
Chapter 1 Basic Principles 1.1 Introduction and Historical Development

Polymer: poly \rightarrow many mer \rightarrow many parts (Greek) "Macromolecules" Monomer: mono \rightarrow single mer \rightarrow single part

Polymerization:

Organic reactions vs Polymerizations

Monofunctional compounds: EtOH, C₆H₅CO₂H

$$2 CH_{3}CH_{2}OH \longrightarrow CH_{3}CH_{2}OCH_{2}CH_{3} + H_{2}O \qquad (1.1)$$

$$(1.1)$$

$$(1.2)$$

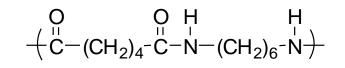
Difunctional compounds: HOCH₂CH₂OH, HOC₆H₄CO₂H

$$n HO \longrightarrow CO_2 H \longrightarrow + nH_2O$$
 (1.3)

$$n HO_2C$$
 \longrightarrow CO_2H + $n HOCH_2CH_2OH$ \longrightarrow

$$\begin{array}{c} O \\ + C \\ - C \\$$

Polymer Historical Events


- 1833 Berzelius (Swedish) first time to use the word "polymer"
- 1839 Polystyrene

1920sAlkyd (polyester) paints
Polybutadiene rubber (/____)

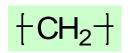
1924 Hermann Staudinger (German)

Introduced the term ''Makromolekül" Proposed that polymers are high MW molecules Won 1953 Nobel Prize in Chemistry

1930s Wallace Hume Carothers (American)
Proved the theories of Staudinger
Commercialized neoprene rubber
and polyamide (nylon) fibers

World War IISynthetic rubber1955Karl Ziegler (Germany)Discovered coordination polymerization catalystGiulio Natta (Italy)Prepared stereoregular polymers

1963Ziegler and Natta
Won Nobel Prize in Chemistry


- 1974 Paul Flory won Nobel Prize in Chemistry
 Established quantitative bases for polymer
 behaviors (solution, bulk, crosslinking, chain transfer)
- **1984** Bruce Merrifield (**Nobel Prize** in Chemistry) Invented solid-state **protein** synthesis
- 2000 Alan MacDiarmid, Alan Heeger, Hideki Shirakawa (Nobel Prize in Chemistry) Discovered conducting polymers (1977)

1.2 Definitions

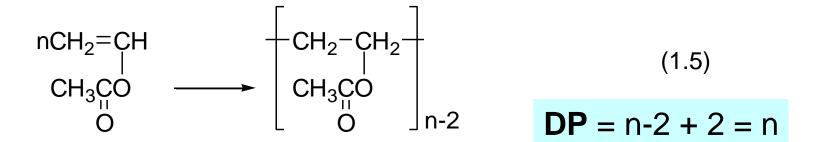
 $CH_3CH_2 - (CH_2CH_2)_n CH = CH_2$

Repeating unit (monomeric unit): Structural unit

Base unit: Smallest possible repeating unit

 $+CH_2CH_2$

End groups: Structural units that terminate polymer chains


Oligomer: Oligos (Greek) → few (when n is small) low molecular weight (MW) polymer

Telechelic polymers: Containing reactive end groupstele (Greek) \rightarrow farchele (Greek) \rightarrow claw(e.g., reactive oligomers)

Homochain polymers: Backbones contain pure carbon atom (polyethylene) $\frac{-(CH_2CH_2)_n}{n}$

Heterochain polymers: Backbones also contain other atoms $(CH_2CH_2O)_n$ (polyethers, polyesters) **Degree of polymerization (DP):** total number of structural units (including end groups)

Average degree of polymerization: DP

Classification of polymers

By chemical compositions:

Homopolymer: Contain a single kind of monomer **Copolymers:** Contain more than one kind of monomer

(a) Random (b) Alternating (c) Block (d) Graft

-A-A-A-A-A-A-A-	Homopolymer	
-A-B-B-A-B-A-A-B-	Random copolymer	
-A-B-A-B-A-B-	Alternating copolymer	<mark>+AB+</mark>
-A-A-A-B-B-B-B-	Block copolymer	
-A-A-A-A-A-A-A- B-B-B-B-B-B-B-	Graft copolymer	

Figure 1.1 Representations of homopolymer and copolymers

diblock: AB triblock: ABA; ABC multiblock: ABCD...,

By chain structures:

(a) Linear (e.g., high density PE)
(b) Branched (e.g., low density PE)
(c) Network (e.g., cross-linked polymers; elastomers)

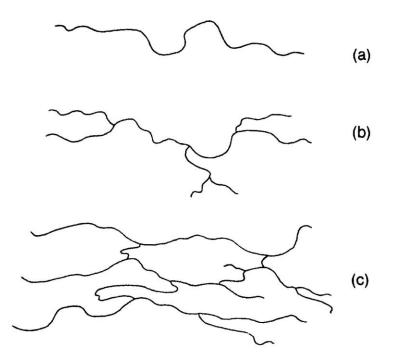
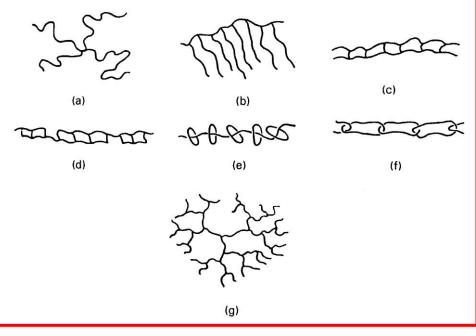


FIGURE 1.2. Representation of polymer types: (a) linear, (b) branched, and (c) network.

By polymer architectures:

(a) Star polymer: contains ≥3 chains emanating from a core

(b) Comb polymer: contains pendant chains


- (c) Ladder polymer: has recurring fused-ring structures
- (d) Semiladder polymer: has fused-ring sections interspersed with open-chain units
- (e)(f) Supramolecular assemblies: molecules linked by

noncovalent bonding (polyrotaxane, polycatenane)

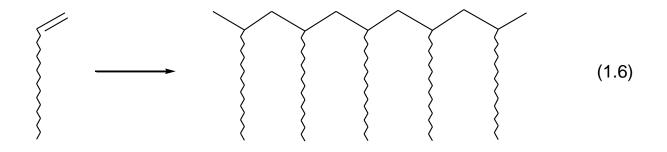

(g) Dendrimers: dendritic, starburst, or cascade polymers dendron (Greek) \rightarrow tree

Figure 1.3 Representations of

- (a) star polymer;
- (b) comb polymer; (c) ladder polymer;
- (d) semiladder(or stepladder) polymer;
- (e) polyrotaxane; (f) polycatenane;
- (g) dendrimer.

Macromonomer (macromer): polymeric or oligomeric monomer

Hyperbranched polymers: extremely branched polymers

Network polymers: polymer chains joined together by covalent bonds will not melt or flow and cannot be molded

(a) Vulcanization of rubber (a crosslinking process)(b) Polymerization of polyfunctional monomers

Vulcan: the Roman god of fire and metalworking

Thermosetting polymers: insoluble and only swell 熱固型 (network polymer)

Thermoplastic polymers: not crosslinked, soluble, 熱塑型 will melt and flow (linear or branched polymer)

By physical or mechanical properties, or end use:

plastics, rubbers (elastomers) fibers, coatings, adhesives

1.3 Polymerization Process

Polymer classification (traditionally)

Addition polymer: contains the same atoms as the monomer Condensation polymer: contains fewer atoms than the monomer

Polymerization process:

Addition, Condensation, Ring opening

(different processes can produce the same polymer)

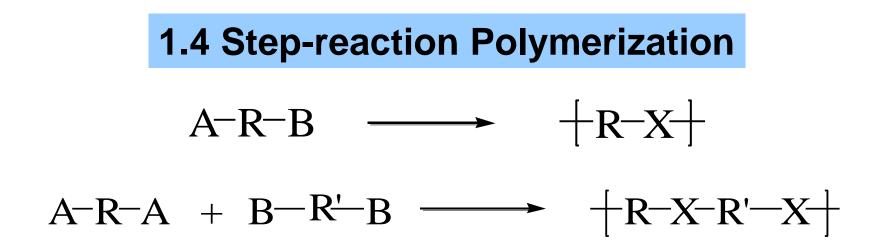
Different processes can produce the same polymer

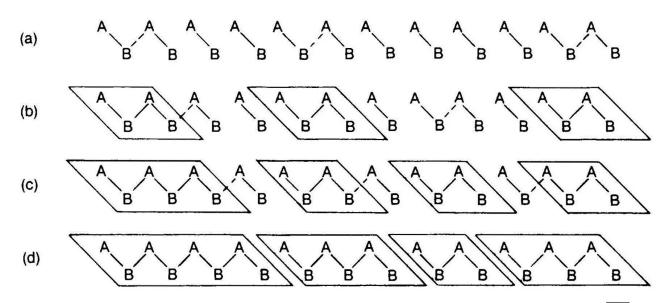
1. Polyester from lactone (1.7), and from ω -hydroxycarboxylic acid (1.8):

2. Polyamide from lactam (1.9), and from ω -aminocarboxylic acid (1.10):

$$\underbrace{\stackrel{O}{\stackrel{H}{\longrightarrow}}}_{R} \longrightarrow \underbrace{\stackrel{O}{\stackrel{H}{\longrightarrow}}}_{NH-R-C} \xrightarrow{O}_{+} \qquad (1.9)$$

$$H_2N-R-CO_2H \longrightarrow \underbrace{\stackrel{O}{\stackrel{H}{\longrightarrow}}}_{NH-R-C} + H_2O \qquad (1.10)$$


3. Polyurethane from diisocyanate and dialcohol (1.11), and from diamine and bischloroformate (1.12):


Classified by polymerization mechanism:

- (1) step-reaction or step-growth polymerization
- (2) chain-reaction or chain-growth polymerization
- (3) **ring-opening polymerization** (step- or chain-growth)

Polymers prepared via different mechanisms may have very different properties

(with different MW, end groups, stereochemistry, chain branching)

FIGURE 1.4. Step-reaction polymerization: (a) unreacted monomer; (b) 50% reacted, $\overline{DP} = 1.3$; (c) 75% reacted, $\overline{DP} = 1.7$; (d) 100% reacted, $\overline{DP} = 3$. (Broken lines represent reacting species.)

Carothers

p : conversion ratio N_0 : initial number of molecules N : the total number of molecules at a given time

$$p = \frac{N_0 - N}{N_0} \qquad N = N_0(1-p)$$
$$\overline{DP} = \frac{N_0}{N} = \frac{1}{(1-p)}$$
at 98% conversion: $\overline{DP} = \frac{1}{1-0.98} = 50$

DP is usually not high

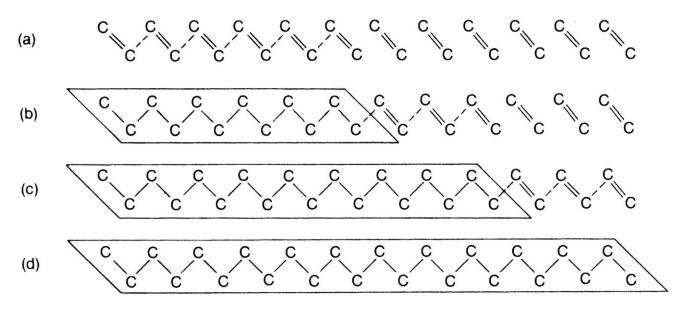
To obtain very high MW polymers:

- use very pure monomer
- use an exact stoichiometric ratio

1.5 Chain-reaction Polymerization

Possible initiators: radical, anion, cation, metal complex

Kinetic steps: initiation, propagation, termination


Initiation $R \cdot + CH_2 = CH_2 \longrightarrow RCH_2CH_2 \cdot$ Propagation $RCH_2CH_2 \cdot + CH_2 = CH_2 \longrightarrow RCH_2CH_2CH_2CH_2 \cdot$

Initiation

 $B^{-} + CH_2 - CH_2 \longrightarrow BCH_2CH_2O^{-}$

Propagation

$$\mathsf{BCH}_2\mathsf{CH}_2\mathsf{O}^- + \mathsf{CH}_2^-\mathsf{CH}_2 \longrightarrow \mathsf{BCH}_2\mathsf{CH}_2\mathsf{O}\mathsf{CH}_2\mathsf{CH}_2\mathsf{O}^-$$

FIGURE 1.5. Chain-reaction polymerization: (a) unreacted monomer; (b) 50% reacted, $\overline{DP} = 1.7$; (c) 75% reacted, $\overline{DP} = 3$; (d) 100% reacted, $\overline{DP} = 12$. (Broken lines represent reacting species.)

Table 1.1. Comparison of Step-Reaction and Chain-Reaction Polymerization

Step Reaction

Growth occurs throughout matrix by reaction between monomers, oligomers, and polymers

 $\overline{\mathbf{DP}}^{\mathbf{a}}$ low to moderate

Monomer consumed rapidly while **molecular weight increases slowly**

No initiator needed; same reaction mechanism throughout

No termination step; end groups still reactive

Polymerization rate decreases steadily as functional groups consumed

^aDP, average degree of polymerization.

Chain Reaction

Growth occurs by successive addition of monomer units to **limited number of** growing chains

 $\overline{\mathbf{DP}}$ can be very high

Monomer consumed relatively slowly, but **molecular weight increases rapidly**

Initiation and propagation mechanisms different

Usually chain-terminating step involved

Polymerization rate increase initially as initiator units generated; **remains relatively constant** until monomer depleted **1.6 Step-reaction Addition and Chain-reaction Condensation**

Traditionally —

Step-reaction polymerization \leftrightarrow condensation process Chain-reaction polymerization \leftrightarrow addition process

New types —

Step-reaction / addition

Chain-reaction / condensation

$$CH_2N_2 \xrightarrow{BF_3} + CH_2 + N_2$$
(1.16)

IUPAC, 1994

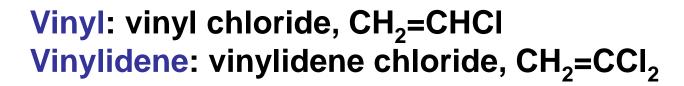
Polycondensation — step-reaction, with byproducts Polyaddition — step-reaction, without byproducts Chain polymerization — chain-reaction, without byproducts Condensative chain polymerization — chain-reaction, with byproducts

1.7 Nomenclature

Source-based system — widely accepted

IUPAC system — not widely used

Polymer types (or families) \rightarrow based on functional groups

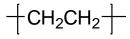

polyesters, polyamides (Nylon), polyethers, polyetherimide

Complicated structure \rightarrow based on monomers employed

CH₂

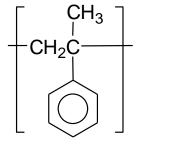
phenol-formaldehyde polymers

Polyolefins — polymers from simple alkenes R Vinyl polymers — polymers from alkenyl monomers (via chain-reaction polymerization)

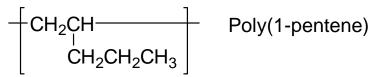


1.7.1 Vinyl Polymers

Vinyl polymers — poly(monomer)


based on common name system

Trade name — teflon (du Pont) \rightarrow polytetrafluoroethylene

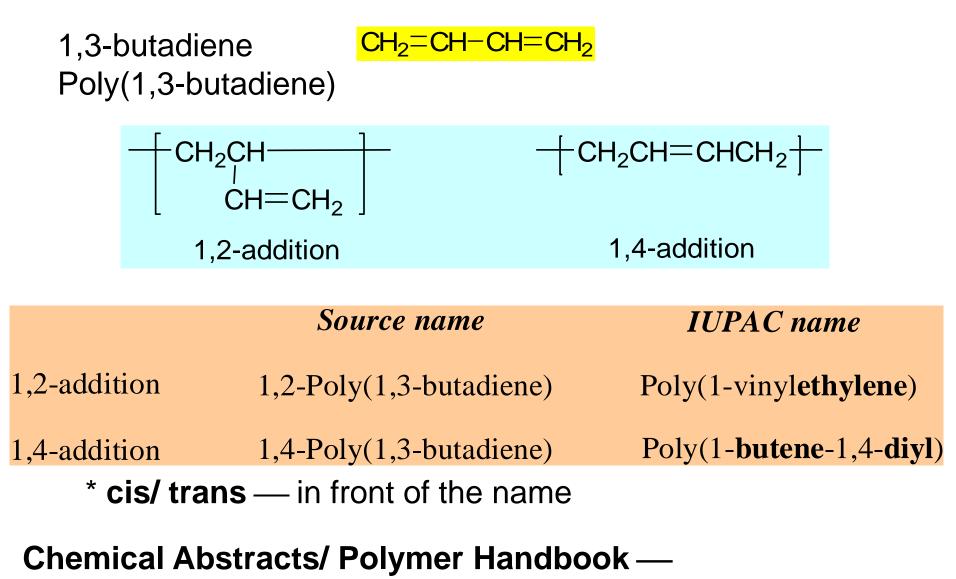


 $+CH_2CH_2+$ Polyethylene $+CF_2CF_2+$ Polytetrafluoroethylene

Polystyrene

Poly(α -methylstyrene)

← CH₂CH→


Poly(acrylic acid)

IUPAC — derived from base unit, or constitutional repeating unit (CRU)

- 1. The **smallest structural unit** (CRU) is identified.
- **2. Substituent groups** on the backbone are assigned the lowest possible numbers.
- 3. The name is placed in **parentheses** (or brackets and parentheses, where necessary), and **prefixed with** *poly*.

Source name	IUPAC name
Polyethylene	Poly(methylene) $+CH_2-CH_2+$
Polytetrafluoroethylene	Poly(difluoro methylene) +CF ₂ CF ₂ +
Polystyrene	Poly(1-phenyl ethylene) +CH—CH ₂ +
Poly(acrylic acid)	Poly(1-carboxylato ethylene) +Сн—Сн ₂ + соон
Poly(α-methylstyene)	Poly(1-methyl-1-phenyl ethylene) $\overset{\text{Me}}{+}_{\text{C-CH}_2}^{\text{Me}}$
Poly(1-pentene)	Poly[1-(1-propyl) ethylene] + Pr Ph + Ph + CH-CH ₂ +

IUPAC — parentheses are always used

adopted the IUPAC name

Monomer Structure	Monomer Name	Polymer Repeating Unit	Source Name	IUPAC ^a Name
CH ₃ CH=CH ₂	Propylene		Polypropylene	Poly(propylene)
CH2=CHCI	Vinyl chloride	-CH ₂ CH- cl	Poly(vinyl chloride)	Poly(1-chloro ethylene)
CH ₂ =C(CH ₃) ₂	Isobutylene	$ \begin{array}{c} CH_3\\CH_2CH_4\\CH_3\\CH_3\end{array} $	Polyisobutylene	Poly(1,1-dimethyl- ethylene)
CH ₂ =CHCN	Acrylonitrile	←CH ₂ CH→ (Polyacrylonitrile	Poly(1-cyano ethylene)
CH ₃ CH ₂ =CCO ₂ CH ₃	Methyl methacry- late	$\begin{bmatrix} CH_3 \\ -CH_2C \\ -CO_2CH_3 \end{bmatrix}$	Poly(methyl methacrylate)	Poly[1-(methoxy- carbonyl)-1-meth- ylethylene]
	Vinyl acetate	CH ₂ CH OCCH ₃	Poly(vinyl acetate)	Poly(1-acetoxyeth- ylene)
CH=CH ₂	2-Vinyl- pyridine	CH ₂ CH-	Poly(2-vinyl- pyridine)	Poly[1-(2-pyridinyl)- ethylene]
CH ₃ CH₂≤Ċ-CH=CH₂	Isoprene	$ \begin{array}{c} \begin{array}{c} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	cis-1,4-Poly- isoprene	<i>cis-</i> Poly(1-methyl- 1-butene-1,4-diyl)
CI CH ₂ =C-CH=CH ₂	Chloroprene	$\begin{bmatrix} CH_2CH \\ I \\ CIC = CH_2 \end{bmatrix}$	3,4-Polychloro- prene	Poly[1-(1-chloro- vinyl)ethylene]

 Table 1.2. Representative Nomenclature of Vinyl Polymers

^aIUPAC, International Union of Pure and Applied Chemistry.

1.7.2 Vinyl Copolymers

Copolymer: contains more than one species of monomer **Terpolymer:** contains three different monomers

Styrene-methyl methacrylate copolymer IUPAC — recommends source-based name Poly[styrene-co-(methyl methacrylate)] Copoly(styrene/methyl methacrylate)

Systematic

Poly[styrene-*alt*-(methyl methacrylate)] Polystyrene-*block*-poly(methyl methacrylate) Polystyrene-*graft*-poly(methyl methacrylate)

Concise

Alt-copoly(styrene/methyl methacrylate) *Block*-copoly(styrene/methyl methacrylate) *Graft*-copoly(styrene/methyl methacrylate)

Poly[styrene-co-butadiene-co-(vinyl acetate)]

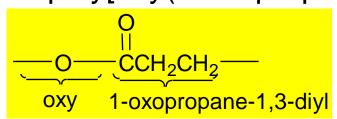
Copoly(styrene/butadiene/vinyl acetate)

Polystyrene-*block*-polyisoprene-*block*-polystyrene *Block*-copoly(styrene/isoprene/styrene)

Poly[styrene-*alt*-(maleic anhydride)]-*block*-poly(vinyl chloride) *Block*-copoly[*alt*-co(styrene/maleic anhydride)/vinyl chloride]

Polybutadiene-*block*-(polystyrene-*graft*-polyacrylonitrile) *Block*-copoly[butadiene/*graft*-co(styrene/acrylonitrile)]

1.7.3 Nonvinyl Polymers


Polyether — According to monomer used (source) or structure (IUPAC)

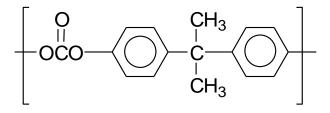
Polyester —


PET –

For ring opening polymer of cyclic esters (lactones) —

Common: according to the source or the ester repeating unit poly(β-propiolactone), poly(3-propionate)
IUPAC: based on two subunits of the CRU poly[oxy(1-oxopropane-1,3-diyl)]

older IUPAC name: poly[oxy(1-oxotrimethylene)]



Common: poly(ethylene terephthalate) **IUPAC:** poly(oxyethylene oxyterephthaloyl)

Polycarbonate —

Common: bisphenol A polycarbonate

IUPAC: poly(oxycarbonyloxy-1,4-phenyleneisopropylidene-1,4-phenylene)

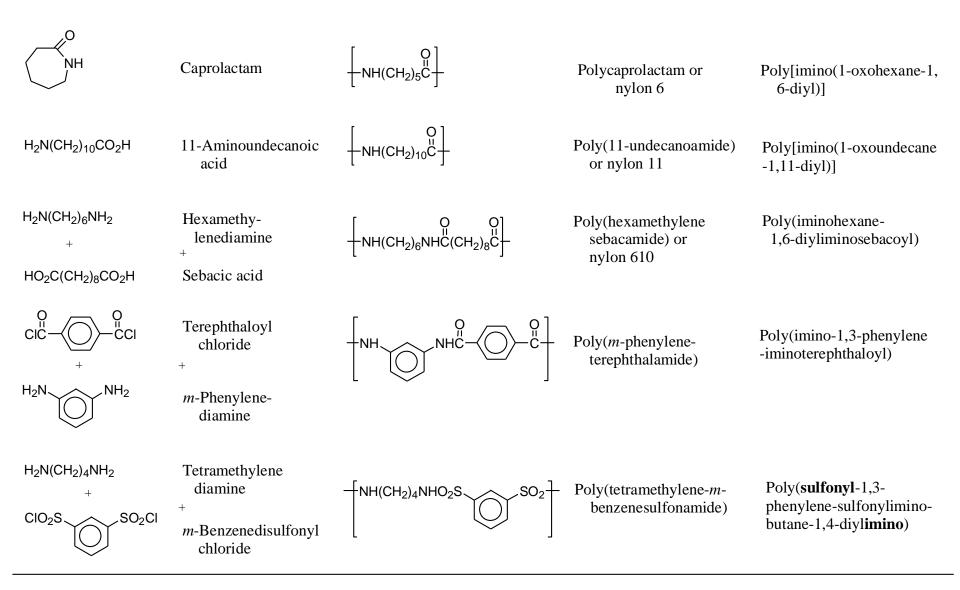
Polyamide — Similar to polyester system **IUPAC:** imino **Common:** nylon (for aliphatic polyamides)

from cyclic amides (lactams) — nylon 6

N C

from amino acids — nylon 11 H₂N(CH₂)₁₀COOH

from diamines and dicarboxylic acids —— nylon 610 (6-10; 6,10)


 $H_2N(CH_2)_6NH_2 + HOOC(CH_2)_8COOH$

More than one heteroatom — seniority (O>S>N>P) (e. g. sulfonyl > imino; see Table 1.3)

Monomer Structure	Monomer Name	Polymer Repeating Unit	Source or Common Name	IUPAC Name
Polyethers				
CH2-CH2	Ethylene oxide	+сн₂сн₂о+	Poly(ethylene oxide)	Poly(oxyethylene)
HOCH ₂ CH ₂ OH	Ethylene glycol	+CH₂CH₂O+	Poly(ethylene glycol)	Poly(oxyethylene)
CH ₂ O	Formaldehyde	+CH₂O+	Polyformaldehyde	Poly(oxymethylene)
CH ₃ CHO	Acetaldehyde	- сно+ сн ₃	Polyacetaldehyde	Poly(oxyethylidene)
Polyesters		[ĊH ₃]		
	β-Propiolactone		Poly(β-propiolactone) or poly(3-propionate)	Poly[oxy(1-oxopropane- 1,3-diyl)]
HO(CH ₂) ₉ CO ₂ H	10-Hydroxydecanoic acid	$ \begin{bmatrix} 0 \\ H \\ O(CH_2)_9 C \end{bmatrix} $	Poly(10-decanoate)	Poly[oxy(1-oxodecane- 1,10-diyl)]
HOCH ₂ CH ₂ OH + HO ₂ C- \bigcirc -CO ₂ H	Ethylene glycol + Terephthalic acid	$ \begin{bmatrix} O & O \\ OCH_2CH_2OC & O \\ C & C \end{bmatrix} $	Poly(ethylene terephthalate)	Poly(oxyethylene- oxyterephthaloyl)

Table 1.3. Representative Nomenclature of Nonvinyl Polymers

Polyamides

More than one heteroatom — seniority (O>S>N>P) (e. g. sulfonyl > imino; see Table 1.3)

1.7.4 Nonvinyl Copolymers

IUPAC — Recommends source-based nomenclature

Copolyester from 2:1:1 of ethylene glycol, terephthalic acid and isophthalic acid

$$HOCH_2CH_2OH+HOOC \longrightarrow COOH +$$

Poly(ethylene terephthalate-co-ethylene isophthalate)

Copolyamide from 6-aminohexanoic acid and 11-aminoundecanoic acid $[H_2N(CH_2)_5COOH + H_2N(CH_2)_{10}COOH]$ Poly[(6-aminohexanoic acid)-co-(11-aminoundecanoic acid)]Poly[(6-hexanoamide)-co-(11-undecanoamide)] (see Table 1.3) **1.7.5 End Groups** $H + OCH_2CH_2 + OH_nOH \alpha$ -Hydro- ω -hydroxypoly(oxyethylene

1.7.6 Abbreviations (Appendix A)

PVC: Poly(vinyl chloride)HDPE, LDPE: High- and low-density polyethylenePET: Poly(ethylene terephthalate

1.8 Industrial Polymers

Classifications

By mechanical property (modulus; stiffness) —

fibers, plastics, rubbers (elastomers)

- By end use adhesives, coatings
- **By source** synthetic, natural

Natural polymers — cellulose fibers (cotton, sisal) protein fibers (wool, silk) natural rubber

1.8.1 Plastics

Total volume of plastics consumed in 1980s overtook that of iron and steel

Reasons —

- 1. weigh less 2. more corrosion resistant
- 3. less energy consumption

Commodity plastics — high volume, low cost, disposable items polyethylene, polypropylene, poly(vinyl chloride), polystyrene

HDPE (>0.94 g/cm3) — linear LDPE (<0.94 g/cm3) — branched MDPE (0.926-0.940 g/cm3)

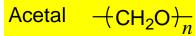
Type	Abbreviation	Major Uses
Low-density polyethylene	LDPE	Packaging film , wire and cable insulation, toys, flexible bottles, housewares,
High-density polyethylene	HDPE	coatings Bottles, drums , pipe, conduit, sheet,film, wire and cable insulation
Polypropylene	PP	Automobile and appliance parts, furniture, cordage, webbing, carpeting, film packaging
Poly(vinyl chloride)	PVC	Construction, rigid pipe, flooring , wire and cable insulation, film and sheet
Polystyrene	PS	Packaging (foam and film), foam insulation, appliances, housewares, toys

Engineering plastics — higher cost, lower volume, superior mechanical properties, greater durability polyamide, polycarbonate, acetal, poly(phenylene oxide), polyester → 99% of the market

Type	Abbreviation	Chapter Where Discussed
Acetal ^a	РОМ	11
Polyamide ^b		13
Polyamideimide	PAI	13
Polyarylate		12
Polybenzimidazole	PBI	17
Polycarbonate	PC	12
Polyester ^c		12
Polyetheretherketone	PEEK	11
Polyetherimide	PEI	11
Polyimide	PI	13
Poly(phenylene oxide)	РРО	11
Poly(phenylene sulfide)	PPS	11
Polysulfone ^d		11

Polyarylate

н


 Table 1.5. Principal Engineering Plastics

^aCommon name for polyformaldehyde. Abbreviation refers to poly(oxymethylene).

^bPrincipally nylons 6 and 66.

^cPrincipally poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT).

^dSeveral types marketed.

Uses — transportation (automobiles, trucks, aircraft), construction (housing, plumbing, hardware), electrical goods (business machines, computers), industrial machinery, consumer goods

Table 1.6. Principal Thermosetting Plastics			
Туре	Abbreviation	Typical Uses	Chapter Where Discussed
Phenol-formaldehyde \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	PF	Electrical and electronic equipment , automobile parts, utensil handles , plywood adhesives, particle board binder	14
Urea-formaldehyde O O $H_2N-C-NH_2 + H-C-H$	UF	Similar to PF polymers ; also treatment of textiles, coatings	14
Unsaturated polyester	UP	Construction, automobile parts, boat hulls , marine accessories, corrosion-resistant ducting, pipe, tanks, etc., business equipment	12
Ероху	_	Protective coatings, adhesives , electrical and electronics applications, industrial flooring, highway paving materials, composites	11
$\begin{array}{c} \textbf{Melamine-formaldehy}\\ H_2N & & \\ & & \\ N & & \\ N & & \\ N & & \\ N & & \\ \end{array} \begin{array}{c} N \\ H_2 \\ N \\ H_2 \\ H$		Similar to UF polymers; decorative panels, counter and table tops , dinnerware	14

ΝH₂

1.8.2 Fibers

Properties —

high strength and modulus

good elongation (stretchability) good thermal stability spinnability

dyeability / chemical resistance / insect and mildew resistance/ crease resistance / luster

Uses: textiles, tire cord, rope, cable

Natural fibers —

cotton (polysaccharide cellulose) wool, silk (protein)

Synthetic fibers — Cellulosic / Noncellulosic About 50% of the fiber products

(Nylon + Polyester \rightarrow 70%)

Table 1.7. Principal Synthetic Fibers

Type	Description	
Cellulosic		
Acetate rayon	Cellulose acetate	
Viscose rayon	Regenerated cellulose	
Noncellulosic		
Polyester	Principally poly(ethylene terephthalate)	
Nylon	Includes nylon 66 , nylon 6 , and a variety of other aliphatic and aromatic polyamides	
Olefin	Includes polypropylene and copolymers of vinyl chloride , with lesser amounts of acrylonitrile, vinyl acetate, or vinylidene chloride (copolymers consisting of more than 85% vinyl chloride are called <i>vinyon</i> fibers)	
Acrylic	Contain at least 80% acrylonitrile ; included are <i>modacrylic</i> fibers comprising acrylonitrile and about 20% vinyl chloride or vinylidene chloride	

1.8.3 Rubber (Elastomers)

Exhibit resilience

ability to stretch and retract rapidly

Natural rubber — almost identical to cis-1,4-polyisoprene

Synthetic rubber — styrene-butadiene, polybutadiene, (ethylene-propylene (EPDM) → ca. 70%)

Network elastomers — by crosslinking between unsaturated bonds

Non-network elastomers (thermoplastic elastomers) — block copolymers; physical crosslinking

Туре	Description	
Styrene- butadiene	Copolymer; SBR for styrene-butadiene rubber	
Poly butadiene	almost entirely cis-1,4 polymer	
Ethylene- propylene	EPDM for ethylene-propylene-diene monomer	
Poly chloroprene	Principally trans-1,4 polymer; neoprene rubber	
Poly isoprene Nitrile Butyl Silicone	Mainly cis-1,4 polymer; synthetic natural rubber Copolymer of acrylonitrile and butadiene (major) Copolymer of isobutylene (major) and isoprene backbone of alternating oxygen and methylated silicon atoms; polysiloxane	
Urethane	by linking polyethers through urethane groups	
Silicone $\begin{pmatrix} Me \\ - Si - O \end{pmatrix}$	Urethane $\begin{pmatrix} O & O \\ C - NH - R - NH - C - O - R - O \\ \end{pmatrix}_n$	

1.8.4 Coatings and Adhesives

Coatings — **colored clay** (prehistoric artist)

- \rightarrow oils (portraits; landscapes) \rightarrow eggs (murals) \rightarrow natural varnishes
- → **lacquers** (cellulosenitrate) → **polyester** (alkyd) synthetic varnishes and **paints** (1920s)
- → styrene-butadiene copolymer (interior latex)
- \rightarrow poly(vinyl acetate), poly(acrylate ester)s (**exterior latex**)

Adhesives — bitumens, natural gums and resins, blood

- \rightarrow starch, cellulose nitrate
- → **synthetic polymers** (phenol-formaldehyde, urea-formaldehyde polymers)
- \rightarrow **epoxies** and cyanoacrylates

Both require formulations —

solvents, fillers, stabilizers, pigments, other additives

1.9 Polymer Recycling

Making polymers degradable

Incinerating combustible polymers Recycling (remolding, blending, depolymerization) Finding innovative uses for used polymers

1988, Society of the Plastic Industry (SPI) \rightarrow Voluntary Plastic Container Coding System

Table 1.9. Plastics Recycling code^a

Number	Letters	Plastic
1	PETE ^b (PET)	Poly(ethylene terephthalate)
2	HDPE	High-density polyethylene
3	V or PVC	Poly(vinyl chloride)
4	LDPE	Low-density polyethylene
5	PP	Polypropylene
6	PS	Polystyrene
7	OTHER	Others or mixed plastics

HDPE