
Capacitors and Inductors 
Chapter (5)

Capacitors :
A circuit element that is composed of two conducting plates or 
surfaces separated by a dielectric (non conducting) materials
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Let A : surface area of each plate
d : distance between the two plates
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It is found that 

Where :

Permittivity of free space 



• If a voltage source (v) is connected to the capacitor , +ve 
charge will be transferred to one plate while –ve charge will be 
transferred to the other plate.
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Let the charge stored at the capacitor q≡
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C is the capacitance

Current in capacitor :

We know that 
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Voltage of capacitors
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Where  t0  : initial time



The capacitor  is a passive element 
and follows the passive sign convention

Capacitors only store and release
ELECTROSTATIC energy. They do not “create”

Linear capacitor circuit representation
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Power of the capacitors :
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Energy of capacitor
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Assuming 
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Example:
The following voltage is imposed across the terminals of a 0.5 µF 
capacitor. 
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Find the following:
1. ic(t)
2. Pc(t)
3. wc(t)
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Example :

The voltage at the terminals of  a 0.5 µF capacitor is
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Find:
1. i(0)
2. Power delivered to the capacitors at t = Π/80 m S.
3. Energy stored in the capacitor at t = Π/80 m S
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Inductors :
Inductors are circuit elements that consist of a conducting wire in 
the shape of a coil

Circuit representation 
for an inductor



• If a current is flowing in the inductor, it produce a 
magnetic field  ,Φ.

•The direction of (Φ) depends on the right-hand rule.
•As the current increases or decreases, the magnetic 
field spreads or collapse  
•The change in magnetic field induces a voltage across 
the inductor.
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Where L is the inductance and measured in Henry [H]



Current in inductors :
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Integrate both sides as before
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Energy in inductors:
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Example :
The current flow through an 100 m H inductor 
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Find :
(1) Maximum value of current. 
(2) vL(t)  , (3)  PL(t)  ,  (4) wL(t)  

First,  find t max
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w (t)

P (t)

i (t)

v (t)

Inductor Capacitor
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Summary of results  :



Notes on capacitor :

1. If vC(t) = constant     ,  iC (t) = 0

Capacitor will be open circuit 

2.  vC(t) cannot change instantaneously ( no sudden change)
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3.  Capacitors can store energy
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Notes on inductors  :

1.   If  iL(t) = constant , vL(t) = 0

Inductor will be short circuit 

2.  iL(t) cannot change instantaneously ( no sudden change)
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3.  Inductors can store energy
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VN (t)V3 (t)V2 (t)

V (t)

Capacitors and Inductors combinations :

1. Series capacitors :
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For each capacitor ,
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Parallel capacitors :
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Series Inductors :
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Parallel Inductors :
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The equivalent inductance , LP
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a

b

L1 = 2 H

L7 = 8 H

L6 = 30 H

L5 = 10.4 H

L4 = 5 H

L3= 6 H

L2 = 15 H
L8 = 16 H

Example:

Find the equivalent inductance with respect to the terminals a ,b?

• L89=L8 in parallel with L9
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• L589=L5 in series with L89

• L6589=L6 in parallel with L589
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• L476589=L4 in parallel with L76589

• L76589=L7 in series with L6589
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• L3476589=L3 in series with L476589

• L23476589=L2 in parallel with L3476589

• Lab=L1 in series with L23476589
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a

b

C1 = 5 µF

C3 = 10 µF

C2 = 4 µF C6 = 48 µF

C5 = 3 µF

C4 = 30 µF

C7 = 16 µF

Example :
Find the equivalent capacitance at the terminals  a and b ?

• C67 = C6 in series with C7

Fµ12
CC

CC
C

76

76
67 =

+
=



• C567 = C5 in parallel with C67

• C4567 = C4 in series with C567
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• C34567 = C3 in parallel with C4567

• Cab = C1 in series with C34567 in series with C2

Fµ20F10)µ(10CCC 4567334567 =+=+=

Fµ2C
4µ
1

µ20
1

µ5
1

C
1

C
1

C
1

C
1

ab

2345671ab

=⇒

++=++=



L1
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b

in all inductors
are 4 mH

Example :
Find the equivalent inductance at a,b

• L36 = L3 in parallel with L6
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• L24 = L2 in parallel with L4
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• L1245 = L124 in parallel  with L5
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• L124 = L1 in series  with L24
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Example :
Find the equivalent inductance at a , b if all L are 6 m H

a

b

L5L4

L2

L3

L1

L6
L12 = L1 in parallel with L2

Hm3
LL

LL
L

21

21
12 =

+
=



L123 = L12 in parallel with L3
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L1234 = L123 in series with L4
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L12345 = L1234 in parallel  with L5

Lab = L6 in series with L12345
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Example:
Find the equivalent capacitance w.r.t. a, b if all C’s are 4 µ F

C45 = C4 in parallel with C5

= C4 + C5 = 8 µ F
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C23 = C2 in parallel with C3

= C2 + C3 = 8 µ F



C123 = C1 in series with C23
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Cab = C123 in parallel with C45
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a

b

C1 = 3 µF

C3 = 4 µF
C2 = 2 µF

C4 = 12 µF

C6 = 2 µF

C5 = 3 µF

X X

Z

Example :
Find the equivalent capacitance w.r.t  a, b ?

C23 = C2 in parallel with C3

= C2 + C3 = 6 µ F



C2356 = C235 in parallel with C6

= C235 + C6 = (2+2) µ F= 4 µ F

Cab = C1 in series with C2356 in series with C4
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C235 = C23 in series with C5
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