Chapter (5) Capacitors and Inductors

Capacitors :

A circuit element that is composed of two conducting plates or surfaces separated by a dielectric (non conducting) materials

Let A : surface area of each plate d : distance between the two plates

Capacitance \uparrow As Area \uparrow
Capacitance \downarrow As distance \uparrow
$\therefore \quad C \propto \frac{A}{d}$
It is found that

$$
\mathrm{C}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}
$$

Where :
$\varepsilon_{0} \equiv$ Permittivity of free space

$$
\varepsilon_{0} \equiv 8.85 * 10^{-12} \mathrm{~F} / \mathrm{m}
$$

- If a voltage source (v) is connected to the capacitor, + ve charge will be transferred to one plate while -ve charge will be transferred to the other plate.

Let the charge stored at the capacitor $\equiv \mathrm{q}$
If $\mathrm{v} \uparrow, \mathrm{q} \uparrow$
$\therefore \quad \mathrm{V} \propto \mathrm{q}$

It has been found that

$$
\mathrm{q}=\mathrm{c} \mathrm{v}
$$

C is the capacitance
$\Rightarrow \mathrm{c}=\frac{\mathrm{q}}{\mathrm{V}}$
Current in capacitor :
We know that

$$
\begin{aligned}
& i(t)=\frac{d q(t)}{d t} \\
& \therefore \quad i_{c}(t)=\frac{d}{d t}\left(\mathrm{cv}_{c}(t)\right) \\
& \Rightarrow \quad i_{c}(t)=C \frac{d_{c}(t)}{d t}
\end{aligned}
$$

Voltage of capacitors

$$
\begin{gathered}
\because \quad i_{c}(t)=C \frac{d v_{c}(t)}{d t} \\
\Rightarrow d v_{c}(t)=\frac{1}{C} i_{c}(t) d t \\
i_{c}(t) d t=C d v_{c}(t) \\
v_{c}(t)=v_{c}\left(t_{0}\right)+\frac{1}{C} \int_{\tau=t_{0}}^{\tau=t} i_{c}(\tau) d \tau
\end{gathered}
$$

Where t_{0} : initial time

Capacitors only store and release

 ELECTROSTATIC energy. They do not "create'
(a)
(b)

Write the $i-v$ relationship for the following capacitors.

The capacitor is a passive element and follows the passive sign convention

Linear capacitor circuit representation

$$
i(t)=C \frac{d v}{d t}(t)
$$

$$
i(t)=-C \frac{d v(t)}{d t}
$$

$$
i(t)=-C \frac{d v(t)}{d t}
$$

Power of the capacitors :

$$
\begin{aligned}
& P_{c}(t)=v_{c}(t) i_{c}(t) \\
& P_{c}(t)=v_{c}(t) C \frac{d v_{c}(t)}{d t}=C v_{c}(t) \frac{d v_{c}(t)}{d t}
\end{aligned}
$$

or

$$
\mathrm{P}_{\mathrm{c}}(\mathrm{t})=\mathrm{i}_{\mathrm{c}}(\mathrm{t})\left[\mathrm{v}_{\mathrm{c}}\left(\mathrm{t}_{0}\right)+\frac{1}{\mathrm{C}} \int_{\tau=\mathrm{t}_{\mathrm{o}}}^{\tau=1} \mathrm{i}_{\mathrm{c}}(\tau) \mathrm{d} \tau\right]
$$

Energy of capacitor

$$
\begin{aligned}
\mathrm{w}_{\mathrm{c}}(\mathrm{t}) & =\int_{\tau=-\infty}^{\tau=-} \mathrm{P}_{\mathrm{c}}(\tau) \mathrm{d} \tau \\
& =\int_{\tau=-\infty}^{\tau=\mathrm{t}}\left(\mathrm{C}_{\mathrm{c}}(\tau) \frac{\mathrm{dv}_{\mathrm{c}}(\tau)}{\mathrm{d} \tau}\right) \mathrm{d} \tau \\
& =\int_{\mathrm{v}_{\mathrm{c}}(-\infty)}^{\mathrm{v}_{\mathrm{c}}(\mathrm{t})} \mathrm{C} \mathrm{v}_{\mathrm{c}}(\tau) \mathrm{dv}_{\mathrm{c}}(\tau) \\
& =\left.\frac{1}{2} \mathrm{C} \mathrm{v}_{\mathrm{c}}^{2}(\tau)\right|_{\mathrm{v}_{\mathrm{c}}(-\infty)} ^{\mathrm{v}_{\mathrm{c}}(\mathrm{t})} \\
& =\frac{1}{2} \mathrm{C} \mathrm{v}_{\mathrm{c}}^{2}(\mathrm{t})-\frac{1}{2} \mathrm{C} \mathrm{v}_{\mathrm{c}}^{2}(-\infty)
\end{aligned}
$$

Assuming

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{c}}(-\infty)=0 \\
\therefore & \mathrm{w}_{\mathrm{c}}(\mathrm{t})=\frac{1}{2} \mathrm{C}_{\mathrm{c}}^{2}(\mathrm{t})
\end{aligned}
$$

$$
v_{c}(t)=\frac{q(t)}{C}
$$

$$
\therefore \quad \mathrm{w}_{\mathrm{c}}(\mathrm{t})=\frac{1}{2} \mathrm{C} \frac{\mathrm{q}^{2}(\mathrm{t})}{\mathrm{C}^{2}}
$$

$$
\mathrm{w}_{\mathrm{c}}(\mathrm{t})=\frac{1}{2 \mathrm{C}} \mathrm{q}^{2}(\mathrm{t})
$$

Example:

The following voltage is imposed across the terminals of a $0.5 \mu \mathrm{~F}$ capacitor.

$$
\mathrm{v}_{\mathrm{c}}(\mathrm{t})=\left\{\begin{array}{lll}
0 \mathrm{~V}, & \mathrm{t} \leq 0 \\
4 \mathrm{t} V & 0 \leq \mathrm{t} \leq 1 \\
4 \mathrm{e}^{-(\mathrm{t}-1)} \mathrm{V}, & 1 \leq \mathrm{t}<\infty
\end{array}\right.
$$

Find the following:

1. $\mathrm{i}_{\mathrm{c}}(\mathrm{t})$
2. $P_{c}(t)$
3. $w_{c}(t)$
(1) $i_{c}(t)=C \frac{d v_{\mathrm{c}}(t)}{d t}$

$$
\therefore \quad i_{c}(t)=\left\{\begin{array}{lc}
0 & t<0 \\
C \frac{d}{d t}(4 t)=4 C=2 \mu A & 0<t<1 \\
C \frac{d}{d t}\left[4 e^{-(t-1)}\right]=(4 C)(-1) e^{-(t-1)}=-2 e^{-(t-1)} \mu A & 1<t<\infty
\end{array}\right.
$$

(2)

$$
\begin{aligned}
& P_{c}(t)=C v_{c}(t) \frac{d v_{c}(t)}{d t} \\
& \int(0.5 \mu \mathrm{~F})(0) \frac{\mathrm{dv}_{\mathrm{c}}(\mathrm{t})}{\mathrm{dt}}=0 \quad W \\
& \mathrm{t} \leq 0 \\
& =\left\{\begin{array}{lr}
(0.5 \mu \mathrm{~F})(4 \mathrm{t})(4)=8 \mathrm{t} \quad \mu \mathrm{~W} & 0 \leq \mathrm{t}<1 \\
(0.5 \mu \mathrm{~F})\left(4 \mathrm{e}^{-(\mathrm{t}-1)}\right)(-4) \mathrm{e}^{-(\mathrm{t}-1)}=-8 \mathrm{e}^{-2(\mathrm{t}-1)} & \mu \mathrm{W}
\end{array} \quad 1<\mathrm{t}<\infty \mathrm{l}\right.
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{c}}(\mathrm{t})=\frac{1}{2} \mathrm{C}_{\mathrm{c}}{ }^{2}(\mathrm{t}) \\
& \mathrm{w}_{\mathrm{c}}(\mathrm{t})=\left\{\begin{array}{lc}
0 & \mathrm{t} \leq 0 \\
\frac{1}{2}(0.5 \mu \mathrm{~F})(4 \mathrm{t})^{2}=4 \mathrm{t}^{2} \quad \mu \mathrm{~J} & 0 \leq \mathrm{t} \leq 1 \\
\frac{1}{2}(0.5 \mu \mathrm{~F})\left[4 \mathrm{e}^{-(\mathrm{t}-1)}\right]^{2}=4 \mathrm{e}^{-2(\mathrm{t}-1)} & \mu \mathrm{J}
\end{array} \quad 1 \leq \mathrm{t}<\infty\right.
\end{aligned}
$$

Example :

The voltage at the terminals of a $0.5 \mu \mathrm{~F}$ capacitor is

$$
v_{c}(t)= \begin{cases}0 & t \leq 0 \\ 100 e^{-20000 t} \sin (40000 t) & V \\ t \geq 0\end{cases}
$$

Find:

1. $\mathrm{i}(0)$
2. Power delivered to the capacitors at $\mathrm{t}=\Pi / 80 \mathrm{~m} \mathrm{~S}$.
3. Energy stored in the capacitor at $\mathrm{t}=\Pi / 80 \mathrm{~m} \mathrm{~S}$

$$
\mathrm{i}(\mathrm{t})=\mathrm{C} \frac{\mathrm{dv}_{\mathrm{c}}(\mathrm{t})}{\mathrm{dt}}
$$

$=C \frac{\mathrm{~d}}{\mathrm{dt}}\left[100 \mathrm{e}^{-20,000 \mathrm{t}} \sin (40,000 \mathrm{t})\right]$
$=C\left[100 \mathrm{e}^{-20,000 t} \cos (40,000 \mathrm{t})(40,000)+\sin (40,000 \mathrm{t})\left(-2 * 10^{6} \mathrm{e}^{-20,000 \mathrm{t}}\right)\right]$
$\mathrm{i}_{\mathrm{c}}(0)=0.5 * 10^{-6}[100(1)(1)(40,000)+0]$
$\mathrm{i}_{\mathrm{c}}(0)=2 \mathrm{~A}$
(2) Find $\mathrm{P}_{\mathrm{C}}\left(\frac{\Pi}{80} \mathrm{~m}\right)$
?
$\mathrm{P}_{\mathrm{c}}(\mathrm{t})=\mathrm{CV}_{\mathrm{c}}(\mathrm{t}) \frac{\mathrm{dv} \mathrm{v}_{\mathrm{c}}(\mathrm{t})}{\mathrm{dt}} \quad, \mathrm{t} \geq 0$
$=(0.5 \mu \mathrm{~F})\left(100 \mathrm{e}^{-20,000 t} \sin (40,000 \mathrm{t})\right)$
$*\left[100 \mathrm{e}^{-20,000 t} \cos (40,000 \mathrm{t})(40,000)+\sin (40,000 \mathrm{t})\left(-2 * 10^{6} \mathrm{e}^{-20,000 t}\right)\right]$
$\mathrm{P}_{\mathrm{C}}\left(\frac{\Pi}{80} \mathrm{~m}\right)=-20.79 \mathrm{~W} \quad$ (discharging)
(3) Find $W_{C}\left(\frac{\Pi}{80} m\right)$?

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{C}}(\mathrm{t})=\frac{1}{2} \mathrm{Cv}_{\mathrm{C}}^{2}(\mathrm{t})=\frac{1}{2} \mathrm{C}\left[100 \mathrm{e}^{-20,000 \mathrm{t}} \sin (40,000 \mathrm{t})\right]^{2} \\
& \mathrm{~W}_{\mathrm{C}}\left(\frac{\Pi}{80} \mathrm{~m}\right)=519.2 \mu \mathrm{~J}
\end{aligned}
$$

Inductors:

Inductors are circuit elements that consist of a conducting wire in the shape of a coil

- If a current is flowing in the inductor, it produce a magnetic field , Φ.

$$
\Phi(t)=\mathrm{Li}(\mathrm{t})
$$

Where L is the inductance and measured in Henry [H]
-The direction of (Φ) depends on the right-hand rule.

- As the current increases or decreases, the magnetic field spreads or collapse
- The change in magnetic field induces a voltage across the inductor.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{L}}(\mathrm{t})=\frac{\mathrm{d} \Phi(\mathrm{t})}{\mathrm{dt}} \\
& \therefore \mathrm{~V}_{\mathrm{L}}(\mathrm{t})=\mathrm{L} \frac{\mathrm{di}_{\mathrm{L}}(\mathrm{t})}{\mathrm{dt}}
\end{aligned}
$$

Current in inductors :

$$
\begin{aligned}
& v_{L}(t)=L \frac{\mathrm{di}_{L}(t)}{d t} \\
& \mathrm{di}_{\mathrm{L}}(\mathrm{t})=\frac{1}{\mathrm{~L}} \mathrm{v}_{\mathrm{L}}(\mathrm{t}) \mathrm{dt}
\end{aligned}
$$

Integrate both sides as before

$$
\mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{i}_{\mathrm{L}}\left(\mathrm{t}_{0}\right)+\frac{1}{\mathrm{~L}} \int_{\tau=\mathrm{t}_{0}}^{\tau=\mathrm{t}} \mathrm{v}(\tau) \mathrm{d} \tau
$$

$$
\begin{aligned}
& v(t)=-L \frac{d i(t)}{d t} \\
& v(t)=L \frac{d i(t)}{d t}
\end{aligned}
$$

Power in inductor :

$$
\begin{aligned}
\mathrm{P}_{\mathrm{L}}(\mathrm{t}) & =\mathrm{v}_{\mathrm{L}}(\mathrm{t}) \mathrm{i}_{\mathrm{L}}(\mathrm{t}) \\
& =\mathrm{i}_{\mathrm{L}}(\mathrm{t})\left[\mathrm{L} \frac{\mathrm{di}_{\mathrm{L}}(\mathrm{t})}{\mathrm{dt}}\right]
\end{aligned}
$$

$$
\mathrm{P}_{\mathrm{L}}(\mathrm{t})=\mathrm{L} \mathrm{i}_{\mathrm{L}}(\mathrm{t}) \frac{\mathrm{di}_{\mathrm{L}}(\mathrm{t})}{\mathrm{dt}}
$$

$$
\mathrm{P}_{\mathrm{L}}(\mathrm{t})=\mathrm{v}_{\mathrm{L}}(\mathrm{t})\left[\mathrm{i}_{\mathrm{L}}\left(\mathrm{t}_{0}\right)+\frac{1}{\mathrm{~L}} \int_{\tau=\mathrm{t}_{0}}^{\tau=\mathrm{t}} \mathrm{v}(\tau) \mathrm{d} \tau\right]
$$

Energy in inductors:

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{L}}(\mathrm{t})=\int_{\tau=-\infty}^{\tau=\mathrm{t}} \mathrm{P}_{\mathrm{L}}(\tau) \mathrm{d} \tau \\
& =\int_{\tau=-\infty}^{\tau=\mathrm{t}} \mathrm{~L} \mathrm{i}_{\mathrm{L}}(\tau) \frac{\mathrm{di}_{\mathrm{L}}(\tau)}{\mathrm{d} \tau} \mathrm{~d} \tau
\end{aligned}
$$

As before

$$
\mathrm{w}_{\mathrm{L}}(\mathrm{t})=\frac{1}{2} \mathrm{Li}_{\mathrm{L}}{ }^{2}(\mathrm{t})
$$

Example :

The current flow through an 100 mH inductor

$$
i_{L}(t)=\left\{\begin{array}{lll}
0 \quad A & t \leq 0 \\
10 \mathrm{t} \mathrm{e}^{-5 t} & A & t \geq 0
\end{array}\right.
$$

Find:
(1) Maximum value of current.
(2) $\mathrm{v}_{\mathrm{L}}(\mathrm{t}),(3) \mathrm{P}_{\mathrm{L}}(\mathrm{t}),(4) \mathrm{w}_{\mathrm{L}}(\mathrm{t})$

First, find $\mathrm{t}_{\text {max }}$
let $\frac{\operatorname{di}_{L}(t)}{d t}=0$
$(10 \mathrm{t})\left(-5 \mathrm{e}^{-5 \mathrm{t}}\right)+\mathrm{e}^{-5 \mathrm{t}}(10)=0$
$\therefore \quad \mathrm{e}^{-5 \mathrm{t}}[-50 \mathrm{t}+10]=0$

$\mathrm{t}_{\text {max }}=0.2 \mathrm{sec}$

$$
\begin{aligned}
\mathrm{i}_{\mathrm{L} \max } & =\mathrm{i}_{\mathrm{L}}(0.2)=10(0.2) \mathrm{e}^{-5(0.2)} \\
& =2 \mathrm{e}^{-1}=0.736 \mathrm{~A}
\end{aligned}
$$

(2) $v_{L}(t)=L \frac{d i_{L}(t)}{d t}$

$$
\begin{aligned}
& =(0.1 \mathrm{H}) \frac{\mathrm{d}}{\mathrm{dt}}\left[10 \mathrm{te}^{-5 \mathrm{t}}\right] \\
& =(0.1) \mathrm{e}^{-5 t}(-50 \mathrm{t}+10) \\
& =\mathrm{e}^{-5 t}(1-5 \mathrm{t}) \\
\mathrm{v}_{\mathrm{L}}(\mathrm{t}) & = \begin{cases}0 & , t<0 \\
\mathrm{e}^{-5 t}(1-5 \mathrm{t}) & , \mathrm{t}>0\end{cases}
\end{aligned}
$$

(3) $\mathrm{P}_{\mathrm{L}}(\mathrm{t})$?
$P_{L}(t)=L i_{L}(t) \frac{d i_{L}(t)}{d t}$
$P_{L}(t)=0 \quad, \quad t \leq 0$
$P_{L}(t)=(0.1)\left(10 t e^{-5 t}\right)\left[e^{-5 t}(-50 t+10)\right], \quad t \geq 0$
$P_{\mathrm{L}}(\mathrm{t})=\mathrm{te}^{-10 \mathrm{t}}(10-50 \mathrm{t})$
$P_{L}(t)= \begin{cases}0 & , \quad t \leq 0 \\ 10 t e^{-10 t}(1-5 t) & , \quad t \geq 0\end{cases}$

$$
\begin{aligned}
& \text { (4) } \quad \mathrm{w}_{\mathrm{L}}(\mathrm{t}) \quad ? \\
& \mathrm{w}_{\mathrm{L}}(\mathrm{t})=\frac{1}{2} \mathrm{Li}_{\mathrm{L}}^{2}(\mathrm{t}) \\
& =\left\{\begin{array}{l}
0 \\
\frac{1}{2}(0.1)\left(10 \mathrm{t} \mathrm{e}^{-5 \mathrm{t}}\right)^{2}=5 \mathrm{t}^{2} \mathrm{e}^{-10 \mathrm{t}} \quad, \mathrm{t} \geq 0
\end{array}\right.
\end{aligned}
$$

Summary of results :

	Capacitor	Inductor
v (t)	$\mathrm{v}_{\mathrm{C}}\left(\mathrm{t}_{0}\right)+\frac{1}{\mathrm{c}} \int_{\tau=\mathrm{t}_{0}}^{\tau=\mathrm{t}} \mathrm{i}_{\mathrm{c}}(\tau) \mathrm{d} \tau$	$L \frac{\mathrm{di}_{L}(\mathrm{t})}{\mathrm{dt}}$
i (t)	$\mathrm{c} \frac{\mathrm{d} \mathrm{v}_{\mathrm{C}}(\mathrm{t})}{\mathrm{dt}}$	$\mathrm{i}_{\mathrm{L}}\left(\mathrm{t}_{0}\right)+\frac{1}{\mathrm{~L}} \int_{\tau=\mathrm{t}_{0}}^{\tau=\mathrm{t}} \mathrm{v}_{\mathrm{L}}(\tau) \mathrm{d} \tau$
$\mathbf{P}(\mathrm{t})$	$c v_{C}(t) \frac{d v_{C}(t)}{d t}$	$L i_{L}(t) \frac{\mathrm{di}_{\mathrm{L}}(\mathrm{t})}{\mathrm{dt}}$
w (t)	$\frac{1}{2} \mathrm{cv}_{\mathrm{C}}^{2}(\mathrm{t})$	$\frac{1}{2} \mathrm{Li}_{\mathrm{L}}^{2}(\mathrm{t})$

Notes on capacitor :

1. If $\mathrm{v}_{\mathrm{C}}(\mathrm{t})=\mathrm{constant} \quad, \mathrm{i}_{\mathrm{C}}(\mathrm{t})=0$
\square Capacitor will be open circuit
2. $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$ cannot change instantaneously (no sudden change)

$$
\text { because } \int_{\tau=t_{0}}^{\tau=t} \mathrm{i}_{\mathrm{C}}(\tau) \mathrm{d} \tau=0
$$

3. Capacitors can store energy

$$
\mathrm{w}_{\mathrm{C}}(\mathrm{t})=\frac{1}{2} \mathrm{c}_{\mathrm{C}}^{2}(\mathrm{t})
$$

Notes on inductors :

1. If $\mathrm{i}_{\mathrm{L}}(\mathrm{t})=$ constant, $\mathrm{v}_{\mathrm{L}}(\mathrm{t})=0$
\longmapsto Inductor will be short circuit
2. $i_{L}(t)$ cannot change instantaneously (no sudden change)

$$
\text { because } \int_{\tau=t_{0}}^{\tau=t} \mathrm{~V}_{\mathrm{L}}(\tau) \mathrm{d} \tau=0
$$

3. Inductors can store energy

$$
\mathrm{w}_{\mathrm{L}}(\mathrm{t})=\frac{1}{2} \mathrm{Li}_{\mathrm{L}}^{2}(\mathrm{t})
$$

Capacitors and Inductors combinations:

1. Series capacitors:

$$
\begin{equation*}
v(t)=v_{1}(t)+v_{2}(t)+v_{3}(t)+\cdots+v_{N} \tag{t}
\end{equation*}
$$

For each capacitor ,

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{k}}(\mathrm{t})=\mathrm{v}_{\mathrm{k}}\left(\mathrm{t}_{0}\right)+\frac{1}{\mathrm{c}_{\mathrm{k}}} \int_{\tau=t 0}^{\tau=\mathrm{t}} \mathrm{i}(\tau) \mathrm{d} \tau \\
& \mathrm{v}(\mathrm{t})=\mathrm{v}_{1}+\mathrm{v}_{2}+\cdots+\mathrm{v}_{\mathrm{N}} \\
& \mathrm{v}(\mathrm{t})=\left[\sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{v}_{\mathrm{k}}\left(\mathrm{t}_{0}\right)\right]+\left(\sum_{\mathrm{k}=1}^{\mathrm{N}} \frac{1}{\mathrm{c}_{\mathrm{k}}}\right)_{\tau=\mathrm{t}_{0}}^{\tau=\mathrm{t}} \int_{\mathrm{t}} \mathrm{i}(\tau) \mathrm{d} \tau
\end{aligned}
$$

The equivalent capacitance C_{S} is

$$
\frac{1}{\mathrm{C}_{\mathrm{S}}}=\sum_{\mathrm{k}=1}^{\mathrm{N}} \frac{1}{\mathrm{C}_{\mathrm{k}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\cdots+\frac{1}{\mathrm{C}_{\mathrm{N}}}
$$

Parallel capacitors:

$$
\begin{aligned}
& \mathrm{i}(\mathrm{t})=\mathrm{i}_{1}(\mathrm{t})+\mathrm{i}_{2}(\mathrm{t})+\cdots+\mathrm{i}_{\mathrm{N}}(\mathrm{t}) \\
& =\mathrm{C}_{1} \frac{\mathrm{dv}(\mathrm{t})}{\mathrm{dt}}+\mathrm{C}_{2} \frac{\mathrm{dv}(\mathrm{t})}{\mathrm{dt}}+\cdots+\mathrm{C}_{\mathrm{N}} \frac{\mathrm{dv}(\mathrm{t})}{\mathrm{dt}} \\
& \mathrm{i}(\mathrm{t})=\frac{\mathrm{dv}(\mathrm{t})}{\mathrm{dt}}\left[\sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{C}_{\mathrm{k}}\right]=\mathrm{C}_{\mathrm{P}} \frac{\mathrm{dv}(\mathrm{t})}{\mathrm{dt}}
\end{aligned}
$$

The equivalent capacitance, C_{P}

$$
\mathrm{C}_{\mathrm{P}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\cdots+\mathrm{C}_{\mathrm{N}}
$$

Series Inductors:

$\mathrm{V}_{1}(\mathrm{t})$

$\mathrm{V}_{2}(\mathrm{t})$
$\mathrm{V}_{\mathrm{N}}(\mathrm{t})$

$$
v(t)=v_{1}(t)+v_{2}(t)+\cdots+v_{N}(t)
$$

$$
=L_{1} \frac{\operatorname{di}(\mathrm{t})}{\mathrm{dt}}+\mathrm{L}_{2} \frac{\mathrm{di}(\mathrm{t})}{\mathrm{dt}}+\cdots+\mathrm{L}_{\mathrm{N}} \frac{\mathrm{di}(\mathrm{t})}{\mathrm{dt}}
$$

$$
\mathrm{v}(\mathrm{t})=\left(\sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{~L}_{\mathrm{k}}\right) \frac{\operatorname{di}(\mathrm{t})}{\mathrm{dt}}=\mathrm{L}_{\mathrm{S}} \frac{\operatorname{di}(\mathrm{t})}{\mathrm{dt}}
$$

$$
\mathrm{L}_{\mathrm{S}}=\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}+\cdots+\mathrm{L}_{\mathrm{N}}
$$

Parallel Inductors :

$\mathrm{i}(\mathrm{t})=\mathrm{i}_{1}(\mathrm{t})+\mathrm{i}_{2}(\mathrm{t})+\cdots+\mathrm{i}_{\mathrm{N}}(\mathrm{t})$
where $\quad \mathrm{i}_{\mathrm{k}}(\mathrm{t})=\mathrm{i}_{\mathrm{k}}\left(\mathrm{t}_{0}\right)+\frac{1}{\mathrm{~L}_{\mathrm{k}}} \int_{\tau=\mathrm{t}_{0}}^{\tau=\mathrm{t}} \mathrm{v}(\tau) \mathrm{d} \tau$

$$
\begin{aligned}
& \mathrm{i}(\mathrm{t})=\left[\sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{i}_{\mathrm{k}}\left(\mathrm{t}_{0}\right)\right]+\left[\sum_{\mathrm{k}=1}^{\mathrm{N}} \frac{1}{\mathrm{~L}_{\mathrm{k}}}\right] \int_{\tau=\mathrm{t}_{0}}^{\tau=\mathrm{t}} \mathrm{v}(\tau) \mathrm{d} \tau \\
& \mathrm{i}(\mathrm{t})=\mathrm{i}\left(\mathrm{t}_{0}\right)+\frac{1}{\mathrm{~L}_{\mathrm{P}}} \int_{\tau=\mathrm{t}_{0}}^{\tau=\mathrm{t}} \mathrm{v}(\tau) \mathrm{d} \tau
\end{aligned}
$$

The equivalent inductance, L_{P}

$$
\frac{1}{\mathrm{~L}_{\mathrm{P}}}=\frac{1}{\mathrm{~L}_{1}}+\frac{1}{\mathrm{~L}_{2}}+\cdots+\frac{1}{\mathrm{~L}_{\mathrm{N}}}
$$

Example:

Find the equivalent inductance with respect to the terminals a, b ?

- $\mathrm{L}_{89}=\mathrm{L}_{8}$ in parallel with L_{9}
$\therefore \quad \mathrm{L}_{89}=\frac{\mathrm{L} 8 \mathrm{~L} 9}{\mathrm{~L} 8+\mathrm{L} 9}=9.6 \mathrm{H}$
- $\mathrm{L}_{589}=\mathrm{L}_{5}$ in series with L_{89}

$$
\mathrm{L}_{589}=\mathrm{L}_{5}+\mathrm{L}_{89}=10.4+9.6=20 \mathrm{H}
$$

- $\mathrm{L}_{6589}=\mathrm{L}_{6}$ in parallel with L_{589}

$$
\mathrm{L}_{6589}=\frac{\mathrm{L}_{6} \mathrm{~L}_{589}}{\mathrm{~L}_{6}+\mathrm{L}_{589}}=12 \mathrm{H}
$$

- $\mathrm{L}_{76589}=\mathrm{L}_{7}$ in series with L_{6589}

$$
\mathrm{L}_{76589}=\mathrm{L}_{7}+\mathrm{L}_{6589}=8+12=20 \mathrm{H}
$$

- $\mathrm{L}_{476589}=\mathrm{L}_{4}$ in parallel with L_{76589}

$$
\mathrm{L}_{476589}=\frac{\mathrm{L}_{4} \mathrm{~L}_{76589}}{\mathrm{~L}_{4}+\mathrm{L}_{76589}}=4 \mathrm{H}
$$

- $\mathrm{L}_{3476589}=\mathrm{L}_{3}$ in series with L_{476589}

$$
\mathrm{L}_{3476589}=\mathrm{L}_{3}+\mathrm{L}_{346589}=6+4=10 \mathrm{H}
$$

- $\mathrm{L}_{23476589}=\mathrm{L}_{2}$ in parallel with $\mathrm{L}_{3476589}$

$$
\mathrm{L}_{23476589}=\frac{\mathrm{L}_{2} \mathrm{~L}_{3476589}}{\mathrm{~L}_{2}+\mathrm{L}_{3476589}}=6 \mathrm{H}
$$

- $\mathrm{L}_{\mathrm{ab}}=\mathrm{L}_{1}$ in series with $\mathrm{L}_{23476589}$

$$
\mathrm{L}_{\mathrm{ab}}=\mathrm{L}_{1}+\mathrm{L}_{2346589}=2+6=8 \mathrm{H}
$$

Example :

Find the equivalent capacitance at the terminals a and b ?

- $\mathrm{C}_{67}=\mathrm{C}_{6}$ in series with C_{7}
$\mathrm{C}_{67}=\frac{\mathrm{C}_{6} \mathrm{C}_{7}}{\mathrm{C}_{6}+\mathrm{C}_{7}}=12 \mu \mathrm{~F}$
- $\mathrm{C}_{567}=\mathrm{C}_{5}$ in parallel with C_{67}
$\mathrm{C}_{567}=\mathrm{C}_{5}+\mathrm{C}_{67}=(3+12) \mu \mathrm{F}=15 \mu \mathrm{~F}$
- $\mathrm{C}_{4567}=\mathrm{C}_{4}$ in series with C_{567}

$$
\mathrm{C}_{4567}=\frac{\mathrm{C}_{4} \mathrm{C}_{567}}{\mathrm{C}_{4}+\mathrm{C}_{567}}=10 \mu \mathrm{~F}
$$

- $\mathrm{C}_{34567}=\mathrm{C}_{3}$ in parallel with C_{4567}

$$
\mathrm{C}_{34567}=\mathrm{C}_{3}+\mathrm{C}_{4567}=(10+10) \mu \mathrm{F}=20 \mu \mathrm{~F}
$$

- $\mathrm{C}_{\mathrm{ab}}=\mathrm{C}_{1}$ in series with C_{34567} in series with C_{2}

$$
\begin{aligned}
& \frac{1}{\mathrm{C}_{\mathrm{ab}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{34567}}+\frac{1}{\mathrm{C}_{2}}=\frac{1}{5 \mu}+\frac{1}{20 \mu}+\frac{1}{4 \mu} \\
& \Rightarrow \quad \mathrm{C}_{\mathrm{ab}}=2 \mu \mathrm{~F}
\end{aligned}
$$

Example :

Find the equivalent inductance at a, b
in all inductors are 4 mH

- $\mathrm{L}_{36}=\mathrm{L}_{3}$ in parallel with L_{6}

$$
\mathrm{L}_{36}=\frac{\mathrm{L}_{3} \mathrm{~L}_{6}}{\mathrm{~L}_{3}+\mathrm{L}_{6}}=2 \mathrm{mH}
$$

- $\mathrm{L}_{24}=\mathrm{L}_{2}$ in parallel with L_{4}
$\mathrm{L}_{24}=\frac{\mathrm{L}_{2} \mathrm{~L}_{4}}{\mathrm{~L}_{2}+\mathrm{L}_{4}}=2 \mathrm{mH}$
- $\mathrm{L}_{124}=\mathrm{L}_{1}$ in series with L_{24}

$$
\mathrm{L}_{124}=\mathrm{L}_{1}+\mathrm{L}_{24}=(4+2) \mathrm{mH}=6 \mathrm{mH}
$$

- $\mathrm{L}_{1245}=\mathrm{L}_{124}$ in parallel with L_{5}

$$
\mathrm{L}_{1245}=\frac{\mathrm{L}_{124} \mathrm{~L}_{5}}{\mathrm{~L}_{124}+\mathrm{L}_{5}}=2.4 \mathrm{~m} \mathrm{H}
$$

- $\mathrm{L}_{124536}=\mathrm{L}_{1245}$ in series with L_{36}
$\mathrm{L}_{124536}=\mathrm{L}_{1245}+\mathrm{L}_{36}=(2.4+2) \mathrm{mH}$ $\mathrm{L}_{124536}=4.4 \mathrm{~m} \mathrm{H}$

Example :

Find the equivalent inductance at a, b if all L are 6 mH

$\mathrm{L}_{123}=\mathrm{L}_{12}$ in parallel with L_{3}

$$
\mathrm{L}_{123}=\frac{\mathrm{L}_{12} \mathrm{~L}_{3}}{\mathrm{~L}_{12}+\mathrm{L}_{3}}=\frac{(3)(6)}{(3)+(6)} \mathrm{mH}=2 \mathrm{mH}
$$

$\mathrm{L}_{1234}=\mathrm{L}_{123}$ in series with L_{4}
$\mathrm{L}_{1234}=\mathrm{L}_{123}+\mathrm{L}_{4}=2+6=8 \mathrm{mH}$

$\mathrm{L}_{12345}=\mathrm{L}_{1234}$ in parallel with L_{5}

$$
\mathrm{L}_{12345}=\frac{\mathrm{L}_{1234} \mathrm{~L}_{5}}{\mathrm{~L}_{1234}+\mathrm{L} 5}=\frac{(8)(6)}{(8)+(6)} \mathrm{mH}=3.42 \mathrm{~m} \mathrm{H}
$$

$$
\mathrm{L}_{\mathrm{ab}}=\mathrm{L}_{6} \text { in series with } \mathrm{L}_{12345}
$$

$$
\begin{aligned}
\mathrm{L}_{\mathrm{ab}} & =\mathrm{L}_{6}+\mathrm{L}_{12345} \\
& =6+3.429 \mathrm{~m} \mathrm{H}=9.429 \mathrm{~m} \mathrm{H}
\end{aligned}
$$

Example:

Find the equivalent capacitance w.r.t. a, b if all C's are $4 \mu \mathrm{~F}$

$$
\begin{aligned}
\mathrm{C}_{45} & =\mathrm{C}_{4} \text { in parallel with } \mathrm{C}_{5} \\
& =\mathrm{C}_{4}+\mathrm{C}_{5}=8 \mu \mathrm{~F}
\end{aligned}
$$

$$
\begin{aligned}
C_{23} & =C_{2} \text { in parallel with } C_{3} \\
& =C_{2}+C_{3}=8 \mu \mathrm{~F}
\end{aligned}
$$

$\mathrm{C}_{123}=\mathrm{C}_{1}$ in series with C_{23}
$\mathrm{C}_{123}=\frac{\mathrm{C}_{1} \mathrm{C}_{23}}{\mathrm{C}_{1}+\mathrm{C}_{23}}=\frac{(4)(8)}{4+8} \mu \mathrm{~F}=\frac{32}{12} \mu \mathrm{~F}=\frac{8}{3} \mu \mathrm{~F}$
$\mathrm{Cab}=\mathrm{C}_{123}$ in parallel with C_{45}

$$
\begin{aligned}
\mathrm{C}_{\mathrm{ab}} & =\mathrm{C}_{123}+\mathrm{C}_{45}=\frac{8}{3} \mu \mathrm{~F}+8 \mu \mathrm{~F}=\frac{8+24}{3} \mu \mathrm{~F} \\
& =\frac{32}{3} \mu \mathrm{~F}
\end{aligned}
$$

Example:

Find the equivalent capacitance w.r.t a, b ?

$$
\begin{aligned}
\mathrm{C}_{23} & =\mathrm{C}_{2} \text { in parallel with } \mathrm{C}_{3} \\
& =\mathrm{C}_{2}+\mathrm{C}_{3}=6 \mu \mathrm{~F}
\end{aligned}
$$

$\mathrm{C}_{235}=\mathrm{C}_{23}$ in series with C_{5}

$$
\mathrm{C}_{235}=\frac{\mathrm{C}_{23} \mathrm{C}_{5}}{\mathrm{C}_{23}+\mathrm{C}_{5}}=\frac{(6)(3)}{6+3} \mu \mathrm{~F}=2 \mu \mathrm{~F}
$$

$\mathrm{C}_{2356}=\mathrm{C}_{235}$ in parallel with C_{6}

$$
=\mathrm{C}_{235}+\mathrm{C}_{6}=(2+2) \mu \mathrm{F}=4 \mu \mathrm{~F}
$$

$\mathrm{Cab}_{\mathrm{ab}}=\mathrm{C}_{1}$ in series with C_{2356} in series with C_{4}

$$
\frac{1}{\mathrm{C}_{\mathrm{ab}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2356}}+\frac{1}{\mathrm{C}_{4}}=\frac{1}{3 \mu}+\frac{1}{4 \mu}+\frac{1}{12 \mu}
$$

$$
\mathrm{C}_{\mathrm{ab}}=1.5 \mu \mathrm{~F}
$$

