جسم الله الرحين الرحيم

# **Engineering Drawing**

# Textbook: Engineering Drawing By M.B.Shaha and B.C. Rana 2<sup>nd</sup> edition , 2009





#### **Engineering Drawing Applications(Importance)**

- Mechanical Engineering
  - .Detailed drawing of a part that needs to be machined.
- Electrical Engineering
  - . A circuit schematic.
- Civil Engineering
  - . Plans for a bridge.

# Drawing Types: A drawing can be done using freehand, instruments or computer methods.

#### **Freehand Drawing**

The lines are sketched without using instruments other than pencils and erasers.



#### **Drawing Instruments**

Instruments are used to draw straight lines, circles, and curves concisely and accurately. Thus, the drawings are usually made to scale.

#### **Example**





#### **Computer Drawing**

The drawings are usually made by commercial software such as AutoCAD, solid works etc.

#### **Example**







| Country   | Code | Full Name                            |
|-----------|------|--------------------------------------|
| USA       | ANSI | American National Standard Institute |
| Japan     | JIS  | Japanese Industrial Standard         |
| UK        | BS   | British Standard                     |
| Australia | AS   | Australian Standard                  |
| Germany   | DIN  | Deutsches Institut für Normung       |
|           |      |                                      |

ISO International Standards Organization





#### T-Square Straight line Triangles

#### **Draw a Horizontal Line**

- 1. Press the T-square head against the left edge of the table.
- 2. Smooth the blade to the right.





- 3. Lean the pencil at an angle about 60° with the paper in the direction of the line.
- 4. Draw the line from left to right while rotating the pencil slowly .



#### **Draw a Vertical Line**

- 1. Set T-square as before. Place any triangle on T-square edge.
- 2. Slide your left hand to hold both T-square and triangle in position.



#### **Draw a Vertical Line**

3. Lean the pencil to the triangle.

4. Draw the line upward while rotating the pencil slowly.



#### Draw a Line at 45° with Horizontal

- 1. Place 45° triangle on the T-square edge and press them firmly against the paper.
- 2. Draw the line in the direction as shown below.



#### Draw a line at Angle 30° and 60°

- 1. Place 30°-60° triangle on the T-square edge and press them firmly against the paper.
- 2. Draw the line in the direction as shown below.



#### **Draw the lines at 15° increments**



# Draw the Line Passing Through Two Given Points

- 1. Place the pencil tip at one of the points.
- 2. Place the triangle against the pencil tip.
- 3. Swing the triangle around the pencil tip until its edge align with the second point.
- 4. Draw a line.





#### Preparing the Compass

- 1. Sharpen the lead with a sandpaper.
- 2. Adjust the **needle** and the **lead** so that the tip of the needle extends slightly more than the lead.





Compasses Arc, Circle

## **Using the Compass**

- 1. Locate the center of the circle by two intersecting lines.
- 2. Adjust the distance between needle and lead to a distance equal to radius of the circle.
- 3. Set the needle point at center.



## **Using the Compass**

4. **Start circle.** Apply enough pressure to the needle, holding compass handle between thumb and index fingers.

5. Complete circle. Revolve handle clockwise.







#### HB for thick line (0.7 mm or 0.5 mm) 2H for thin line &

3H or 4H for guiding lines



#### Adhesive Tape

Pencils



#### Pencil Eraser

#### **Erasing Shield**



#### PROTRACTOR

#### Scale (ruler)

#### Note :Don't use any template of:

- Circles.
- Ellipses.
- Letters.

## **Drawing Sheets (Papers)**



### **Drawing Scales**

**Scale** is the ratio of the linear dimension of an element of an object shown in the drawing to the real linear dimension of the same element of the object.

![](_page_25_Figure_2.jpeg)

#### **Drawing Scales**

Designation of a scale consists of the word "SCALE" followed by the indication of its ratio, as follow

SCALE 1:1 for full size
SCALE X:1 for enlargement scales (X > 1)
SCALE 1:X for reduction scales (X > 1)

Dimension numbers shown in the drawing are correspond to "true size" of the object and they are independent of the scale used in creating that drawing. Note: Take scale as given to u, otherwise you must choose

a suitable scale.

#### **Orientation of Drawing Sheet**

![](_page_27_Figure_1.jpeg)

## **Fastening Paper to Drafting Board**

- 1. Place the paper close to the table's left edge.
- 2. Move the paper until its lower edge place about the top edge of T-square.

![](_page_28_Picture_3.jpeg)

## **Fastening Paper to Drafting Board**

- 3. Align the top edge of the paper with T-square blade.
- 4. Attach the paper's corners with tape.

![](_page_29_Picture_3.jpeg)

## **Fastening Paper to Drafting Board**

- 5. Move T-square down to smooth the paper.
- 6. Attach the remaining paper's corners with tape.

![](_page_30_Picture_3.jpeg)

#### **Basic Line Types**

| Types of Lines        | Appearance | Name according to application                   |
|-----------------------|------------|-------------------------------------------------|
| Continuous thick line |            | Visible line                                    |
| Continuous thin line  |            | Dimension line<br>Extension line<br>Leader line |
| Dash thick line       |            | Hidden line                                     |
| Chain thin line       |            | Center line                                     |

## **Meaning of Lines**

Visible lines represent features that can be seen in the current view

Hidden lines represent features that <u>can not be seen</u> in the current view

**Center line** represents symmetry, path of motion, centers of circles, axis of axisymmetrical parts

**Dimension and Extension lines** indicate the sizes and location of features on a drawing

# **Basic Sketching Line Types**

![](_page_33_Figure_1.jpeg)

#### Line Types an Example

![](_page_34_Figure_1.jpeg)

#### **Example :** Line conventions in engineering drawing

![](_page_35_Figure_1.jpeg)

#### **Centerline Conventions**

![](_page_36_Figure_1.jpeg)

#### **Intersection of Lines**

![](_page_37_Figure_1.jpeg)

#### **Hidden Line Conventions**

![](_page_38_Figure_1.jpeg)

#### **Example: Hidden Line Conventions**

![](_page_39_Figure_1.jpeg)

# ABCDEFGHIJKLMNOPQRSTUVW XYZABCDEFGHIJKLMNOPQRSTU

VWXYZABCDEF

# Lettering

ABCDEFGHIJKLMNOPQRSTUVW

XYZABCDEFGHIJKLMNOPQRSTU VWXYZABCDEF

## **Text on Drawings**

Text on engineering drawing is used :

- To communicate monographic information.
  - As a substitute for graphic information, in those instance where text can communicate the needed information more clearly and quickly.

Thus, it must be written with

- Legibility shape
  - space between letters and words

Uniformity - size

- line thickness

![](_page_42_Figure_0.jpeg)

![](_page_42_Picture_1.jpeg)

Title Block

#### **Basic Strokes**

![](_page_43_Figure_1.jpeg)

#### **Examples :** Application of basic stroke

![](_page_43_Figure_3.jpeg)

#### **Upper-case letters & Numerals**

Straight line letters

letters

letters &

![](_page_44_Figure_2.jpeg)

## **Lettering Standard**

#### ANSI Standard

Use a text style,
either inclined or vertical.
Use all capital letters.

Use 3 mm for most text height.

![](_page_45_Figure_4.jpeg)

# **Lettering Rules**

- Vertical style.
- Always use capital letters.
- Use HB pencil or 0.5 mm mechanical pencil(for visible lines and 4H for guiding lines.
  - Text height (h=3~6 mm).(for most texts). Tex Width (d): for h= 3 mm → d=2 mm except letters(I,J,L,M,T,W) and number (1). Also for h= 6 mm; use the attached sheet.
- Space between letters of (h=3 mm) is (1 mm) and for letters of (h=6 mm) is (2mm).
- Space between words for (h=3 mm) is (2 mm) and for (h=6 mm) is (4 mm).

![](_page_47_Picture_0.jpeg)

Look at the same word having different spacing between letters.

A) Non-uniform spacing

# JIRAPONG

B) Uniform spacing

# JIRAPONG

Which one is easier to read?

![](_page_48_Picture_0.jpeg)

1. Straight - Straight

![](_page_48_Figure_2.jpeg)

3. Straight - Slant

![](_page_48_Picture_4.jpeg)

![](_page_48_Picture_5.jpeg)

#### 2. Straight - Curve

![](_page_48_Picture_7.jpeg)

#### 4. Curve - Curve

![](_page_48_Picture_9.jpeg)

![](_page_49_Picture_0.jpeg)

![](_page_49_Figure_1.jpeg)

#### 7. The letter "L" and "T"

![](_page_49_Figure_3.jpeg)

**Example :** Good and Poor Lettering

ESTIMATE GOOD Estimate Not uniform in style. ESTIMATE Not uniform in height. ESTIMATE EST/MATE Not uniformly vertical or inclined. ESTIMATE ESTIMATE Not uniform in thickness of stroke. ESTIMATE ESTMATE Area between letters not uniform.

ABILITY WILL NEVER CATCH UP WITH THE DEMAND FOR IT

Area between words not uniform.

#### **Sentence Composition**

Leave the suitable space between words with respect to the letters height.

#### **Example**

# ALL DIMENSIONS ARE IN MILLIMETERS UNLESS OTHERWISE SPECIFIED.

# **Title Block Drawing**

## **Required H.W./ Next Week**

- 1- Using grid paper, draw letters from A to Z:
- For h=3 mm.
- For h= 6 mm(as in sheet).
- 2- Using grid paper(scale 1:1), draw title block for (5) times.

#### Notes:

- 1- Always bring your text book with you.
- 2- Write your name on white paper of(100 mm x 50 mm)dimensions.
- 3- Not allowed to leave your board also not allowed to Metaphor for any instruments.

# END