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Chapter 3 

The First Law of Thermodynamics-Closed Systems 

3-1. Introduction to the first law of thermodynamics 

The first law of thermodynamics can simply be stated as 
follows: During an interaction between a system and its 
surroundings, the amount of energy gained by the system must 
be exactly equal to the amount of energy lost by surroundings. 
Energy can cross the boundary of closed system in two distinct 

forms: heat and work (Fig. 3-1). It is important to distinguish 

between these two forms of energy. 

 

 

 

 

 

 

 

 

 

 

3-2. Heat  

Heat is defined as the form of energy that is transferred between 

two systems (or a system and its surroundings) by virtue of a 

temperature difference. That is, an energy interaction is heat 

only if it takes place because of a temperature difference (Fig. 3-

2). 

Figure 3-1. Energy can cross the 

boundaries of a closed system in 

the form of heat and work. 
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In thermodynamics, however, heat and internal energy are two 

different things. Energy is a property, but heat is not. A body 

contains energy, but not heat. Energy is associated with a state; 

heat is associated with a process. 

       Heat is energy in transition. It is recognized only as it 

crosses the boundaries of a system. Consider the hot baked 

potato one more time. The potato contains energy, but this 

called heat only as it passes through the skin of potato (the 

system boundary) to reach the air, as shown in Fig. 3-3. Once in 

the surroundings, the heat becomes part of the internal energy 

of the surroundings. Thus in thermodynamics the term heat 

simply means heat transfer.  

 

 

 

 

 

 

 

 

Figure 3-2. Heat is transferred from 

hot bodies to colder ones by virtue 

of a temperature difference. 

 

Figure 3-3. Energy is recognized 

as heat only as it crosses the 

system boundary. 
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A process during which there is no heat transfer is called an 

adiabatic process (Fig. 3-4). 

 

 

 

 

 

 

 

 

       As a form of energy, heat has energy units, kJ (or Btu) being 

the most common one. The amount of heat transferred during 

the process between two states (states 1 and 2) is denoted 𝑸12, 

or just 𝑸. Heat transfer per unit mass of a system is denoted 𝒒 

and is determined from: 

𝒒 = 
𝑸

𝒎
              (kJ/kg)                                                                    (3-1) 

Sometimes it is desirable to know the rate of heat transfer (the 

amount of heat transferred per unit time) instead of the total heat 

transferred over some time 

interval (Fig. 3-5).The heat 

transfer rate is denoted 𝑸 , and 

has the unit kJ/s, which is 

equivalent to kW. 

 

 

Figure 3-4. During an adiabatic 

process, a system exchanges no 

heat with its surroundings. 

 

Figure 3-5. The relationships 

among  𝒒, 𝑸, and𝑸 . 
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The universally accepted sign convention for heat is as follows: 

Heat transfer to a system is positive, and heat transfer from a 

system is negative (Fig. 3-6). 

 

 

 

 

 

 

 

 

3-2. Work 

Work, like heat, is an energy interaction between a system and 

its surroundings. As mentioned earlier, energy can cross the 

boundary of a closed system in the form of heat or work. 

Therefore, if the energy crossing the boundary is not heat, it 

must be work (Fig. 3-7). 

 

 

 

 

 

 

 

Figure 3-6. Sign convention for 

heat: positive if to the system, 

negative if from the system. 

 

Figure 3-7. An energy 

interaction which is not 

heat is work. 
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Work is also a form of energy like heat and, therefore, has 

energy units such as kJ.The work done during a process 

between state 1 and 2 is denoted 𝑾12, or simply 𝑾. The work 

done per unit mass of the system is denoted 𝒘 and is defined 

as: 

𝒘 = 
𝑾

𝒎
       (kJ/kg)                                                                          (3-2) 

The work done per unit time is called power and denoted 

 𝑾  (Fig.3-8). The unit of power is kJ/s, or kW.  

 

 

 

 

 

 

 

 

 

 

 

         The production of work by a system is viewed as a 

desirable, positive effect and the consumption of work as an 

undesirable, negative effect. The sign convention for work 

adapted in this text reflects this philosophy: Work done by a 

system is positive, and work done on a system is negative 

(Fig.3-9). 

Figure 3-8. The relationships 

among 𝒘, 𝑾, and 𝑾 . 
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Heat and work are interactions between a system and its 

surroundings, and there are many similarities between the two: 

1. Both are recognized at the boundaries of the system as they 

cross them. That is, both heat and work are boundary 

phenomena. 

2. Systems possess energy, but not heat or work. That is, heat 

and work are transient phenomena. 

3. Both are associated with a process, not a state. Unlike 

properties, heat or work has no meaning at a state. 

4. Both are path functions (i.e., their magnitudes depend on the 

path followed during a process as well as the end states). 

 

Figure 3-9. Sign convention 

for heat and work. 
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Example 3-3. (3-4) 

A well-insulated electric oven is being heated through its 

heating element. If the entire oven, including the heating 

element, is taken to be the system, determine whether this is a 

heat or work interaction. 

Solution 

For this problem the interior surfaces of the oven form the 

system boundary, as shown in Fig. 3-13. The energy content of 

the oven obviously increases during this process, as evidence 

by a rise in temperature. This energy transfer to the oven is not 

caused by a temperature difference between the oven and the 

surrounding air. It is caused by negatively charged particles 

called electrons crossing the system boundary and thus doing 

work. Therefore, this is a work interaction. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-13. Schematic for 

Example 3-3. 
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Example 3-4. (3-5) 

Answer the equation in Example 3-3 if the system is taken as 

only the air in the oven without the heating element. 

Solution 

This time the system boundary will include the outer surface of 

the heating element and will not cut through it, as shown in Fig. 

3-14. Therefore, no electrons will be crossing the system 

boundary at any point. Instead, the energy generated in the 

interior of the heating element will be transferred to the air 

around it as a result of the temperature difference between the 

heating element and the air in the oven. Therefore, this is a heat 

transfer process. 

           For both cases, the amount of energy transfer to the air is 

the same. These two examples show that the same interaction 

can be heat or work depending on how the system is selected. 

 

 

 

 

 

 

 

 

 

 

 Figure 3-14. Schematic for 

Example 3-4. 
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Electrical Work. 

In an electric field, electrons in a wire move under the effect of 

electromotive forces, doing work. When 𝑵 electrons move 

through a potential difference 𝑽, the electrical work done is: 

𝑾e = 𝑽𝑵  (kJ) 

This can also be expressed in the rate form as: 

𝑾𝒆
  = 𝑽𝑰          (kW)                                                                        (3-3) 

Where 𝑾𝒆
  is the electrical power and 𝑰 is the number of 

electrons flowing per unit time, i.e., the current (Fig. 3-15). In 

general, both 𝑽 and 𝑰 vary with time, and the electrical work 

done during a time interval ∆t is expressed as: 

𝑾e =  𝑽𝑰 𝒅𝒕
𝟐

𝟏
       (kJ)                     (3-4) 

If both 𝑽 and 𝑰 remain constant 

during the time interval ∆t, this 

equation will reduce to: 

𝑾e = 𝑽𝑰∆t        (kJ)                         (3-5) 

 

 

 

 

3-4. Mechanical forms of work 

        In elementary mechanics, the work 𝑾 done by aconstant 

force 𝑭 on a body which is displaced distance 𝒔 in the direction 

of the force (Fig. 3-17) is given by: 

𝑾 = 𝑭𝒔       (kJ)                                                                              (3-6) 

Figure 3-15. Electrical power in 

terms of resistance 𝑹, current 

𝑰, and potential difference 𝑽. 
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If the force 𝑭 is not constant, 

the work done is obtained by 

adding (i.e., integrating) the 

differential amount of work 

(force times the differential 

displacement 𝒅𝒔): 

𝑾 =  𝑭 𝒅𝒔
𝟐

𝟏
            (kJ)           (3-7)  

 

       In many thermodynamic problems, mechanical work is the 

only form of work involved. It is associated with the movement 

of the boundary of a system or with the movement of the entire 

system as a whole. Some common forms of mechanical work 

are discussed below. 

1. Moving boundary work 

     One form of mechanical work frequently encountered in 

practice is associated with the expansion or compression of a 

gas in a piston-cylinder device. The expansion and compression 

work is often called moving boundary work, or simply boundary 

work (Fig. 3-19). 

 

 

 

 

 

 

 

Figure 3-17. The work done is 

proportional to the force applied (𝑭) 

and the distance traveled (𝒔). 

 

Figure 3-19. The work associated 

with a moving boundary is called 

boundary work. 
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Consider the gas enclosed in the piston-cylinder arrangement 

shown in Fig. 3-20. The initial pressure of the gas is 𝑷, the total 

volume is 𝑽 and the cross-sectional area of the piston is 𝑨. If the 

piston is allowed to move a distance 𝒅𝒔 in a quasi-equilibrium 

manner, the differential work done during this process is: 

𝜹𝑾𝒃 = 𝑭 𝒅𝒔 = 𝑷𝑨 𝒅𝒔 = 𝑷 𝒅𝑽                                                           (3-8) 

 

 

 

 

 

 

 

 

 

      The total boundary work done during the entire process as 

the piston moves is obtained by adding all the differential works 

from the initial state to the final state: 

𝑾𝒃 =  𝑷 𝒅𝑽
𝟐

𝟏
           (kJ)                                                                (3-9)  

That is, 𝑷 = ƒ(𝑽) showed be a available. Note that 𝑷 = ƒ(𝑽) is 

simply the equation of the process path on a 𝑷-𝑽 diagram. 

The quasi-equilibrium expansion process described above is 

shown on a 𝑷-𝑽 diagram in Fig.3-21. On this diagram, the 

differential area 𝒅𝑨 is equal to 𝑷 𝒅𝑽, which is the differential 

Figure 3-20. A gas dose a 

differential amount of work 

𝜹𝑾𝒃 as itforces the piston 

to move by differential 

amount 𝒅𝒔. 
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work. The total area 𝑨 under the process curve 1-2 is obtained 

by adding these differential areas: 

 

     Area = 𝑨 =  𝒅𝑨
𝟐

𝟏
  =   𝑷 𝒅𝑽

𝟐

𝟏
 

 

 

 

 

 

 

 

 

 

A comparison of this equation with Eq. 3-9 reveals that the area 

under the process curve on a 𝑷-𝑽 diagram is equal, in 

magnitude, to the work done during a quasi-equilibrium 

expansion or compression process of a closed system. (On the 

𝑷-𝒗 diagram, it represents the boundary work done per unit 

mass). 

A gas can follow several different paths as it expands from state 

1 to state 2. In general, each path will have a different area 

underneath it, and since this area represents the magnitude of 

the work, the work done will be different for each process (Fig.3-

22). This is expected since work is path function (i.e., it depends 

on the path followed as well as the end states).  

 

 

 

Figure 3-21. The area under 

the process curve on a 𝑷-

𝑽 diagram represents the 

boundary work. 
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The cycle shown in Fig. 3-23 produces a net work output 

because the work done by the system during expansion process 

(area under path 𝑨) is greater than the work done on the system 

during the compression part of the cycle (area under path 𝑩), 

and the difference between these two is the net work done 

during the cycle (the color area). 

       The use of the boundary 

work relation (Eq. 3-9) is not 

limited to the quasi-equilibrium 

processes of gas only. It can 

also be used for solids and 

liquids.  

 

 

 

Figure 3-22. The boundary work 

done during a process depends on 

the path followed as well as the end 

states. 

 

Figure 3-23. The net work done during 

a cycle is difference between the work 

done by the system and the work 

done on the system. 
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Example 3-6. (3-7) 

A rigid tank contains air at 500 kPa and 150℃. As a result of heat 

transfer to the surroundings, the temperature and pressure 

inside the tank drop to 65℃ and 400 kPa, respectively. Determine 

the boundary work done during this process.  

Solution 

A sketch of the system and 

the 𝑷-𝑽 diagram of the 

process are shown in Fig. 3-

24. Assuming the process to 

be quasi-equilibrium, the 

boundary work can be 

determined from Eq. 3-9: 

                             𝟎 

𝑾𝒃 =  𝑷 𝒅𝑽
𝟐

𝟏
 = 0 

 

 

This is expected since a rigid tank has a constant volume and 

𝒅𝑽 = 0 in the above equation. Therefore, there is no boundary 

done during this process. That is, the boundary work done 

during a constant-volume process is always zero. This is also 

evident from the 𝑷-𝑽 diagramof the process (the area under the 

process curve is zero). 

 

Example 3-7. (3-8) 

A frictionless piston-cylinder device contains 10 Ibm of water 

vapor at 60 psia and 320℉. Heat is now added to the steam until 

the temperature reaches 400℉.  If the piston is not attached to a 

Figure 3-24. Schematic and 𝑷-

𝑽 diagram for Example 3-6. 

 



 Lecturer: DrJafar Ghani Majeed Page 15 
 

shaft and its mass is constant, determine the work done by the 

steam during this process. 

Solution 

A sketch of the system and the 𝑷-𝑽 diagram of the process are 

shown in Fig. 3-25. Even though it is not explicitly stated, the 

pressure of the steam within the cylinder remains constant 

during this process since both the atmospheric pressure and 

the weight of the piston remain constant. Therefore, this is a 

constant-pressure process, and from Eq. 3-9:  

 

 

𝑾𝒃 =  𝑷 𝒅𝑽
𝟐

𝟏
 =  𝑷𝟎  𝒅𝑽

𝟐

𝟏
  =  𝑷𝟎 (𝑽𝟐 - 𝑽𝟏) 

or                 𝑾𝒃  = 𝒎𝑷𝟎(𝒗𝟐 - 𝒗𝟏)                                                  (3-10) 

since 𝑽 = 𝒎𝒗. From the superheated vapor table (Table A-6E), 

the specific volumes are determined to be 𝒗𝟏 = 7.485 ft3/lbm at 

state 1 (60 psia, 320℉) and 𝒗𝟐 = 8.353 ft3/lbm at state 2 (60 psia, 

400℉). Substituting these values yields: 

Figure 3-25. Schematic and 𝑷-𝑽 

diagram for Example 3-7. 
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𝑾𝒃 = (10 lbm)(60 psia) [ (8.353 -7.485) ft3/lbm) ]  
𝟏 𝐁𝐭𝐮

𝟓.𝟒𝟎𝟒 𝐩𝐬𝐢𝐚.𝐟𝐭𝟑
  

      = 96.4 Btu  

The positive sign indicates that the work is done by the system. 

That is, the steam used 96.4 Btu of its energy to do this work. 

The magnitude of this work could also be determined by 

calculating the area under the process curve on the 𝑷-𝑽 

diagram, which is 𝑷𝟎∆𝑽 for this case. 

 

Example 3-8. (3-9) 

A piston-cylinder device initially contains 0.4 m3 of air at 100 kPa 

and 80℃. The air is now compressed to 0.1 m3 in such a way that 

the temperature inside the cylinder remains constant. Determine 

the work done during this process. 

Solution 

A sketch of the system and the 𝑷-𝑽 diagram of the process are 

shown in Fig. 3-26. At the specified conditions, air can be 

considered to be an ideal gas since it is at a high temperature 

and low pressure relative to its critical-point values (𝑻cr = –147℃, 

𝑷cr = 3390 kPa for nitrogen, the main constituent of air). For an 

ideal gas at constant temperature 𝑻0, 

 

 

 

  

 

 Figure 3-26. Schematic and 𝑷-

𝑽 diagram for Example 3-8. 
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𝑷𝑽 = m𝑹𝑻0 = 𝑪         or         𝑷 = 
𝑪

𝑽
 

where 𝑪 is a constant. Substituting this into Eq. 3-9, we have: 

𝑾𝒃 =  𝑷 𝒅𝑽
𝟐

𝟏
 =  

𝑪
𝑽𝒅𝑽

𝟐

𝟏
 = 𝑪 

𝒅𝑽
𝑽

𝟐

𝟏
 = 𝑪 𝐥𝐧

𝑽𝟐
𝑽𝟏

= 𝑷1𝑽1 𝐥𝐧
𝑽𝟐
𝑽𝟏

            (3-11) 

In the above equation, 𝑷1𝑽1 can be replace by 𝑷2𝑽2 or  𝒎𝑹𝑻0. 

Also, 𝑽2/ 𝑽1 can be replaced by 𝑷2/ 𝑷1 for this case since 𝑷1𝑽1 

= 𝑷2𝑽2. Substituting the numerical values into the above 

equation yields: 

𝑾𝒃 = (100 kPa)(0.4 m3) 𝐥𝐧
𝐨.𝟏

𝟎.𝟒
  

𝟏𝐤𝐉

𝟏𝐤𝐏𝐚.𝐦𝟑 = – 55.45 kJ  

The negative sign indicates that this work is done on the 

system, which is always the case for compression process. 

 

Example 3-9.  

During expansion and compression processes of real gases, 

pressure and volume are often related by 𝑷𝑽n = 𝑪, where 𝒏 and 𝑪 

are constants. Aprocess of this kind is called a polytropic 

process. Develop a general expression for the work done during 

a polytropic process. 

Solution 

A sketch of the system and the 𝑷-𝑽 diagram of the process are 

shown in Fig. 3-27. The pressure for a polytropic process can be 

expressed as: 

𝑷𝑽n = 𝑪 

Substitution this relation into Eq. 3-9, we obtain: 
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𝑾𝒃 = 𝑷𝒅𝑽
𝟐

𝟏
 = 𝑪𝑽−𝒏 𝒅𝑽

𝟐

𝟏
 =𝑪

𝑽𝟐
−𝒏+𝟏

− 𝑽𝟏
−𝒏+𝟏

−𝒏+𝟏  = 
𝑷𝟐 𝑽𝟐−𝑷𝟏 𝑽𝟏

𝟏−𝒏    (3-12) 

Since 𝑪 = 𝑷1𝑽𝟏
𝒏  = 𝑷2𝑽𝟐

𝒏. For an ideal gas (𝑷𝑽 = 𝒎𝑹𝑻), this equation 

can also be written as: 

𝑾𝒃 = 
𝒎𝑹( 𝑻𝟐−𝑻𝟏 )

𝟏−𝒏
     (kJ)                                                          (3-13) 

The special case of 𝒏 = 1 is equivalent to the isothermal process 

discussed in the previous example. 

2 Gravitational work 

The gravitational work can be defined as the work done 

by or against a gravitational force field. In a gravitational 

field, the force acting on a body is:  

                      𝑭 = 𝒎𝒈 

Figure. 3-27. Schematic and 𝑷-𝑽 diagram 

for Example 3-9. 
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Where 𝒎 is mass of thebody and 𝒈 is the acceleration of 

gravity which is assumed to be constant. Then the work 

required to raise this body from level 𝒛1 to level 𝒛2. 

       𝑾g =  𝑭𝒅𝒛
𝟐

𝟏
 = 𝒎𝒈 𝒅𝒛

𝟐

𝟏
 = 𝒎𝒈 (𝒛2 – 𝒛1)       (kJ)              (3-14)  

𝐰𝐡𝐞𝐫𝐞 𝒛2 – 𝒛1 is the vertical distance traveled (Fig. 3-28). This 

expression is easily recognized as the change in potential 

energy. We conclude from Eq. 3-14 that the gravitational work 

depends on the end states only and is independent of the 

path followed. 

 

 

 

 

 

 

 

 

Example 3-10.  

Determine the work done by a person to lift a 50-lbm suitcase 

shown in Fig.3-29 by 1 ft. 

Solution 

By assuming a standard gravitation and using Eq. 3-14, the work 

done is: 

          𝑾g = 𝒎𝒈 (𝒛2 – 𝒛1)        

𝑾g = (50 lbm)(32.174 ft/s2)(1 ft)  
𝟏 𝐁𝐭𝐮

𝟐𝟓.𝟎𝟑𝟕 𝐟𝐭𝟐/𝐬𝟐
  = 0.064 Btu 

Figure 3-28. Vehicles required 

more power (gravitational work 

per unit time) as they climb a hill. 
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That is, 0.064 Btu of work is needed to perform this task. The 

potential energy of the system (the suitcase) increases by 0.064 

Btu during this process. 

 

 

 

 

 

 

 

 

3 Accelerational work 

     The work associated with a change in velocity of a 

system is defined as the accelerational work. The 

accelerational work required to accelerate a body of mass 𝒎 

from an initial velocity of 𝐕1 to final velocity 𝐕2 (Fig. 3-30) is 

determined from the definition of acceleration and Newton’s 

second law: 

 
𝑭 = 𝒎𝒂

𝒂 =  
𝒅𝐕

𝒅𝒕

 𝑭 = 𝒎
𝒅𝐕

𝒅𝒕
 

The differential displacement 𝒅𝒔 is related to velocity 𝐕 

by:       𝐕 = 
  𝒅𝒔
𝒅𝒕

                𝒅𝒔 = 𝐕 𝒅𝒕 

Substituting the 𝑭 and 𝒅𝒔 relations into the expression 

(Eq. 3-7), we obtain: 

Figure 3-29. Schematic for 

Example 3-10. 
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𝑾a =  𝑭𝒅𝒔
𝟐

𝟏
 =   𝒎

𝒅𝑽

𝒅𝒕
 

𝟐

𝟏
 (𝐕𝒅𝒕) 

      = 𝒎 𝐕 𝒅𝐕
𝟐

𝟏
 = 

𝟏

𝟐
𝒎 (𝐕𝟐

𝟐 - 𝐕𝟏
𝟐)          (kJ)                     (3-15) 

The work done to accelerate a body is independent of 

path and is equivalent to the 

change in the kinetic energy 

of the body. 

     The sign of accelerational 

work is determined by 

inspection: positive if done 

by the system and negative if 

done on the system. 

 

 

 

Example 3-11.  

Determine the power required to accelerate a 900kg car shown 

in Fig. 3-31 from rest to a velocity of 80 km/h in 20 s on a level 

road. 

 

 

 

 

 

 

Figure 3-30. Vehicles require 

more power (accelerational 

work per unit time) as they 

accelerate. 

Figure 3-31. Schematic for 

Example 3-11. 
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Solution 

The accelerational work is determined from Eq. 3-15 to be: 

𝑾a = 
𝟏
𝟐
𝒎(𝐕𝟐

𝟐 - 𝐕𝟏
𝟐)           

𝑾a = 
𝟏
𝟐
 (900 kg) [ (

𝟖𝟎𝟎𝟎𝟎 𝐦

𝟑𝟔𝟎𝟎 𝐬
)𝟐– 0

2
 ]  

𝟏 𝐤𝐉

𝟏𝟎𝟎𝟎 𝐤𝐠.𝐦𝟐/𝐬𝟐
  

      = 222.2 kJ 

The average power is determined from: 

𝑾𝒂
  = 

𝑾𝐚
∆𝒕

 = 
𝟐𝟐𝟐.𝟐 𝐤𝐉

𝟐𝟎 𝐬
= 11.1 kW    (or 14.9 hp) 

Where, kW = 1.341 hp 

 

4 Shaft work 

Energy transmission with a rotating shaft is very common in 

engineering practice (Fig. 3-32). Often the torque 𝝉 applied 

to the shaft is constant, which means that the force 𝑭 

applied is also constant. For a specified constant torque, 

the work done during 𝒏 revolutions is determined as 

follows: A force 𝑭 acting through a moment arm 𝒓 generates 

a torque 𝝉 (Fig. 3-33) which is determined from: 

𝝉 = 𝑭𝒓                𝑭 = 
𝝉
 𝒓 

This force acts through a distance 𝒔 which is related to the 

radius 𝒓 by: 

𝒔 = (2𝝅𝒓) 𝒏 

Then the shaft work is determined from Eq. 3-6: 
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𝑾sh = 𝑭𝒔 =  
𝝉
𝒓
 (2𝝅𝒓𝒏) = 2𝝅𝒏𝝉       (kJ)                               (3-16) 

The power transmitted through the shat is the work done 

per unit time, which can be expressed as: 

𝑾 
sh = 2𝝅𝒏 𝝉          (kW)                                                        (3-17) 

Where 𝒏  is the number of revolutions per unit time. 

       The sign of the shaft work is also determined by 

inspection: positive if done by the system and negative if 

done on the system. 

 

 

 

 

Example 3-12.  

Determine the power transmitted through the shaft of a car when 

the torque applied is 200 N.m and the shaft rotates at a rate of 

4000 revolutions per minute (rpm). 

 

Figure 3-32. Energy transmission 

through rotating shafts is 

commonly encountered in practice  

 

Figure 3-33. Shaft work is 

proportional to the torque applied 

and the number of revolutions of 

the shaft. 
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Solution 

A sketch of the car is given in 

Fig. 3-34. The shaft power is 

determined from Eq. 3-17: 

 

 

 

 

 

𝑾𝐬𝐡  = 2𝝅𝒏 𝝉 = (2 𝝅)(4000 
𝟏

𝐦𝐢𝐧
)(200N.m) 

𝟏 𝐦𝐢𝐧

𝟔𝟎 𝐬
  

𝟏 𝐤𝐉

𝟏𝟎𝟎𝟎 𝐍.𝐦
  

        = 83.7 kW    (or 112.2 hp) 

 

5 Spring work 

It is common knowledge that when a force is applied on a 

spring, the length of the spring changes (Fig. 3-35). When 

the length of the spring changes by a differential amount 

𝒅𝒙 under the influence of force 𝑭, the work done is: 

 𝜹𝑾spring = 𝑭                                                                (3-18) 

For liner elastic springs, the displacement 𝒙 is proportional to 

the force 𝑭 applied (Fig. 3-36). That is, 

𝑭 = 𝒌𝒙           (kN)                                                                        (3-19) 

Where, 

𝒌 = spring constant (kN/m), 𝒙 = displacement of the spring (m) 

𝒙 = 0 when 𝑭 = 0 

Figure 3-34. Schematic for 

Example 3-12. 
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Substituting Eq. 3-18 and integrating yield: 

𝑾spring  = 
𝟏

𝟐
𝒌( 𝒙𝟐

𝟐- 𝒙𝟏
𝟐)                                                                    (3-20) 

Where, 

𝒙1 = initial displacement of the spring 

𝒙2 = final displacement of the spring 

 

 

 

 

 

 

 

 

 

 

 

 

Example 3-13.  

A piston-cylinder device contains 0.05 m3 of a gas initially at 

200kPa. At this state a linear spring which has a spring constant 

of 150 kN/m is touching the piston but exerting no force on it. 

Now heat is transferred to the gas, causing the piston to rise and 

to compress the spring until the volume inside the cylinder 

doubles. If the cross-sectional area of the piston is 0.25 m2, 

Figure 3-35. Elongation of a 

spring under the influence of 

a force. 

 

 

Figure 3-36. The displacement 

of a linear spring doubles 

when the force is doubled. 
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determine (𝒂) the final pressure inside the cylinder, (𝒃) the total 

work done by the gas, and (𝒄) the fraction of this work done 

against the spring to compress it. 

Solution 

(a) A sketch of the system 

and the 𝑷-𝑽 diagram of the 

process are shown in Fig. 

3-37. The enclosed 

volume at the final state 

is:  

𝑽2 = 2 𝑽1 = (2)(0.05 m3) 

     = 0.1 m3 

Then the displacement of 

the piston (and the spring) 

becomes: 

𝒙 = 
∆𝑽

𝑨
 = 

 𝟎.𝟏−𝟎.𝟎𝟓 𝐦𝟑

𝟎.𝟐𝟓 𝐦𝟐  = 0.2 m 

The force applied by the linear spring at the final state is 

determined from Eq. 3-19 to be: 

𝑭 = 𝒌𝒙 = (150 kN/m)(0.2 m) = 30 kN 

The additional pressure applied by the spring on the gas at this 

state is: 

𝑷 = 
𝑭

𝑨
 = 

𝟑𝟎 𝐤𝐍

𝟎.𝟐𝟓 𝐦𝟐 = 120 kPa 

Under the effect of the spring, the pressure rises linearly from 

200 kPa to: 

Final pressure = (200 + 120) kPa = 320 kPa 

Figure 3-37. Schematic and 𝑷-𝑽 

diagram for Example 3-13. 

 



 Lecturer: DrJafar Ghani Majeed Page 27 
 

(𝒃) From Fig. 3-37, the area under the process curve is 

determined to be: 

 𝑾  = area = 
 𝟐𝟎𝟎+𝟑𝟐𝟎 𝐤𝐏𝐚

𝟐
 [(0.1 – 0.05) 𝐦𝟑]  

𝟏 𝐤𝐉

𝟏 𝐤𝐏𝐚.𝐦𝟑  = 13 kJ 

The sign of the work is positive, mean that work is done by the 

system. 

(𝒄) The work represented by the rectangular area (region I) is 

done against the piston and the atmosphere, and the work 

represent by the triangular area (region II) is done against the 

spring. Thus: 

𝑾spring = 
𝟏

𝟐
 [(320 – 200) kPa] (0.05 m3)  

𝟏 𝐤𝐉

𝟏 𝐤𝐏𝐚.𝐦𝟑 = 3 kJ 

or this result could also be obtained from Eq. 3-20: 

𝑾spring  = 
𝟏

𝟐
𝒌( 𝒙𝟐

𝟐- 𝒙𝟏
𝟐)     

            = 
𝟏
𝟐 (150 kN/m)[(0.2 m)

2
– 0

2
]  

𝟏 𝐤𝐉

𝟏 𝐤𝐍.𝐦
 = 3 kJ 

3-5. The first law of thermodynamics 

The first law of thermodynamics, also known as the 

conservation of energy principle. Based on experimental 

observations, the first law of thermodynamics states that energy 

can be neither created nor destroyed; it can only change forms. 

        We all know that a rock at some elevation possesses some 

potential energy, and part of this potential energy is converted 

to kinetic energy as the rock falls (Fig. 3-39). 

        Consider first some processes that involve heat transfer but 

no work interactions. As a result of heat transfer to the potato as 

shown in (Fig. 3-40), the energy of the potato will increase. If we 
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disregard any mass transfer (moisture loss from the potato), the 

increase in the total energy of the potato becomes equal to the 

amount of heat transfer. Therefore, the conservation of energy 

principle for this case can be expressed as: 

𝑸 = ∆𝑬. 

 

 

 

 

 

 

 

 

 

 

Consider the heating of water in a 

pan on top of a range (Fig. 3-41). If 

15kJ of heat is transferred to the 

water from the heating element and 3 

kJ of it is lost from the water to the 

surrounding air, the increase in 

energy of the water will be equal to 

the net heat transfer to water, which 

is 12 kJ. That is: 

𝑸 = 𝑸net = ∆𝑬 

 

Figure 3-39. Energy cannot 

be created or destroyed; it 

can only change forms. 

Figure 3-40. The increase in the 

energy of a potato in an oven is 

equal to the amount of heat 

transferred to it. 

Figure 3-41. In the absence of 

any work interactions, energy 

change of a system is equal 

to the net heat transfer. 
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The above conclusions can be summarized as follows: In the 

absence of any work interactions between a system and its 

surroundings, the amount of net heat transfer is equal to the 

change in energy of a closed system. That is: 

𝑸 = ∆𝑬           when  𝑾 = 0                                                          (3-21) 

Now consider a well-insulated 

(i.e., adiabatic) room heated by 

an electric heater as our system 

(Fig.3-42). The conservation of 

energy principle dictates that the 

electrical work done on the 

system must equal the increase 

in energy of the system. That is: 

– 𝑾e = ∆𝑬.     when  𝑸 = 0 

The negative sign is due to the 

Sign convention that work done 

on the system is negative. 

       Now let us replace the electric 

heater with a paddle wheel (Fig. 3-

43). Again since there is no heat 

interaction between the system 

and its surroundings (𝑸 = 0), the 

paddle-wheel work done on the 

system must show up as an 

increase in the energy of the 

system. That is: 

      – 𝑾pw = ∆𝑬. 

 

 

Figure 3-42. The work (electrical) 

done on an adiabatic system is 

equal to the increase in the 

energy of the system. 

 

Figure 3-43. The work (shaft) done on 

an adiabatic system is equal to the 

increase in the energy of the system. 
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Many of you have probably noticed that the temperature of air 

rises when it is compressed (Fig. 3-44). This is because energy 

is added to the air in the form of boundary work. In the absence 

of any heat transfer (𝑸 = 0), the entire boundary work will be 

stored in the air as part of its total energy. The conservation of 

energy principle again requires that: 

– 𝑾b  = ∆𝑬. 

      It is clear from the foregoing 

examples that for adiabatic processes, 

the amount of work done is equal to 

the change in the energy of a closed 

system. That is: 

– 𝑾 = ∆𝑬           when     𝑸 = 0        (3-22) 

 

 

 

 

 

To generalize our conclusions, the first law of thermodynamics, 

or the conservation of energy principle for a closed system or a 

fixed mass, may be expressed as follows: 

 
𝐍𝐞𝐭 𝐞𝐧𝐞𝐫𝐠𝐲 𝐭𝐚𝐧𝐬𝐟𝐞𝐫

𝐭𝐨  𝐨𝐫 𝐟𝐫𝐨𝐦 𝐭𝐡𝐞 𝐬𝐲𝐬𝐭𝐞𝐦
𝐚𝐬 𝐡𝐞𝐚𝐭 𝐚𝐧𝐝 𝐰𝐨𝐫𝐤

  =  
𝐍𝐞𝐭 𝐢𝐧𝐜𝐞𝐚𝐬𝐞  𝐨𝐫 𝐝𝐞𝐜𝐫𝐞𝐚𝐬𝐞 

𝐢𝐧 𝐭𝐡𝐞 𝐭𝐨𝐭𝐚𝐥 𝐞𝐧𝐞𝐫𝐠𝐲
𝐨𝐟 𝐭𝐡𝐞 𝐬𝐲𝐬𝐭𝐞𝐦

  

or                                      𝑸 – 𝑾 = ∆𝑬                                                    (3-23) 

where  

𝑸 = net heat transfer across system boundaries (= 𝑸𝐢𝐧 –   𝑸𝐨𝐮𝐭) 

Figure 3-44. The work (boundary) 

done on an adiabatic system is 

equal to the increase in the 

energy of the system. 

 



 Lecturer: DrJafar Ghani Majeed Page 31 
 

 𝑾 = net work done in all forms (=  𝑾𝐨𝐮𝐭–  𝑾𝐢𝐧) 

∆𝑬 = net change in total energy of system,  𝑬2 – 𝑬1 

The total energy 𝑬 of a system is considered to consist of three 

parts: internal energy 𝑼, kinetic energy KE, and potential energy 

PE. 

Then the change in total energy of a system during a process 

can be expressed: 

∆𝑬 = ∆𝑼 + ∆𝐊𝐄 + ∆𝐏𝐄          (kJ)                                                  (3-24) 

Substituting this relation into Eq. 3-23, we obtain: 

𝑸 – 𝑾 = ∆𝑼 + ∆𝐊𝐄 + ∆𝐏𝐄        (kJ)                                               (3-25) 

Where ∆𝑼 = 𝒎(𝒖2 – 𝒖1) 

∆𝐊𝐄 = 
𝟏

𝟐
𝒎(𝑽𝟐

𝟐–𝑽𝟏
𝟐) 

∆𝐏𝐄 = 𝒎𝒈(𝒛2 – 𝒛1) 

 

      Most closed systems encountered 

in practice are stationary, i.e., they do 

not involve any changes in their 

velocity or the elevation of their center     

of gravity during a process (Fig. 3-46). 

Thus for stationary closed systems, 

the change in kinetic and potential 

energies are negligible (that  

∆𝐊𝐄 = ∆𝐏𝐄 = 0), and the first-law 

relation reduces to: 

𝑸 – 𝑾 = ∆𝑼                (kJ)             (3-26) 

 

Figure 3-46. For stationary 

systems, ∆𝐊𝐄 = ∆𝐏𝐄 = 0; thus 

∆𝑬 = ∆𝑼. 
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Sometimes it is convenient to consider the work term in two 

parts: 𝑸 – 𝑾other, where 𝑾other represents all forms of work except 

the boundary work. The first law takes the following form: 

𝑸 – 𝑾other – 𝑾b = ∆𝑬         (kJ)                                                    (3-27) 

 

Other forms of the first-law relation 

The first-law relation for closed systems can be written in 

various forms (Fig. 3-47). Dividing Eq. 3-23 by the mass of the 

system gives: 

𝒒 – 𝒘 = ∆𝒆          (kJ/kg)                                                              (3-28) 

The rate form of the first-law is obtained by dividing Eq. 3-23 by 

the time interval ∆𝒕 and taking the limit as ∆𝒕          0. It yields: 

𝑸  – 𝑾  = 
𝒅𝑬

𝒅𝒕
    (kW)                                                                      (3-29) 

Where, 𝑸  is the rate of net heat transfer, 𝑾  is the power, and 

𝒅𝑬 𝒅𝒕  is the rate of change of total energy. 

Equation 3-23 can be expressed in the differential form as: 

                𝜹𝑸 – 𝜹𝑾 = 𝒅𝑬           (kJ)                                                 (3-30) 

or            𝜹𝒒 – 𝜹𝒘 = 𝒅𝒆           (kJ/kg)                                            (3-31) 

 

 

 

 

 

 

Figure 3-47. Various forms of 

the first-law relation for 

closed systems. 
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      For a cyclic process, the initial and final states are identical, 

and therefore ∆𝑬 = 𝑬2 – 𝑬1 = 0. Then the first-law relation for a 

cycle simplifies to: 

                       𝑸 – 𝑾 = 0      (kJ)                                                  (3-32) 

That is, the net heat transfer and the net work done during a 

cycle must be equal (Fig. 3-48). 

 

Example 3-14.  

A rigid tank contains a hot fluid which is cooled while being 

stirred by a paddle wheel. Initially, the internal energy of the fluid 

is 800 kJ. During the cooling process, the fluid loses 500 kJ of 

heat, and the paddle wheel does 100 kJ of work on the fluid. 

Determine the final internal energy of the fluid. Neglect the 

energy stored in the paddle wheel. 

 

Solution 

We choose the fluid in the tank as our system. The system 

boundaries are indicated in Fig. 3-49. By applying the 

conservation of energy principle as given by Eq. 3-25 to this 

process, 𝑼2 is determined to be: 

Figure 3-48. For a cycle ∆𝑬 

= 0, thus 𝑸 = 𝑾. 

 



 Lecturer: DrJafar Ghani Majeed Page 34 
 

                                     𝟎          𝟎 

𝑸 – 𝑾 = ∆𝑼 + ∆𝐊𝐄 + ∆𝐏𝐄 

           = ∆𝑼 = 𝑼2 – 𝑼1 

– 500 kJ – (– 100 kJ) = 𝑼2 – 800 kJ 

                                       𝑼2 = 400 kJ  

 

3-6. A systematic approach to problem solving 

Thermodynamic problems, 

particularly the complicated 

ones, also require a systematic 

approach. By using a step-by-

step approach, an engineer can 

solve a series of simple 

problems instead of one large, 

formidable problem (Fig. 3-50). 

The proper approach to solving 

thermodynamic problems is 

illustrated below with the help of 

a sample problem. 

 

 

 

Sample problem 

A 0.1 m3 rigid tank contains steam initially at 500 kPa and 200℃. 

The steam is now allowed to cool until its temperature drops to 

50℃. Determine the amount of heat transfer during this process 

and the final pressure in the tank. 

Figure 3-49. Schematic for 

Example 3-14. 

 

Figure 3-50. A step-by-step 

approach can greatly simplify 

problem solving. 
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Step 1: Draw a sketch and identify the system (Fig. 3-51): 

 

 

 

 

 

 

 

 

Step 2: List the given information on the sketch (Fig. 3.52): 

 

 

 

 

 

 

 

Step 3: Check for special processes (Fig. 3-53): 

In our case, both the temperature and the 

pressure vary but the specific volume 

remains constant since rigid tanks have a 

fixed volume (𝑽 = constant), and the mass 

is fixed (𝒎 = constant). 

 

Figure 3-51. Draw a sketch 

of the system and system 

boundaries. 

 

Figure 3-52. List the given 

information on the sketch. 

 

Figure 3-53. Look for 

simplifications. 
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Step 4: State any assumptions (Fig. 3-54): 

The system in our case can be 

assumed to be stationary since 

there is no indication to the 

contrary. Thus the changes in 

kinetic and potential energies 

can be neglected. 

 

 

 

Step 5: Apply the conservation equations (Fig. 3-55): 

 

 

 

 

 

 

 

Step 6: Draw a process diagram (Fig. 3-56): 

Process diagrams, such as the 𝑷-𝒗 

or 𝑻-𝒗 diagrams, are extremely 

helpful in visualizing the initial and 

final states of a system and the path 

of the process. 

 

Figure 3-54. Make realistic 

assumptions, if necessary. 

 

Figure 3-55. Apply relevant 

conservation equations 

and simplify them. 

Figure 3-56. Show the 

process on a property 

diagram. 
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Step 7: Determine the required properties and unknowns (Fig. 3-

57): 

Steam exists as a superheated vapor at the state 1 since the 

temperature is greater the saturation temperature a the given 

pressure [that is, 200℃ > 𝑻sat @ 500 kPa  = 151.9℃ (Table A-5)]. 

  

 

 

Example 3-15.  

A piston-cylinder device contains 25 g of saturated water vapor 

which is maintained at a constant pressure of 300 kPa. A 

resistance heater within the cylinder is turned on and passes a 

current of 0.2 A for 5 min from a 120 V source. AT the same time, 

a heat loss of 307 kJ occurs. (𝒂) Show that for a closed system 

the boundary work 𝑾b and the change in internal energy ∆𝑼 in 

the first-law relation can be combined into one term, ∆𝑯, for a 

Figure 3-57. Determine the required 

properties, and solve the problem. 

 

(Table A-4) 

 

(Table A-4) 

 
 

(Table A-6) 

 
 

= 12.349 kPa 

kkkkkkPakP

a 

 
 

(Table A-6) 

 
 

 = – 553.4 kJ 
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constant-pressure process. (𝒃) determine the final temperature 

of the steam.  

Solution 

 

 

 

 

 

 

 

 

 

(𝒂) Neglecting the changes in kinetic and potential energies and 

expressing the work as the sum of boundary and other forms of 

work, Eq.3-25 simplifies to: 

                                      𝟎          𝟎 

𝑸 – 𝑾 = ∆𝑼 + ∆𝐊𝐄 + ∆𝐏𝐄        when   𝑾 = 𝑾other + 𝑾b   then: 

𝑸 – 𝑾other – 𝑾b =   ∆𝑼  = 𝑼2 – 𝑼1 

For a constant-pressure process, the boundary work is given by 

Eq. 3-10 as:  

𝑾b = 𝑷0(𝑽2 – 𝑽1). Substituting this into the above relation gives: 

𝑸 – 𝑾other – 𝑷0(𝑽2 – 𝑽1) = 𝑼2 – 𝑼1 

But  

𝑷0 = 𝑷2 = 𝑷1             𝑸 – 𝑾other = (𝑼2 + 𝑷2 𝑽2) – (𝑼1 + 𝑷1 𝑽1)  

Figure 3-58. Schematic and  

diagram for Example 3-15. 
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Also 𝑯 = 𝑼 + 𝑷𝑽, and thus: 

𝑸 – 𝑾other = 𝑯2 – 𝑯1           (kJ)                                                    (3-33)   

which is the desired relation (Fig. 3-59): 

 

 

 

 

 

 

 

 

 

(𝒃) For our case, the only other form of work is the electrical 

work which, which can be determined from Eq. 3-5: 

𝑾e = 𝑽𝑰∆𝒕 = (120 V)(0.2 A)(300 s)  
𝟏 𝐤𝐉

𝟏𝟎𝟎𝟎 𝐕𝐀.𝐬
  = 7.2 kJ 

State 1: 
 𝑷𝟏 = 𝟑𝟎𝟎 𝐤𝐏𝐚

𝐬𝐚𝐭. 𝐯𝐚𝐩𝐨𝐫
 𝒉1 = 𝒉g @ 300KPa = 2725.3 kJ/kg    (Table A-5) 

The enthalpy at the final state can be determined from the 

conservation of energy relation for closed systems undergoing a 

constant-pressure process (Eq. 3-33): 

                    𝑸 – 𝑾e = 𝒎(𝒉2 – 𝒉1)      

– 3.7 kJ – (–7.2 kJ) = (0.025 kg)( 𝒉2 – 2725.3 kJ/kg) 

                            𝒉2 = 2865.3 kJ/kg 

Figure 3-59.For a closed 

system undergoing a quasi-

equilibrium 𝑷 = constant 

process, ∆𝑼 + 𝑾b = ∆𝑯 
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𝐬𝐢𝐧𝐞  𝒉2 > 𝒉1, the state 2 is superheated water 

State 2: 
𝑷𝟐 = 𝟑𝟎𝟎 𝐤𝐏𝐚

 𝒉𝟐 = 𝟐𝟖𝟔𝟓.𝟑 𝐤𝐉/𝐤𝐠
  𝑻2 = 200℃        (Table A- 6) 

 Example 3-16. 

𝐀 𝐫𝐢𝐠𝐢𝐝 𝐭𝐚𝐧𝐤 𝐰𝐢𝐭𝐡 𝐚 𝐯𝐨𝐥𝐮𝐦𝐞 of 3 ft3 is initially filled with 

refrigerant-12 at 120 psia and 140℉. The refrigerant is now 

cooled to 20℉. Determine (a) the mass of the refrigerant, (b) the 

final pressure in the tank, and (c) the heat transferred from the 

refrigerant. 

Solution. 

A sketch of the system and the 𝑻-𝒗 diagram of the process are 

given in Fig. 3-60.  

(a) To find the mass, we need to know the specific volume of the 

refrigerant at the initial state, which is determined from Table A-

13E:  

State 1:                𝑷1 =  120 psia       𝒗𝟏= 0.389 ft3/Ibm 

                           𝑻1   = 140℉            𝒖1 = 86.098 Btu/Ibm 

Thus,              m = 
𝑽

𝒗𝟏
 = 

𝟑 𝐟𝐭𝟑

𝟎.𝟑𝟖𝟗 𝐟𝐭𝟑/𝐈𝐛𝐦
 = 7.71 Ibm 

(𝒃) This is a constant-volume process, and therefore 𝒗2 = 𝒗1 = 

0.389 ft3/Ibm. 

At 20℉:  

              𝒗f = 0.01130 ft3/Ibm         𝒖f = 12.79 Btu/Ibm 

              𝒗g = 1.0988 ft3/Ibm          𝒖g = 72.12 But/Ibm 

           

(Table A-11E) 
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The refrigerant is a saturated liquid-vapor mixture at the final 

state since 𝒗f <  𝒗2 < 𝒗g. Therefore, the pressure must be the 

saturation pressure at 20℉: 

                 𝑷2 = 𝑷sat @ 20F  = 35.736 psia        (Table A-11E)  

(𝒄) Assuming ∆𝐊𝐄 = ∆𝐏𝐄 = 0 and realizing that there are no 

boundary or other forms of work interactions, we see that the 

first-law relation (Eq. 3-25) simplifies to: 

                                𝟎                   𝟎          𝟎 

                    𝑸 – 𝑾 = ∆𝑼 + ∆𝐊𝐄 + ∆𝐏𝐄  

                           𝑸 = ∆𝑼 = 𝒎(𝒖2 – 𝒖1) 

To determine 𝒖2, we first need to know the quality x2 at the final 

state. It is determined from: 

                  x2 = 
𝒗𝟐− 𝒗𝒇

𝒗𝒇𝒈
 = 

[ 𝟎.𝟑𝟖𝟗−𝟎.𝟎𝟏𝟏𝟑 𝐦𝟑/𝐤𝐠]

[ 𝟏.𝟎𝟗𝟖𝟖−𝟎.𝟎𝟏𝟏𝟑 𝐦𝟑/𝐤𝐠]
  = 0.348     

 Figure 3-60. Schematic and 𝑻-𝒗 diagram 

for Example 3-16. 

 



 Lecturer: DrJafar Ghani Majeed Page 42 
 

That is, 34.8 percent of the refrigerant is in the vapor form at the 

final state. Then, 

                     𝒖2 = 𝒖f + x2𝒖fg 

                         = 12.79 Btu/Ibm + (0.348)[(72.12 – 12.79) Btu/Ibm] 

                         = 33.44 Btu/Ibm 

Finally, substituting these values into the first-law relation will 

give us the heat transfer: 

                     𝑸 = (7.71 Ibm)[(33.44 – 86.098) Btu/Ibm] 

                         = – 406.0 Btu 

 

3-7. Specific heats 

We know from experience that it takes different amounts of 

energy to raise the temperature of identical masses of different 

substances by one degree (Fig. 3-62). Therefore, it is desirable 

to have a property that will enable us to compare the energy 

storage capability of various substances. This property is the 

specific heat. 

      The specific heat is defined as 

the energy required to raise the 

temperature of a unit mass of a 

substance by one degree (Fig. 3-

63). In thermodynamics, we are 

interested in two kinds of specific 

heats: specific heat at constant 

volume 𝑪𝒗 and specific heat at 

costant pressure 𝑪𝒑. 

 

 

Figure 3-62. It takes different 

amounts of energy to raise the 

temperature of different 

substances by the same amount. 
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The specific heat at constant pressure 𝑪𝒑 is always greater than 

𝑪𝒗 because at constant pressure 

the system is allowed to expand 

and the energy for this expansion 

work must also be supplied to the 

system as shown in (Fig. 3-64). 

      From the definition of 𝑪𝒗, this 

energy must be equal to 𝑪𝒗 𝒅𝑻, 

where 𝒅𝑻 is the differential change 

in temperature. Thus, 

   𝑪𝒗 𝒅𝑻 = 𝒅𝒖      at constant volume 

        𝑪𝒗 =  
𝝏𝒖

𝝏𝑻
 
𝒗

                      (3-34) 

Similarly, an expression for 

the specific heat at constant 

pressure 𝑪𝒑 can be obtained 

by considering a constant-

pressure process (𝒘b + ∆𝒖 = 

∆𝒉). 

It yields 

     𝑪𝒑 =  
𝝏𝒉

𝝏𝑻
 
𝒑
                (3-35) 

A common unit for specific 

heats is: 

     kJ/(kg.℃)    or      kJ/(kg.K),  

these two units are identical  

since  ∆𝑻 (℃) = ∆𝑻 (𝐊) 

 

Figure 3-63. Specific heat is 

the energy required to raise 

the temperature of a unit 

mass of a substance by one 

degree in a specific way. 

 

Figure 3-64. Constant-volume 

and constant-pressure specific 

heats 𝑪𝒗 and 𝑪𝒑 (values given 

are for helium gas). 
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Equations 3-34 and 3-35 are the defining equations for 𝑪𝒗 and 

𝑪𝒑, and their interpretation is given in Fig. 3-65. 

The energy required to raise the 

temperatures of substance by 

one degree will be different at 

different temperatures and 

pressures (Fig. 3-66). But the 

difference usually not large. 

 

 

  

 

The specific heats are sometimes given on a molar basis. They 

are denoted by 𝑪 v and 𝑪 p and have the units kJ/(kmol.℃) or 

kJ/(kmol.K). 

 

3-8. Internal energy, enthalpy and specific heats of ideal 

gases 

We defines an ideal gas as a substance whose temperature, 

pressure, and specific volume are related by: 

Figure 3-65. Mathematical 

definitions of 𝑪𝒑 and 𝑪𝒗. 

 

Figure 3-66. The specific heat of 

a substance changes with 

temperature. 
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                                 𝑷𝒗 = 𝑹𝑻  

For ideal gas the internal energy is a function of the temperature 

only. That is, 

                                   𝒖 = 𝒖(𝑻)                                                     (3-36) 

      In the Joule’s experiment, Joule submerged two tanks 

connected with a pipe and a valve in a water bath, as shown in 

Fig. 3-67. Since there was also no 

work done, he concluded that the 

internal energy of the air did not 

change even though the volume 

and the pressure changed. 

Therefore, he reasoned, the 

internal energy is a function of 

temperature only and not a 

function of pressure or specific 

volume. 

      Using the definition of enthalpy 

and the equation of state of an 

ideal gas, we have: 

 

                         
𝒉 = 𝒖 + 𝑷𝒗
𝑷𝒗 = 𝑹𝑻

     𝒉 =  𝒖 +  𝑹𝑻 

      Since 𝑹 is constant and 𝒖 = 𝒖(𝑻), it follows that the enthalpy 

of an ideal gas is also a function of temperature only: 

                                  𝒉 = 𝒉(𝑻)                                                      (3-37) 

      Since 𝒖 and 𝒉 depend only on temperature for an ideal gas, 

the specific heats 𝑪𝒗 and 𝑪𝒑 also depend, at most, on 

temperature only. Therefore, at a given temperature 𝒖, 𝒉,  𝑪𝒗, and 

𝑪𝒑 of an ideal gas will have fixed values regardless of the 

specific volume or pressure (Fig. 3-68). 

Figure 3-67. Schematic of the 

experimental apparatus used 

by Joule. 
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Then the differential changes in the 

internal energy and enthalpy of an 

ideal gas can be expressed as:  

           𝒅𝒖 = 𝑪𝒗(𝑻) 𝒅𝑻                  (3-38) 

and    𝒅𝒉 = 𝑪𝒑(𝑻) 𝒅𝑻                   (3-39) 

The change in internal energy or 

enthalpy for an ideal gas during a  

Process from state 1 to state 2 is  

Determined by integration these 

equations: 

 

            ∆𝒖 = 𝒖2 – 𝒖1 =  𝑪𝒗(𝑻) 𝒅𝑻
𝟐

𝟏
        (kJ/kg)                   (3-40) 

and     ∆𝒉 = 𝒉2 – 𝒉1 =  𝑪𝒑(𝑻) 𝒅𝑻
𝟐

𝟏
        (kJ/kg)                           (3-41) 

      At low pressures all real 

gases approach ideal-gas 

behavior, and therefore their 

specific heats depend on 

temperature only. The specific 

heats of real gases at low 

pressures are called ideal-gas 

specific heats or zero pressure 

specific heats, and are often 

denoted 𝑪𝒑𝟎 and 𝑪𝒗𝟎 (Table A-2 

𝒂, 𝒃, 𝒄). A plot of 𝑪 p0(𝑻) data for 

some gases is given in Fig. 3-69. 

 

 

Figure 3-68. For ideal gases, 𝒖, 

𝒉, 𝑪𝒗, and 𝑪𝒑vary with 

temperature only. 

 

Figure 3-69. Ideal-gas constant –

pressure specific heats for some 

gases (see Table A-2𝒄 for 𝑪 p0 

equations). 
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      Some observation can made from Fig. 3-69. First, the specific 

heats of gases with complex molecules (molecules with two or 

more atoms) are higher and increase with temperature. Also the 

variation of specific heats with temperature is smooth and may 

be approximated as linear over small temperature intervals ( a 

few hundred or less). Then the specific heat functions in Eqs. 3-

40 and 3-41 can be replaced by the constant average specific 

heat values. Now the integration in these equations can be 

performed, yielding: 

                    𝒖2 – 𝒖1 = 𝑪𝒗,𝐚𝐯(𝑻2 – 𝑻1)        (kJ/kg)                         (3-42) 

and             𝒉2 – 𝒉1 = 𝑪𝒑,𝐚𝐯(𝑻2 – 𝑻1)        (kJ/kg)                          (3-43) 

The  specific heat values for some common gases are listed as a 

function of temperature in Table A-2𝒃. The average specific 

heats   𝑪𝒑,𝐚𝐯 and  𝑪𝒗,𝐚𝐯  are evaluated from this table at the 

average temperature (𝑻2 + 𝑻1)/2, as shown in Fig. 3-71. 

      Another way of determining the 

average specific heats is to evaluate 

them at 𝑻1 and 𝑻2 and then take their 

average. Usually both methods give 

reasonably good results, and one is 

not necessarily better than the other. 

      Another observation that can be 

made from Fig. 3-69 is that the ideal-

gas specific heats of monatomic 

gases such as argon, neon, and 

helium remain constant over the 

entire   temperature   range. Thus   ∆𝒖  

and  ∆𝒉   of   monatomic   gases    can    

easily evaluated from  Eqs. 3-42  and  

3-43. 

Figure 3-71. For small 

temperature intervals, the 

specific heats may be 

assumed to vary linearly 

with temperature. 
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Specific-heat relations of ideal gases 

A special relationship between 𝑪𝒗 and 𝑪𝒑 for ideal gases can be 

obtained by differentiating the relation 𝒉 =  𝒖 +  𝑹𝑻, which 

yields: 

                                      𝒅𝒉 =  𝒅𝒖 +  𝑹𝒅𝑻       

Replacing 𝒅𝒉 by  𝑪𝒑 𝒅𝑻  and  𝒅𝒖 by 𝑪𝒗 𝒅𝑻 and dividing the 

resultant expression by 𝒅𝑻, we obtain:  

                              𝑪𝒑 = 𝑪𝒗 + 𝑹           [kJ/(kg.K)]                        (3-44) 

This is an important relationship for ideal gases since it enables 

us to determine 𝑪𝒗 from a knowledge of 𝑪𝒑 and the gas 

constant  𝑹. 

      When the specific heats are given on a molar basis, 𝑹 in the 

above equation should be replaced by the universal gas 

constant 𝑹u (Fig. 3-74). That is, 

                              𝑪 p = 𝑪 v + 𝑹u           [kJ/(kmol.K)]                   (3-45) 

      At this point, we introduce another ideal-gas property called 

the specific heat ratio 𝒌, defined as: 

                                            𝒌 = 
𝑪𝒑

𝑪𝒗
                                              (3-46) 

 

           

 

 

 

 

Figure 3-74. The 𝑪𝒑 of an 

ideal gas can be determine 

from a knowledge of 𝑪𝒗 

and 𝑹. 
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The specific heat ratio (𝒌) also varies with temperature, but this 

variation is very small. For monatomic gases, its value is 

essentially constant at  𝒌 = 1.667. Many diatomic gases, 

including air, have specific heat ratio of about 𝒌 = 1.4 at room 

temperature. 

 

Example 3-18. 

Air at 300 K and 200 kPa is heated at constant pressure to 600 K. 

Determine the change in internal energy of air per unit mass(∆𝒖 

), using (a) data from the air table (Table A-17), (b) the functional    

form of the specific heat (Table A-2c), and (c) the average 

specific heat value (Table A-2b).  

Solution. 

Air can be considered to be an ideal gas since it is at a high 

temperature and low pressure relative to its critical-point values 

(𝑻cr = -147℃, 𝑷cr = 3390 kPa for nitrogen, the main constituent of 

air). ∆𝒖 of ideal gases depends on the initial and final 

temperatures only, and not on the type of process. 

(a)  

                   𝒖1 = 𝒖 @ 300 K = 214.07 kJ/kg 

                   𝒖2 = 𝒖 @ 600 K = 434.78 kJ/kg 

Thus,         ∆𝒖 = 𝒖2 – 𝒖1 = (434.78 – 214.07) kJ/kg = 220.71 kJ/kg 

(b)  

The 𝑪 p(𝑻) of air is given in Table A-2c in the form of a third-

degree polynomial expressed as: 

                     𝑪 p(𝑻) = a + bT + cT2 + dT3   

(Table A-17) 
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Where a = 28.11, b = 0.1967 x 10-2, c = 0.4802 x 10-5, d = -1.966 x 

10-9. From Eq. 3-45,   

       𝑪 v(𝑻) =  𝑪 p – Ru = (a –  Ru) + 𝒃𝑻 + 𝒄𝑻2 + 𝒅𝑻3   

From Eq. 3-40, 

                   ∆𝒖  =  𝑪 
𝟐

𝟏 v(𝑻) 𝒅𝑻 

                        =  [(𝒂 −  𝑹𝒖
𝑻𝟐

𝑻𝟏
) + 𝒃𝑻 + 𝒄𝑻𝟐  +  𝒅𝑻𝟑] 𝒅𝑻 

Performing the integration and substitution the values, we 

obtain: 

                  ∆𝒖  = 6447.15 kJ/kmol 

The change in the internal energy on a unit-mass basis (∆𝒖) is 

determined by dividing this value by the molar mass of air (Table 

A-1):   

                  ∆𝒖 = 
∆𝒖 

𝑴
 = 

𝟔𝟒𝟒𝟕.𝟏𝟓 𝐤𝐉/𝐤𝐦𝐨𝐥

𝟐𝟖.𝟗𝟕 𝐤𝐠/𝐤𝐦𝐨𝐥
 = 222.55 kJ/kg 

This differs from the exact result by 0.8 percent: 

                   % error = 
 𝟐𝟐𝟐.𝟓𝟓−𝟐𝟐𝟎.𝟕𝟏  𝐤𝐉/𝐤𝐠

(𝟐𝟐𝟎.𝟕𝟏) 𝐤𝐉/𝐤𝐠
 x 100 ≅ 0.8 % 

(c) The average value of the constant-volume specific heat 𝑪𝒗,𝐚𝐯 

is determined from Table A-2b at the average temperature(𝑻2 + 

𝑻1)/2 = (300 + 600) K/2 = 450 K to be:  

                    𝑪𝒗,𝐚𝐯 = 𝑪𝒗 @ 450 K = 0.733 kJ/(kg.K)       (Table A-2b) 

Thus              ∆𝒖 = 𝑪𝒗,𝐚𝐯(𝑻2 – 𝑻1) = [0.733 kJ/(kg.K)][(600 – 300) K] 

                            = 219.9 kJ/kg 

This answer differs the exact result (220.71 kJ/kg) by only 0.4 

percent: 
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                   % error = 
 𝟐𝟐𝟎.𝟕𝟏−𝟐𝟏𝟗.𝟗  𝐤𝐉/𝐤𝐠

(𝟐𝟐𝟎.𝟕𝟏) 𝐤𝐉/𝐤𝐠
 x 100 ≅ 0.4 % 

 

Example 3-19. 

An insulted rigid tank initially contains 1.5 Ibm of helium at 80℉ 

and 50 psia. A paddle wheel with a power rating of 0.02 hp is 

operated within the tank for 30 min. Determine (a) the final 

temperature and (b) the final pressure of the helium gas.  

Solution. 

A sketch of the system and the 𝑷-𝒗 diagram of the process are 

shown in Fig. 3-75. The helium gas at the specified conditions 

can be considered to be an ideal gas since it is at a very high 

temperature relative to its critical-point temperature (𝑻cr = - 

451℉ for helium Table A-1E). 

(a) The amount of paddle-wheel work done on the system is: 

      𝑾pw = 𝑾 
pw ∆t = (– 0.02 hp)(0.5 h)  

𝟐𝟓𝟒𝟓 𝐁𝐭𝐮/𝐡

𝟏 𝐡𝐩
  = – 25.45 Btu 

Since, Wb = 0        (rigid tank have not moving boundaries) 

                  𝑸 = 0        (insulated tank) 

∆𝐊𝐄 = ∆𝐏𝐄 = 0       (The system is assumed to be stationary) 

Then the conservation of energy equation for this closed system 

reduces to:  

                        𝟎                   𝟎                       𝟎          𝟎 

                     𝑸 – Wpw – Wb = ∆U + ∆𝐊𝐄 + ∆𝐏𝐄 

                               – Wpw = ∆U = m(u2 – u1) ≅ m𝑪𝒗,𝐚𝐯(𝑻2 – 𝑻1) 
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As we pointed out earlier, the ideal-gas specific heats of 

monatomic gases (helium being one of them) are constant. The 

𝑪𝒗 value of helium is determined from Table A-2Ea to be 𝑪𝒗 = 

0.753 Btu/(Ibm.℉ ). Substituting this and other known quantities 

into above energy equation, we obtain: 

            – (– 25.45 Btu) = (1.5 Ibm)(0.753 Btu/(Ibm.℉)(𝑻2 – 80℉)  

                              𝑻2 = 102.5℉ 

(b) The final pressure is determined from the ideal-gas relation:  

𝑷𝟏 𝑽𝟏

𝑻𝟏
 = 

𝑷𝟐𝑽𝟐

𝑻𝟐
    

Where 𝑽1 and 𝑽2 are identical and cancel. Then the final pressure 

becomes:     

                             
𝟓𝟎 𝐩𝐬𝐢𝐚

 𝟖𝟎+𝟒𝟔𝟎  𝐑
 = 

𝑷𝟐

 𝟏𝟎𝟐.𝟓+𝟒𝟔𝟎 𝐑
 

                                𝑷𝟐 = 53.1 psia 

 

 

 

 

 

 

 

 

 

 
Figure 3-75. Schematic and 𝑷-𝒗 

diagram for Example 3-19. 
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Example 3-20. 

A piston-cylinder device initially contains 0.5 m3 of nitrogen gas 

at 400 kPa and 27℃. An electric heater within the device is 

turned on and is allowed to pass a current of 2 A for 5 min from 

a 120 V source. Nitrogen expands at constant pressure, and a 

heat loss of 2800 J occurs during the process. Determine the 

final temperature of the nitrogen, using data from the nitrogen 

table (Table A-18).  

 

Solution. 

A sketch of the system and the P-V diagram of the process are 

given in Fig. 3-76.  

 

 

 

 

 

 

 

 

 

 

 

At the specified conditions, the nitrogen gas can be considered 

to be an ideal gas since it is at a high temperature and low 

Figure 3-76. Schematic and 𝑷-𝑽 

diagram for Example 3-20. 
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pressure relative to its critical-point values (Tcr = –147℃, Pcr = 

3390 kPa, Table A-1).      

      First, let us determine the electrical work done on the 

nitrogen: 

        We = VI ∆t = (120 V)(2 A)(5 x 60 s)  
𝟏 𝐤𝐉

𝟏𝟎𝟎𝟎 𝐕𝐀.𝐬
  = – 72 kJ 

The negative sign is added because the work is done on the 

system. 

      The number of moles of nitrogen is determined from the 

ideal-gas relation: 

          N = 
𝑷𝟏𝑽𝟏

𝑹𝒖𝑻𝟏
 = 

 𝟒𝟎𝟎 𝐤𝐏𝐚 (𝟎.𝟓 𝐦𝟑)

[𝟖.𝟑𝟏𝟒 𝐤𝐉/(𝐤𝐦𝐨𝐥.𝐊)](𝟑𝟎𝟎 𝐊)
 = 0.080 kmol 

When gases other than air are involved, it is more convenient to 

work with mole numbers instead of masses since all the u and h 

data are given on a mole basis (Fig. 3-77). Assuming no change 

in kinetic and potential energies ( ∆KE = ∆PE = 0), the 

conservation of energy equation for this closed system can be 

written as: 

                                         𝑸 – We – Wb = ∆U 

For the constant- pressure process of a closed system, ∆U + Wb 

is equivalent to ∆H. Thus,                                           

                         𝑸 – We = ∆H = m(h2 – h1) = N(𝒉 2 – 𝒉 1) 

From the nitrogen table, 𝒉 1 = 𝒉 @ 300 K = 8723 kJ/kmol. The only  

unknown  quantity in the above equation is 𝒉 2, and it is found to 

be:   

            – 2.8 kJ – (– 72 kJ) = (0.08 kmol)(  𝒉 2 – 8723 kJ/kmol) 

                                        𝒉 2 =  9588 kJ/kmol      
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The temperature corresponding to this enthalpy value is: 

                        T2 = 329.7 K = 56.7℃      (Table A-18) 

 

 

 

 

 

 

 

 

 

3-9. Internal energy, enthalpy, and specific heats of 

solids and liquids 

A substance whose specific volume (or density) is constant is 

called an incompressible substance. The specific volumes of 

solids and liquids essentially remain constant during a process 

(Fig. 3-79). Therefore, liquids and 

solids can be approximated as 

incompressible substances 

without sacrificing much in 

accuracy.  

      The constant-volume and 

constant-pressure specific heats 

are identical for incompressible 

substances (Fig. 3-80). 

 

Figure 3-77. Two equivalent ways of 

determining the total enthalpy 

change ∆H. 

Figure 3-79. The specific volumes of 

incompressible substances remain 

constant during a process. 
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Therefore, for solids and liquids the subscripts on 𝑪𝒑 and 𝑪𝒗 can 

be dropped, and both specific heats can be represented by a 

single symbol 𝑪. That is, 

                                             𝑪𝒑 = 𝑪𝒗 = 𝑪                                      (3-47)  

Specific heat values for several 

common liquids and solids are given 

in Table A-3. 

      Like those of ideal gases, the 

specific heats of incompressible 

substances depends on temperature 

only. Thus the partial differentials in 

the defining equation of 𝑪𝒗 (Eq. 3-34) 

can be replaced by ordinary 

differentials, which yields: 

     𝒅𝒖 = 𝑪𝒗 𝒅𝑻 = 𝑪(𝑻) 𝒅𝑻         (3-48) 

The change in internal energy between state 1 and 2 is then 

obtained by integration: 

                  ∆𝒖 = 𝒖2 – 𝒖1 =  𝑪(𝑻) 𝒅𝑻
𝟐

𝟏
        (kJ/kg)                      (3-49) 

For small temperature intervals, a 𝑪 values at the average 

temperature can be used and treated as a constant, yielding: 

                 ∆𝒖 ≅ 𝑪av(𝑻2 – 𝑻1)          (kJ/kg)                                   (3-50) 

For enthalpy change of solids or liquids during process 1-2 can 

be determined from the definition of enthalpy (𝒉 = 𝒖 + 𝑷𝒗) to be: 

                 𝒉2 – 𝒉1 = (𝒖2 – 𝒖1) + 𝒗(𝑷2 – 𝑷1)                                   (3-51) 

since 𝒗1 = 𝒗2 = 𝒗. It can also be expressed in a compact form as: 

 ∆𝒉 = ∆𝒖 +𝒗 ∆𝑷           (kJ/kg)                                   (3-52) 

Figure 3-80. The 𝑪𝒗 and 𝑪𝒑 

values of incompressible 

substances are identical 

and are denoted by 𝑪. 
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The second term (𝒗 ∆𝑷) in Eq.3-52 is often small compared with 

the first term (∆𝒖) and can be neglected without significant loss 

in accuracy. 

      For a constant-temperature process (∆𝑻 = 0) , the internal 

energy change of an incompressible substance is (∆𝒖 =0). The 

from Eq. 3-51 the change in enthalpy change will be: 

                        𝒉2 – 𝒉1 = 𝒗(𝑷2 – 𝑷1)                                    

By taking state 2 as the compressed liquid state and state 1 as 

the saturated liquid state at the same temperature, the enthalpy 

of the compressed liquid at a given 𝑷 and 𝑻 can be determined 

from: 

                        𝒉@ P,T ≅ 𝒉f @ T + 𝒗f @ T(𝑷 – 𝑷sat)                             (3-53)   

where 𝑷sat is the saturation pressure at the given temperature.  

This is an improvement over the assumption that the enthalpy of 

the compressed liquid could be taken as 𝒉f at the given 

temperature (that is,  𝒉@ P,T ≅ 𝒉f @ T). However, the contribution of 

the last term is often very small, so it is usually neglected.  

 

Example 3-22. 

A 50 kg iron block at 80℃ is dropped into an insulated tank 

which contains 0.5 m3 of liquid water at 25℃. Determine the 

temperature when thermal equilibrium is reached. 

Solution. 

We take the iron block and water as our system. The inner 

surfaces of the tank walls form the system boundary, as shown 

in Fig. 3-81. 

Since the tank is insulated, no heat will cross these boundaries 

(𝑸 = 0). Also since there is no movement of the boundary (Wb = 
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0) and no indication of other forms of work (Wother = 0), the work 

for this process is zero (W = 0). Then the conservation of energy 

equation for this process will reduce to: 

                        𝟎       𝟎           𝟎                       𝟎           𝟎 

                     𝑸 – Wother – Wb = ∆U + ∆𝐊𝐄 + ∆𝐏𝐄       or    ∆U = 0 

The total energy U is an extensive 

property, and therefore it can be 

expressed as the sum of the internal 

energies of the parts of the system. 

Then the total internal energy change 

of the system is: 

         ∆Usystem = ∆Uiron + ∆Uwater = 0 

[m𝑪(𝑻2 – 𝑻1)]iron + [m𝑪(𝑻2 – 𝑻1)]water = 0 

The specific volume of liquid water at 

or about room temperature can be 

Taken to be 𝒗water =  0.001 m3/kg (Table A-4).  

Then mass of the water is: 

                         mwater = 
𝑽

𝒗
  = 

𝟎.𝟓 𝐦𝟑

𝟎.𝟎𝟎𝟏 𝐦𝟑/𝐤𝐠
 = 500 kg  

The specific heats of iron and liquid water are determined:  

   𝑪iron = 0.45 kJ/(kg.℃)        

𝑪water = 4.184 kJ/(kg.℃) 

Subsisting these values into the energy equation, we obtain: 

(50 kg)[0.45 kj/(kg. ℃)](𝑻2 – 80℃) 

                  + (500 kg)[4.184 kj/(kg. ℃)](𝑻2 –25℃) = 0, 𝑻2 = 25.6℃    

Figure 3-81.Schematic 

for Example 3-22. 

 

(Table A-3 a) at 25℃  
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Example 3-23. 

Determine the enthalpy of liquid water at 100℃ and 15 MPa (a) 

from the compressed liquid tables, (b) by approximating it as 

saturated liquid, and (c) by using the correction given by Eq. 3-

53. 

Solution. 

At 100℃, the saturation pressure of water 𝑷sat = 101.35 kPa from 

(Table A-4), and since 𝑷 > 𝑃sat, the water exists as a compressed 

liquid at the specified sate. 

(a) From the compressed liquid tables, we read: 

             𝑷 = 15 MPa 

             𝑻 =  100℃            

This is the exact value. 

(b) Approximating the compressed liquid as a saturated liquid at 

100℃, as is commonly done, we obtain:  

               𝒉 ≅ 𝒉f @ 100 C = 419.04 kJkg           (Table A-4)   

This value is in error by about 2.6 percent.  

(c) From Eq. 3-53: 

         𝒉@ P,T ≅ 𝒉f @ T + 𝒗f @ T(𝑷 – 𝑷sat)  

                   ≅  (419.04 kJ/kg) + (0.001 m3/kg)[(15000 – 101.35)kPa]* 

                                                             * 
𝟏 𝐤𝐉

𝟏 𝐤𝐏𝐚.𝐦𝟑    

                   ≅  434.60 kJ/kg 

The correction term reduced error from 2.6 to about 1 percent. 

But this improvement in accuracy is often not worth the extra 

effort involved.                          

𝒉 = 430.28 kJ/kg   (Table A-7) 

 


