivalent circuit with respect to a, b

KCL at node z :

$$
\begin{align*}
& 2 \mathrm{i}_{\mathrm{x}}+\mathrm{i}_{\mathrm{x}}+8-\mathrm{i}_{1}=0 \\
& 3 \mathrm{i}_{\mathrm{x}}-\mathrm{i}_{1}=-8 \tag{1}
\end{align*}
$$

KVL around outer loop

$$
-40+5 \mathrm{i}_{\mathrm{x}}+1 \mathrm{i}_{1}=0
$$

$$
5 \mathrm{i}_{\mathrm{x}}+\mathrm{i}_{1}=40
$$

$\Rightarrow \quad \mathrm{i}_{\mathrm{x}}=4 \mathrm{~A} \quad, \mathrm{i}_{1}=20 \mathrm{~A}$
$\Rightarrow \quad \mathrm{V}_{\text {OC }}=1 \mathrm{i}_{1}=20 \mathrm{~V}$
Find I_{SC} :

KVL around outer loop :

$$
-40+5 \mathrm{i}_{\mathrm{x}}=0 \Rightarrow \mathrm{i}_{\mathrm{x}}=8 \mathrm{~A}
$$

KCL at z :

$$
\begin{aligned}
& 2 \mathrm{i}_{\mathrm{x}}+\mathrm{i}_{\mathrm{x}}+8=\mathrm{I}_{\mathrm{SC}} \\
& 3 \mathrm{i}_{\mathrm{x}}+8=\mathrm{I}_{\mathrm{SC}} \\
& \Rightarrow \quad \mathrm{I}_{\mathrm{SC}}=(3)(8)+8=32 \mathrm{~A}
\end{aligned}
$$

3. Find R_{TH} :

$$
\mathrm{R}_{\mathrm{TH}}=\frac{\mathrm{V}_{\mathrm{OC}}}{\mathrm{I}_{\mathrm{SC}}}=\frac{20}{32}=0.625 \Omega
$$

Thevenin equivalent circuit is

4. Maximum Power Transfer

- A technique in which the load is selected to maximize the power transfer.
- This technique is based on the Thevenin equivalent circuit.

We wish to select R_{L} to maximize P_{L} :
Take $\quad \frac{\mathrm{dP}_{\mathrm{L}}}{\mathrm{dR}_{\mathrm{L}}}=0$
$\frac{\mathrm{dP}_{\mathrm{L}}}{\mathrm{dR}_{\mathrm{L}}}=\frac{\left(\mathrm{R}_{\mathrm{TH}}+\mathrm{R}_{\mathrm{L}}\right)^{2}\left(\mathrm{~V}_{\mathrm{OC}}\right)^{2}-\mathrm{R}_{\mathrm{L}}\left(\mathrm{V}_{\mathrm{OC}}\right)^{2} 2\left(\mathrm{R}_{\mathrm{TH}}+\mathrm{R}_{\mathrm{L}}\right)}{\left(\mathrm{R}_{\mathrm{TH}}+\mathrm{R}_{\mathrm{L}}\right)^{4}}=0$
$\frac{\mathrm{V}_{\mathrm{oc}}^{2}\left(\mathrm{R}_{\mathrm{TH}}+\mathrm{R}_{\mathrm{L}}\right)\left[\left(\mathrm{R}_{\mathrm{TH}}+\mathrm{R}_{\mathrm{L}}\right)-2 \mathrm{R}_{\mathrm{L}}\right]}{\left(\mathrm{R}_{\mathrm{TH}}+\mathrm{R}_{\mathrm{L}}\right)^{4}}=0$
$\Rightarrow \quad \mathrm{R}_{\mathrm{TH}}+\mathrm{R}_{\mathrm{L}}-2 \mathrm{R}_{\mathrm{L}}=0$
$\Rightarrow \quad \mathrm{R}_{\mathrm{TH}}-\mathrm{R}_{\mathrm{L}}=0$

$$
\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{TH}}
$$

If $R_{L}=R_{T H}$, what is the maximum Power Transfer?

$$
\begin{aligned}
& P_{\mathrm{L} \max }=\mathrm{i}^{2} \mathrm{R}_{\mathrm{L}} \\
& =\left(\frac{\mathrm{V}_{\mathrm{OC}}}{2 \mathrm{R}_{\mathrm{TH}}}\right)^{2} \mathrm{R}_{\mathrm{TH}} \\
& =\frac{\left(\mathrm{V}_{\mathrm{OC}}\right)^{2} \mathrm{R}_{\mathrm{TH}}}{4 \mathrm{R}_{\mathrm{TH}}^{2}}=\frac{\left(\mathrm{V}_{\mathrm{OC}}\right)^{2}}{4 \mathrm{R}_{\mathrm{TH}}} \\
& \mathrm{P}_{\mathrm{L} \max }=\frac{\mathrm{V}_{\mathrm{OC}}^{2}}{4 \mathrm{R}_{\mathrm{TH}}}
\end{aligned}
$$

Example:

-Find R_{L} for maximum Power Transfer ?
\bullet Find the maximum Power transfer to R_{L} ?

Let's find Thevenin equivalent circuit .

KCL at node V1 :
$3 \mathrm{~mA}-\mathrm{i}_{1}-\mathrm{i}_{2}=0$
$3 \mathrm{~mA}-\frac{\mathrm{V}_{1}}{4 \mathrm{k} \Omega}-\frac{\mathrm{V}_{1}-\mathrm{V}_{2}}{8 \mathrm{k} \Omega}=0$

$$
\begin{align*}
& \mathrm{V}_{1}\left[\frac{1}{4 \mathrm{k}}+\frac{1}{8 \mathrm{k}}\right]-\left(\frac{1}{8 \mathrm{k}}\right) \mathrm{V}_{2}=3 \mathrm{~m} \\
& 0.375 \mathrm{~m} \mathrm{~V}_{1}-0.125 \mathrm{~m} \mathrm{~V}_{2}=3 \mathrm{~m} \tag{1}
\end{align*}
$$

KCL at node V2:

$$
\begin{aligned}
& \mathrm{i}_{2}-\mathrm{i}_{3}-\mathrm{i}_{4}=0 \\
& \quad \frac{\mathrm{~V}_{1}-\mathrm{V}_{2}}{8 \mathrm{k}}-\frac{\mathrm{V}_{2}-10}{20 \mathrm{k}}-\frac{\mathrm{V}_{2}}{12.5 \mathrm{k}}=0 \\
& \mathrm{~V}_{1}\left(\frac{1}{8 \mathrm{k}}\right)-\left(\frac{1}{8 \mathrm{k}}+\frac{1}{20 \mathrm{k}}+\frac{1}{12.5 \mathrm{k}}\right) \mathrm{V}_{2}=-0.5 \mathrm{~m}
\end{aligned}
$$

$$
\begin{equation*}
0.125 \mathrm{~m} \mathrm{~V}_{1}-0.255 \mathrm{~m} \mathrm{~V}_{2}=-0.5 \mathrm{~m} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{V}_{1}=10.34 \mathrm{~V} \\
& \mathrm{~V}_{2}=7.03 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{OC}} & =-10+10 \mathrm{k} \mathrm{i}_{4} \\
& =-10+10 \mathrm{k}\left(\frac{\mathrm{~V} 2}{12.5 \mathrm{k}}\right)=-10+\frac{10}{12.5}(7.03) \\
\mathrm{V}_{\mathrm{OC}} & =-4.375 \mathrm{~V}
\end{aligned}
$$

To find $\mathrm{R}_{\underline{T H}}$:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{TH}}=\{[(8 \mathrm{k}+4 \mathrm{k}) / / 20 \mathrm{k}]+2.5 \mathrm{k}\} / / 10 \mathrm{k} \\
& =[(12 \mathrm{k} / / 20 \mathrm{k})+2.5 \mathrm{k}] / / 10 \mathrm{k} \\
& =(7.5 \mathrm{k}+2.5 \mathrm{k}) / / 10 \mathrm{k} \\
& =10 \mathrm{k} / / 10 \mathrm{k} \\
& \mathrm{R}_{\mathrm{TH}}=5 \mathrm{k} \Omega \\
& \mathrm{P}_{\mathrm{L} \max }=\frac{\mathrm{V}_{\mathrm{OC}}^{2}}{4 \mathrm{R}_{\mathrm{TH}}}=\frac{(-4.375)^{2}}{4(5 \mathrm{k})} \\
& \mathrm{P}_{\mathrm{L} \max }=0.957 \mathrm{~m} \mathrm{~W}
\end{aligned}
$$

Example :

1. Find R_{L} for maximum Power Transfer?
2. Find max. power transfer to R_{L} ?

First, find Thevenin equivalent:

Using source transformation

KVL around the loop:
$-16+4 \mathrm{k}$ Ix' $-2 \mathrm{k} \mathrm{Ix}{ }^{\prime}+2 \mathrm{k}$ Ix ${ }^{\prime}=0$
$\mathrm{Ix}^{\prime}=4 \mathrm{~mA}$.

Voc $=(2 \mathrm{k} \Omega) \mathrm{Ix}{ }^{\prime}=8 \mathrm{~V}$.

Now, find Isc:

KCL at V1:
I1 - Ix " ${ }^{\prime}$ - Isc = 0

$$
\frac{16-\left(V 1-2 k I x^{\prime \prime}\right)}{4 k}-\frac{V 1}{2 k}-\frac{V 1}{4 k}=0
$$

Where V1=2k Ix"

Hence,

$$
\frac{16}{4 k}-\frac{V 1}{2 k}-\frac{V 1}{4 k}=0 \quad \text { Or } \quad \mathrm{V} 1=5.333 \mathrm{~V}
$$

And

$$
I s c=\frac{V 1}{4 k}=1.333 m A
$$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{TH}}=\frac{\mathrm{V}_{\mathrm{OC}}}{\mathrm{I}_{\mathrm{SC}}}=\frac{8 \mathrm{~V}}{1.333 \mathrm{~m} \mathrm{~A}}=6 \mathrm{k} \Omega \\
& \mathrm{P}_{\mathrm{L}(\max)}=\frac{\mathrm{V}_{\mathrm{OC}}^{2}}{4 \mathrm{R}_{\mathrm{TH}}}=\frac{(8)^{2}}{4(6 \mathrm{k})}=\frac{64}{24 \mathrm{k}} \\
& \mathrm{P}_{\mathrm{L}(\max)}=\frac{8}{3} \mathrm{~mW}
\end{aligned}
$$

