
Introduction & Rectilinear Kinematics: Lecture 11
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Statics: The study of
bodies in equilibrium.

Dynamics:
1. Kinematics – concerned with
the geometric aspects of motion
without any reference to the cause of
motion.
2. Kinetics - concerned with the
forces causing the motion

Mechanics: The study of how bodies
react to forces acting on them.

Scalars: are quantities which are fully described by a magnitude alone.
eg : distance , mass ,time ,volume  etc 

Vectors: are quantities which are fully described by both a magnitude and a direction.
eg:         displacement , velocity , force ,acceleration etc., 
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Introduction & Rectilinear Kinematics: Lecture 11

Linear motion: when a body moves either in a straight line or along a curved
path, then we say that it is executing linear motion.

1. when a body moves in a straight line then the linear motion is called
rectilinear motion.

eg ., an athlete running a 100 meter race along a straight track is said to be a
linear motion or rectilinear motion.

2. when a body moves along a curved in two or three dimensions path then the
linear motion is called curvilinear motion.

eg., the earth revolving around the sun.

Rotatory motion: A body is said to be in rotatory motion when it stays at one
place and turns round and round about an axis.

example:  a rotating fan, a rotating pulley about its axis.
Oscillatory motion: a body is said to be in oscillatory motion when it swings to
and fro about a mean position.

example: the pendulum of a clock, the swing  etc.,



What is motion? Lecture 11

 when a body is continuously changing its position with respect to the surroundings,
then we say that the body is in motion.
Motion in Relative:
 When we discuss the motion of something, we describe motion relative to something
else.
 When sitting on a chair, your speed is zero relative to the Earth but 30 km/s relative
to the sun
 when we discuss the speeds of things in our environment we mean relative to the
surface of the Earth.

Rectilinear Kinematics: Continuous Motion
 A particle travels along a straight-line path defined by the
coordinate axis ( x ).
The motion of a par ticle is known if the position (location)
coordinate for particle is known for every value of time ( t ).
 Position coordinate of a par ticle is defined by positive or
negative distance of particle from a fixed or igin on the line.
 Motion of the par ticle may be expressed in the form of a
function, e.g.,

 Or in the form of a graph ( x vs. t ). 3
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Rectilinear Kinematics: Continuous Motion Lecture 11

 In the picture, the car moves from (point A
to point B). So it changes its position during a
time interval ( t ).

Distance and Displacement

Displacement: refers to how far the object
travels, but also adds direction. This is a vector
quantity. For example: the car traveled (35km
to the east).

Distance: refers to how far an object travels.
This is a scalar quantity. For example: the car
traveled (35 km).
 We are only concerned with the length of
travel we don’t distinguish between directions.

Distance = dx +  dy = 4 + 3 = 7 km

36.8o

Speed:
 Speed is a measure of how fast something moves.
 Speed is a scalar quantity, specified only by its magnitude.
 Speed is defined as the distance covered per unit time: 

speed = distance / time =  x / t  ( m/s, km/h, foot/min, … etc )
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Average Speed: Lecture 11

 Average speed is the whole distance covered divided by the total time of travel. General 
definition: 

Average speed = total distance covered / time interval
 Distinguish between instantaneous speed and average speed:

– On most trips, we experience a variety of speeds, so the average speed and 
instantaneous speed are often quite different.

Instantaneous Speed:
 The speed at any instant is the instantaneous speed.
 The speed registered by an automobile speedometer is
the instantaneous speed.

Example 1: If we travel 320 km in 4 hours, what is our average speed? If we drive at this 
average speed for 5 hours, how far will we go?

Answer: vavg = 320 km/4 h = 80 km/h.
d = vavg x  time = 80 km/h x 5 h  =  400 km.

Example 2: A plane flies 600 km away from its base at 200 km/h, then flies back to its base 
at 300 km/h. What is its average speed?

Answer: total distance traveled, d = 2 x 600 km = 1200 km; 
total time spent ( for the round trip):
t = (600 km / 200 km/h) + (600 km / 300 km/h) = 3 h + 2 h = 5 h. 
Average speed, vavg = d / t = 1200 km/5 h = 240 km/h.



Velocity: Lecture 11

 Consider particle which occupies position ( P ) at 
time ( t ) and ( P’ ) at ( t  + ∆t ).

 Velocity is speed in a given direction; when we describe speed and direction of motion,
we are describing velocity.

Velocity =  speed and direction; velocity is a vector .
Constant velocity = constant speed and no change in direction
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Acceleration: Lecture 11
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Acceleration is the rate of change in the velocity of a particle. It is a vector
quantity. Typical units are m/s2 or ft/s2.
 The instantaneous acceleration is the time derivative of velocity.
 Consider particle with velocity ( v ) at time ( t ) and ( v’ ) at ( t  + ∆t ):

Instantaneous acceleration
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Constant Acceleration: Lecture 11

The three kinematic equations can be integrated for the special case when
acceleration is constant ( a = ac ) to obtain very useful equations. A common
example of constant acceleration is gravity; i.e., a body freely falling toward earth.
In this case, ( ac = g = 9.81 m/s2 = 32.2 ft/s2 ) downward. These equations are:
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Lecture 11:1Example  
Ball tossed with (10 m/s) vertical velocity from window
(20 m) above ground.

Determine:
 velocity and elevation above ground at time t,
 highest elevation reached by ball and corresponding

time, and
 time when ball will hit the ground and corresponding

velocity.
Solution:
• The ball experiences a constant downward acceleration.

v  = 10 + ( - 9.81 ) . t v  = 10 - 9.81 t

v  =  ( dy / dt )  =  10 - 9.81 t dy =  ( 10 - 9.81 t ) . dt

y =  yo + 10 t - 9.81 t 2 / 2  

dy = ∫ ( 10 - 9.81 t ) . dt
0

t

∫
yo

y

y =  20 + 10 t - 4.905 t 2

 Solve for ( t ) at which velocity equals zero and
evaluate corresponding altitude.

v  = 10 - 9.81 t = 0 t = 1.019 sec. 9



Lecture 11Continue:1Example  

y =  20 + 10 t - 4.905 t 2

 At time ( t = 1.019 sec. ) the corresponding altitude ( y ),
where the velocity equal to zero.

y =  20 + 10 . (1.019) - 4.905 . (1.019) 2

y =  25.1  m
 Solve for ( t ) at which altitude equals zero and

evaluate corresponding velocity ( v ).
y =  20 + 10 t - 4.905 t 2 =  0   

v  = 10 - 9.81 t = 10 – 9.81 * 3.28  = - 22.2 m/s

t  =  - 1.243 sec. (meaningless)
t  =  3.28 sec.

:2Example  
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Ball ( A ) is released from rest at a height of ( 40 ft ) at the
same time a ball ( B ) is thrown upward, ( 5 ft ) from the
ground. The balls pass one another at a height of ( 20 ft ).

Find: The speed at which ball ( B ) was thrown upward.

Solution: Both balls experience a constant downward
acceleration of ( ac = 32.2 ft/s2 ).
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Continue:2Example  Lecture 11

1) First consider ball A. With the origin defined at the
ground, ball ( A ) is released from rest [ (vA )o = 0 ]
at a height of ( 40 ft ), [ (sA )o = 40 ft ]. Calculate the
time required for ball ( A ) to drop to ( 20 ft ), [ sA =
20 ft ] using a position equation.

sA = ( sA )o + ( va )o . t + (1/2) ac . t2

20 ft = 40 ft + (0) . (t) + (1/2) . (-32.2) . (t2) 
t = 1.115 s

2) Now consider ball B. It is throw upward from a
height of ( 5 ft ) [ (sB)o = 5 ft ]. It must reach a
height of ( 20 ft ) [ sB = 20 ft ] at the same time ball
( A ) reaches this height ( t = 1.115 s ). Apply the
position equation again to ball ( B ) using ( t =
1.115 sec ).

sB = (sB)o + (vB)o . t + (1/2) . ac  . t2

20 ft = 5 + (vB)o . (1.115) + (1/2) . (-32.2) . (1.115)2

(vB)o = 31.4 ft/s
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Lecture 11Example  3: Variable acceleration
A motorcyclist travels along a straight road at a speed of ( 27 m/s ).  When the brakes are 
applied, the motorcycle decelerates at a rate of ( - 6 t m/s2 ).

Find: The distance the motorcycle travels before it stops.
Solution:
Establish the positive coordinate ( S ) in the direction the
motorcycle is traveling. Since the acceleration is given as a
function of time, integrate it once to calculate the velocity and
again to calculate the position.
1)  Integrate acceleration to determine the velocity:

a = dv / dt        =>      dv = a dt   

=>                                                 =>   v – vo = - 3 . t2 =>   v = - 3 . t2 +  vo∫∫ −=
t

o

v

v

. dttdv
o

)6( 

2) We can now determine the amount of time required for the
motorcycle to stop ( v = 0 ). Use [ vo = 27 m / s ].

0 = - 3 . t2 + 27     =>   t = 3 sec.
3) Now calculate the distance traveled in ( 3 sec )  by integrating the 

velocity using [ So = 0 ]:
v = dS / dt   =>     dS = v dt     => 

=>   S – So = - t3 + vot      =>   S – 0 = (3) 3 + (27) . (3)   =>   S = 54 m
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Lecture 11Example  4: Variable acceleration
Given that the velocity of a particle changes with time such that ( 𝑣 = 16 − 𝑡2 ), find: 

A. Draw a velocity-time graph for the first ( 4 seconds ) of motion. 
B. Obtain the distance covered in the first ( 4 seconds ). 
C. The acceleration when (i) t = 1 seconds, (ii) t = 3 seconds.

Solution:

v

t

16 m/s

4

B) Distance travelled in the first 4 seconds, (Integration to find the distance).

v = dS / dt                    dS  = v . dt    

Distance covered ( S )  =    ∫ ( 16 − 𝑡2 ) 𝑑𝑡 =  [ 16 t  - t3 / 3  ]
0

4

0

4

S  =  42.67 m 

a = dv / dt  =          ( 16  - t 2 )  =  - 2 td
dt

i. )     a  = - 2 t

ii.)     a  = - 2 t

At   t  =  1 sec.                           a  =  - 2  m/s2

At   t  =  3 sec.                           a  =  - 6  m/s2

B) The accelaration can be find by differentiating the velocity.
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Lecture 11Example  5: Constant acceleration
Two cars ( A & B ) start simultaneously from point ( O ) and move in a straight line. One with
a velocity of ( 66 m/s ), and an acceleration of ( 2 m/s2 ), the other car with a velocity of ( 132
m/s ) and with a retardation of ( 8 m/s2 ). Find the time which the velocities of the cars are
same and the distance from point ( O ) where they meet again. a

t

2 m/s2

8 m/s2

O

Solution:
For Car ( A ):

A

B

a = dv / dt dv = a . dt                    dv = 2 dt   

vA =  66  +  2 . t
For Car ( B):

vB =  132  - 8 . t
 When car ( A ) and car ( B ) have the same velocity:

vA =  vB

66  +  2 . t  =  132  - 8 .  t
66   =  10 . t
t =  6.6  sec

 So, after ( 6.6 sec. ), the velocities of car ( A ) and car ( B )
have the same velocity.

A

132 m/s

O

66 m/s

B

t6.6 s
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Lecture 11Example  5: Continue
 To find at what distance these two cars will meet and when, let find first the equations of
their distances:

For Car ( A ):
vA =  66  +  2 . t   =  dSA / dt    dSA =    ( 66  +  2 . t ) dt 

SA =    66 t  +  (1/2) . 2 . t 2 =  66 t + t 2

For Car ( B):
vB =  132  - 8 . t   =  dSB / dt    dSB =    ( 132  - 8 . t ) dt 

SB =    132 t  - (1/2) . 8 . t 2 =  132 t  - 4 t 2

Where: SAo = SBo = 0

 To find when these two cars will meet, it means they will
move the same distances:

SA =  SB

66 t + t 2 =  132 t  - 4  t 2

66 t =  5  t 2

t  =  13.2 sec
SB =   SA =   66 t + t 2 =  66 * 13.2  +  ( 13.2 ) 2 =  1045 .44 m  

A

1000 m

O

500 m

B

t

S

13.2 s



1

Lecture 12Curvilinear Motion: 
 When a Par ticle moving along a curve other than a straight line, we say that
the par ticle is in curvilinear motion.
Coordinates Used for Describing the Plane Curvilinear Motion:
The motion of a particle can be described by using three coordinates, these are:

1. Rectangular coordinates.
2. Normal – Tangential coordinates.
3. Polar coordinates.

Rectangular 
coordinates

Normal-Tangential 
coordinates

Polar 
coordinates

y

x

P
t

n
PA

PB

PC

t

n

t

n

y

x

Pr

φ

θ r

Path

Path

Path

O O

Vx

Vy
VV
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Plane Curvilinear Motion – without Specifying any 
Coordinates: 

(Displacement)

Lecture 12

Position: 
 The position of the particle measured from a fixed point ( O ) will be designated by the
position vector [ r = r ( t ) ].
 This vector is a function of time ( t ), since in general both its magnitude and direction
change as the particle moves along the curve path.

 Suppose that particle which
occupies position ( P ) defined by
(r) at time (t) moving along a curve
a distance (∆S ) to new position (P’)
defined by (r ’ = r + ∆r ) at a time
(t + ∆t ).
 (∆r = r ’ – r = displacement).
Note: Since, here, the particle
motion is described by two
coordinates components, both the
magnitude and the direction of
the position, the velocity, and the
acceleration have to be specified.

 P at time t 

P at time t+∆t ∆r 
r(t) 

r(t+∆t) 

 O 

∆s

Actual distance 
traveled by the particle 

(it is s scalar)

The vector 
displacement 
of the particle

r ( t )

r ( t + ∆t )

∆r

∆S
P at time 

(t +∆t)

P at time (t)

Path



Curvilinear Motion: Lecture 12

3

Average Velocity: 
 The average velocity ( vav ) is a vector , it has
the direction of ( ∆r ) and its magnitude equal to the
magnitude of ( ∆r ) divided by ( ∆t ).

 The average speed of the particle is the scalar
(∆S/∆t ). The magnitude of the speed and ( Vav )
approach one another as ( ∆t ) approaches zero.

Average Speed: 

∆S∆r

Average 
velocity

the magnitude of ( V ) is called 
the speed, i.e. V = | V | = dS / dt

−
−

Instantaneous 
velocity

the velocity vector V is always 
tangent to the path.

−

As (∆t) 
approach zero

As (∆t) 
approach zero

Path
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Curvilinear Motion: Lecture 12

V

V’

∆V

Average Acceleration ( aav ):
_

Note: aav has the direction of ( ∆V ) and its
magnitude is the magnitude of ( ∆V ) divided by ( ∆t ).

_

Instantaneous Acceleration ( a ):
_

As ( ∆t ) approaches zero:

Note: In general, the acceleration vector ( a ) is neither
tangent nor normal to the path. However, ( a ) is tangent
to the hodograph.

_
_

P

P

V1

V2

_

_

C

Hodograph

V1

V2

a1a2

_

_

__

A plot of the locus of points defined by the arrowhead of the velocity vector is called a
hodograph. The acceleration vector is tangent to the hodograph, but not, in general, tangent to
the path function.
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Lecture 12Motion of a Projectile: 
Projectile motion can be treated as two rectilinear motions, one in the horizontal
direction ( constant velocity ) experiencing zero acceleration and the other in the
vertical direction experiencing constant acceleration (i.e., gravity).
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Lecture 12Motion of a Projectile: Path of a Projectile:

 vo = initial velocity or resultant velocity
 vx = horizontal velocity
 vyi = initial vertical velocity
 vyf = final vertical velocity
 Xmax (or R ) = maximum horizontal

distance (range)
 x = horizontal distance
 ∆y = change in vertical position
 yi = initial vertical position
 yf = final vertical position
 θ = angle of projection (launch angle)
 H = maximum height
 g = gravity = 9.8 m/s2

 The velocity vector ( vo ) changes with time in both magnitude and
direction. This change is the result of acceleration in the negative ( y )
direction (due to gravity).
 The horizontal component ( x component ) of the velocity ( vo ) remains
constant ( voX ) over time because there is no acceleration along the
horizontal direction
 The vertical component ( vy ) of the velocity ( vo ) is zero at the peak of
the trajectory. However, there is a horizontal component of velocity, ( vx ), at
the peak of the trajectory.

x

Vo

Vox

Voy

Voy

Vox

Vo

x

y

y

θ

θ

yo
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Lecture 12Motion of a Projectile: HORIZONTAL MOTION :

Xmax ( or R )

Time ( t = 0.5 tf ) to reach 
the highest point

Time to reach the maximum horizontal 
distance ( tf )

gH

 Since:                                 ax = 0
 The velocity in the horizontal direction remains constant .

vx = vox = vo . cos θ
 The position in the x direction can be determined by:

x  = xo +  Vox . t                     x  = Vox . t  …   ( if xo = 0 )  
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Lecture 12Motion of a Projectile: VERTICAL MOTION :

 Since the positive y-axis is directed upward, ( ay = − g ). Application of
the constant acceleration equations yields:

vy = voy – g . (t)
y = yo + (voy) . (t) – ½g(t)2

vy
2 = voy

2 – 2g . ( y – yo )

Xmax ( or R )

Time ( t = 0.5 tf ) to reach 
the highest point

Time to reach the maximum horizontal 
distance ( tf )

gH



9

Lecture 12Motion of a Projectile: GENERAL NOTES:

 The motion of a projectile is determined only by the object’s initial
velocity and gravity.

 The vertical motion of a projected object is independent of its horizontal
motion.

 The vertical motion of a projectile is nothing more than free fall.
 The one common variable between the horizontal and vertical motions

is time.

The launch speed ( Vo ), angle of projection ( θ ) and the value
of ( g ) determine the position and velocity at any time.

R  =  Xmax

x

y
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Range and Angle of Projection:
 The range is a maximum at 45° because sin (2·45) = 1.
 For any angle θ other than 45°, a point having coordinates (x,0) can be

reached by using either one of two complimentary angles for θ, such as
15 ° and 75 ° or 30 ° and 60 °.

 The maximum height and time of flight differ for the two trajectories
having the same coordinates (x, 0).

 A launch angle of 90° (straight up) will result in the maximum height
any projectile can reach.

X ( m )

Y
 ( 

m
 )

Lecture 12
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Lecture 12Normal & Tangential Components: 
 As mentioned previously that the velocity of a particle is a vector tangent to the path of

the particle’s movement.
 The acceleration is not tangent not normal to the path.
 It is convenient to resolve the acceleration into components directed respectively along

the tangent and normal to the path of the particle’s movement.

 Cars traveling along a clover-leaf interchange experience an acceleration due to a change
in speed as well as due to a change in direction of the velocity.

 If the car’s speed is increasing at a known rate as it travels along a curve, how can we
determine the magnitude and direction of its total acceleration?

PA

PB

PC

t

n

t

nPathn

t
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Lecture 12Normal & Tangential Components: 
 When a particle moves along a curved path, it is

sometimes convenient to describe its motion using
coordinates other than Cartesian.

 When the path of motion is known, normal ( n )
and tangential ( t ) coordinates are often used.

 In the ( n – t ) coordinate system, the origin is
located on the particle (the origin moves with the
particle).

 The ( t-axis ) is tangent to the path ( curve ) at
the instant considered, positive in the direction of
the particle’s motion.

 The ( n-axis ) is perpendicular to the ( t-axis )
with the positive direction toward the center of
curvature of the curve.

 The center of curvature, ( O’ ), always lies on the 
concave side of the curve. 

 The radius of curvature, ( ρ ), is defined as the
perpendicular distance from the curve to the center
of curvature at that point.

 The position of the particle at any instant is
defined by the distance, ( s ), along the curve from
a fixed reference point.
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Lecture 12Normal & Tangential Components: 
 Consider ( A & B ), the two positions of a particle

moving on a curved path displaced through an
angle ( dθ ) in time ( dt ) as shown in the figure.

Lte:
r = radius of curvature of the curved path.
V = velocity of the particle at ( A ).
V + dV = velocity of particle at ( B ).

 The change of velocity as the particle moves from
(A) to ( B ) may be obtained by drawing the vector
triangle ( oab ) as shown in figure. In triangle ( oa )
represents the velocity ( V ) and ( ob ) represents
the velocity ( V + dV ). The change of velocity in
time ( dt ) is represented by ( ab ).

 Now resolving ( ab ) into two components
(parallel & perpendicular) to ( oa ). Let ( ac &
cb ) be the components parallel and perpendicular
to ( oa ) respectively:
∴ ac = oc - oa = ob cos dθ – oa

= ( V + dV ) cos dθ - V
And cb = ob sin dθ = ( V + dV ) sin dθ
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Lecture 12Normal & Tangential Components: 
Since the change of velocity of a particle ( represented by a vector ab ) has two mutually
perpendicular components, therefore the acceleration of a particle moving along a circular path
has the following components of acceleration:

1. Tangential component of the acceleration:
The acceleration of a particle at any instant moving along a circular path in a direction
tangential at that instant, is known as tangential component of acceleration:

As ( dθ ) is too small, then:

2. Normal component of the acceleration:
The acceleration of a particle at any instant moving along a circular path in a direction normal
to the tangent to that instant, is known as normal component of acceleration and directed
towards the center of the circular path:

Since for very small angel, then:



Lecture 12Normal & Tangential Components: 
Since the tangential acceleration ( at ) and the normal acceleration ( an ) of the particle
( A ) at any instant are perpendicular to each other as shown, therefore total
acceleration of the particle is:

at

θ

a an

15

Tangential component of acceleration reflects
change of speed and normal component
reflects change of direction.

Tangential component may be positive or
negative. Normal component always points
toward center of path curvature.
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Lecture 12Normal & Tangential Components: 

Radius of curvature:
Any point on a curvilinear path can be approximated by a circle of radius ( ρ ).

Where:

+ρ

X

Y Curvilinear path

Circle of 
radius ρ

Point on the 
curvilinear 

path

P

x

y

The particle moves along a path expressed as:
y = f (x) 

The radius of curvature, ( ρ ), at any point on
the path can be calculated from
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Lecture 12Rotary Motion: 
The Radian: 

Rotational - motion involving a rotation or revolution around a fixed chosen axis ( an axis
which does not move ).
Rotational quantities are usually defined with units involving a radian measure.
 If we take the radius of a circle and LAY IT
DOWN on the circumference, it will create an angle
whose arc length is equal to( R ).
 In other words, one radian angle is subtends an arc
length( ∆S )equal to the radius of the circle ( R )

∆S = R . ∆θ

∆θ

 A general Radian Angle ( ∆θ ) subtends an arc
length [ ∆S] equal to ( R . ∆θ ). The theta ( θ ) in this
case represents ANGULAR DISPLACEMENT ( in
radian ).

∆S  =  R . ∆θ

∆S = R

36021 == radiansrevolution π
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Lecture 12Rotary Motion: 
Angular Velocity:

Since velocity is defined as the rate of change of displacement. ANGULAR VELOCITY is
defined as the rate of change of ANGULAR DISPLACEMENT.

 Magnitude of the motion and the units.

 The PLANE in which the object rotates in the
directional sense ( counterclockwise or clockwise).

 Counterclockwise rotations are defined as having a
direction of POSITVE motion on the "z" axis.

 Clockwise rotations are defined as having a
direction of NEGAITVE motion on the "z" axis.

Rotational motion tells THREE THINGS:

∆S ∆S

θ
R

dt
d

dt
dxv

velocityrotational
t

velocitynaltranslatio
t
xv

θω

θω

==

→
∆
∆

=

→
∆
∆

=

,
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Lecture 12Rotary Motion: 
Angular Acceleration:

Once again, following the same lines of logic. Since acceleration is defined as the rate of
change of velocity. We can say the ANGULAR ACCELERATION is defined as the rate of
change of the angular velocity.

dt
d

dt
dva

onacceleratirotational
t

onacceleratinaltranslatio
t
va

ωα

ωα

==

→
∆
∆

=

→
∆
∆

=

,

 Also, we can say that the ANGULAR ACCELERATION is the TIME DERIVATIVE 
OF THE ANGULAR VELOCITY.

 All the rules for integration apply as well.

θ1
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Lecture 12Rotary Motion: 
Combining motions –Tangential velocity:
 First we take our equation for the radian measure and divide
BOTH sides by a change in time ( ∆t ).
 The left side is simply the equation for LINEAR velocity. BUT in
this case the velocity is TANGENT to the circle. Therefore we call it
TANGENTIAL VELOCITY.
 Inspecting the right side we discover the formula for ANGULAR
VELOCITY.

 Using the same kind of mathematical reasoning we can also
define Linear tangential acceleration.

 Inspecting each equation we discover that there is a DIRECT
relationship between the Translational quantities and the
Rotational quantities.

Tangential acceleration:
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Linear motion – Rotation (Angular) motion:

ω

Lecture 12Rotary Motion: 
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Lecture 12Other Types of  Motions: 
Cylindrical motion:

The cylindrical coordinate system is used in cases where the
particle moves along a 3-D curve.
Example: A roller coaster car travels down a fixed, helical path
at a constant speed.

Oscilatory motion:
Systems that have harmonic motion move back and forth around a central or equilibrium
position. It describes the back and forth motion of a pendulum.
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Lecture 13Newton’s Laws of Motion:
 The motion of a particle is governed by Newton’s three laws of motion.

 First Law: A particle originally at rest, or moving in a straight line at constant
velocity, will remain in this state if the resultant force acting on the particle is zero.

 Second Law: If the resultant force on the particle is not zero, the particle
experiences an acceleration in the same direction as the resultant force. This
acceleration has a magnitude proportional to the resultant force.

 Third Law: Mutual forces of action and reaction between two particles are
equal, opposite, and collinear.
 The first and third laws were used in developing the concepts of statics.
Newton’s second law forms the basis of the study of dynamics.
 Mathematically, Newton’s second law of motion can be written:

F =  m . a
Where: ( F ) is the resultant unbalanced force acting on the particle, and ( a ) is the
acceleration of the particle. The positive scalar ( m ) is called the mass of the
particle.
 Newton’s second law cannot be used when the particle’s speed approaches the
speed of light, or if the size of the particle is extremely small (~ size of an atom).
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Lecture 13Applications:

The motion of an object depends on the forces acting 
on it.

 Knowing the drag force, how can we determine the
acceleration or velocity of the parachutist at any point in
time?

 A parachutist relies on the atmospheric drag
resistance force to limit his velocity.

W

 A freight elevator is lifted using a motor attached to
a cable and pulley system as shown.

 How can we determine the tension force in the
cable required to lift the elevator at a given
acceleration?

 Is the tension force in the cable greater than the
weight of the elevator and its load?
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Lecture 13
Newton’s Second Law of Motion:
Newton’s Second Law: If the resultant force acting on a particle is
not zero, the particle will have an acceleration proportional to the
magnitude of resultant and in the direction of the resultant.

 Consider a particle subjected to constant forces:

m
a
F

a
F

a
F  mass,constant

3

3

2

2

1

1 ===== 

 When a particle of mass ( m )is acted upon by a force the
acceleration of the particle must satisfy:

,F


 Acceleration must be evaluated with respect to a Newtonian
frame of reference, i.e., for problems concerned with motions at
or near the earth’s surface, we typically assume our “ inertial
frame ” to be fixed to the earth. We neglect any acceleration
effects from the earth’s rotation.

 If force acting on particle is zero, particle will not accelerate, i.e.,
it will remain stationary or continue on a straight line at constant
velocity.

F ma=
 



4

Lecture 13Equation of Motion:
The motion of a particle is governed by Newton’s second law, relating the
unbalanced forces on a particle to its acceleration. If more than one force acts on
the particle, the equation of motion can be written:

∑ F = FR =  m . a
Where: ( FR ) is the resultant force, which is a vector summation of all the forces.

To illustrate the equation, consider a par ticle acted on by two forces as shown in
the figure below:

 First, draw the particle’s free-body diagram, showing all forces acting on the
particle.
 Next, draw the kinetic diagram, showing the inertial force ( ma ) acting in the
same direction as the resultant force ( FR ).



m = the mass of the rigid body  ( kg )
ax & ay =  acceleration in ( x & y direction ) respectively.
MG = the moment ( Torque ) of the resultant force about the center of gravity ( G ).
I = the moment of inertia about the center of gravity ( G ).
α = the angular acceleration of the rigid body about the center of gravity ( G ). 5

Plane Motion of a Rigid Body: 
 Motion of a rigid body in plane motion is completely defined by the resultant

and moment resultant about ( G ) of the external forces.

αIMamFamF Gyyxx === ∑∑∑

Lecture 13

Where:

Remember, unbalanced
forces cause acceleration!
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Procedure For The Application Of The Equation Of Motion:
1) Select a convenient inertial coordinate system. Rectangular, normal/tangential, or

cylindrical coordinates may be used.

2) Draw a free-body diagram showing all external forces applied to the particle.
Resolve forces into their appropriate components.

Lecture 13

y

x

The weight force (W) acts through the crate’s
center of mass. (T ) is the tension force in the
cable. The normal force ( N ) is perpendicular
to the surface. The friction force ( F = µKN )
acts in a direction opposite to the motion of the
crate.

y

x

W = mg
T

30°

N
F = µKN

W = mg
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3) Draw the kinetic diagram, showing the particle’s inertial force, ( ma ). Resolve 
this vector into its appropriate components.

4) Apply the equations of motion in their scalar component form and solve these
equations for the unknowns.

5) It may be necessary to apply the proper kinematic relations to generate additional 
equations.

Procedure For The Application Of The Equation Of Motion: Lecture 13

The crate will be pulled to the r ight. The
acceleration vector can be directed to the
right if the truck is speeding up, or to the
left if it is slowing down.

ma

 The second law only provides solutions
for forces and accelerations. If velocity
or position have to be found, kinematics
equations are used once the acceleration is
found from the equation of motion.
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WORK OF A FORCE: 

Lecture 13WORK AND ENERGY:
Another equation for working kinetics problems involving particles can be derived
by integrating the equation of motion ( F = m . a ) with respect to displacement.
By substituting:

a = v . ( dv / ds )     into F = m . a
The result is integrated to yield an equation known as the principle of work and
energy:

The integration of the left term yield to equation of Work, and the integration of the
right term yield to equation of Energy. That means we need Energy to perform
Work.

 A force does work on a particle when the particle undergoes a displacement
along the line of action of the force.
 Work is defined as the product of force and displacement components acting
in the same direction.

Same units as work
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WORK OF A FORCE: Lecture 13

So, if the angle between the force and displacement vector is ( θ ), the increment of 
work ( dU ) done by  the force is:  

dx

By integrating, the total work can be written as:

Work is positive if the force and the movement are in the same direction. If they are
opposing, then the work is negative. If the force and the displacement directions
are perpendicular, the work is zero.

SI unit =  Joule
1 J = 1 N ⋅ m = 1 kg ⋅ m2 / s2

By definition the work is equal to the product of force and distance:

The work’s unit becomes:
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Lecture 13WORK OF A WEIGHT
The work done by the gravitational force acting on a particle (or weight of an object)
can be calculated by using :

 The work of a weight is the product of the magnitude of
the particle’s weight and its vertical displacement. If ( ∆y )
is upward, the work is negative since the weight force
always acts downward.

F

∆y

W = m g Exert a smaller force over a larger distance to
achieve the same change in gravitational potential energy
(height raised).
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WORK OF A SPRING FORCE: Lecture 13

When a spring is stretched, a linear elastic
spring develops a force of magnitude:

• ( k ) is the spring stiffness and,
• ( s ) is the displacement from the un-
stretched position.

Fs = k .s
Where: 

 The work of the spring force moving from
position ( s1 ) to position ( s2 ) is:

 If a particle is attached to the spring, the force
( Fs ) exerted on the particle is opposite to that
exerted on the spring. Thus, the work done on the
particle by the spring force will be negative :
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Kinetic Energy: Lecture 13

 Kinetic energy exists whenever an object which has mass is in motion with
some velocity.

 Everything you see moving about has kinetic energy. The kinetic energy of an
object in this case is given by the relation:

 Kinetic energy is proportional to (V 2 ). The greater the mass or velocity of a
moving object is the greater kinetic energy it has.
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Potential Energy: Lecture 13

 Potential energy exists whenever an object
which has mass has a position within a force
field.

 The most everyday example of this is the
position of objects in the earth's gravitational
field. The potential energy of an object in this
case is given by the relation:

Where:

PE = Potential Energy (in Joules)
m = mass (in kilograms)
g = gravitational acceleration of the earth
(9.8 m/sec2)
∆y = height above earth's surface (in meters)

= ( yf − yi )
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POWER AND EFFICIENCY: Lecture 13

Power is defined as the amount of work performed per unit of time.

 If a machine or engine performs a certain amount of work, dU, within a given 
time interval, dt, the power generated can be calculated as

1 W = 1  J / s = 1  kg m2

s3

 SI units of the  Power is Watts (W):

 Thus, power is a scalar defined as the
product of the force and velocity components
acting in the same direction.

 Using scalar notation, power can be written

 where ( θ ) is the angle between the force and velocity vectors.
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POWER AND EFFICIENCY: Lecture 13

The mechanical efficiency of a machine is the ratio of the useful power produced
(output power) to the power supplied to the machine (input power) or:

η = (power output) / (power input)

 If energy input and removal occur at the
same time, efficiency may also be expressed in
terms of the ratio of output energy to input
energy or

η = (energy output) / (energy input)
 Machines will always have frictional forces.
Since frictional forces dissipate energy, additional
power will be required to overcome these forces.
 Consequently, the efficiency of a machine is
always less than 1.

EFFICIENCY:

 The higher the efficiency, more of the work
input is converted to work output; less of the
work output is lost to overcoming friction.
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PROCEDURE FOR ANALYSIS:

3. Multiply the force magnitude by the component of velocity acting in the
direction of ( F ) to determine the power supplied to the body:

5. If the mechanical efficiency of a machine is known, either the power input
or output can be determined.

2. Determine the velocity of the point on the body at which the force is
applied. The equation of motion and appropriate kinematic relations, may
be necessary.

4. In some cases, power may be found by calculating the work done per unit
of time:

1. Find the resultant external force acting on the body causing its motion. It
may be necessary to draw a free-body diagram.

Lecture 13POWER AND EFFICIENCY:
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Belts & Pulleys: Lecture 13

Belts:
Consider a flat belt passing over a fixed cylindrical
drum. We propose to determine the relation existing
between the values ( T1 and T2 ) of the tension in the
two parts of the belt when the belt is just about to
slide toward the right.

 Let us detach from the belt a small element ( PP’ )
subtending an angle ( Δθ ). We draw the FBD of the
element of the belt:

T = the tension at P
T + ΔT = the tension at P’
ΔN = Normal reaction
ΔF = friction force (opposite to the
direction of motion). The motion is
assumed to be impending:

ΔF = μs ΔN

( ) 0
2

cos
2

cos:0 =∆−
∆

−
∆

∆+=∑ NTTTF sx µθθ

Where:

Equations of equilibrium:
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( ) 0
2

sin
2

sin:0 =
∆

−
∆

∆+−∆=∑
θθ TTTNFy

Belts & Pulleys: Lecture 13

Belts:

 Combine to eliminate ( ∆N ), divide through 
by ( ∆θ ):

 In the limit as ( ∆θ ) goes to zero, ( ∆T )
goes to zero too:

0=− T
d
dT

sµ
θ

 Separate variables and integrate from: 

βθθ ==   to0
βµβµ se

T
T

T
T

s ==
1

2

1

2 orln

( )
2

2sin
22

cos
θ

θµθ
θ ∆

∆






 ∆

+−
∆

∆
∆ TTT

s =  0
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