
Introduction:

Looking to Fig. (1), it shows 3 (three) lines which indicate isothermal reactions, these lines are:

- * HJK line (A_1) lower critical temp. (Eutectiod reaction) at 1333 °f.
- **CED line (Eutectic reaction) at 2065** of.
- ***** MPB line (Peritectic reaction) at 2720 °f.

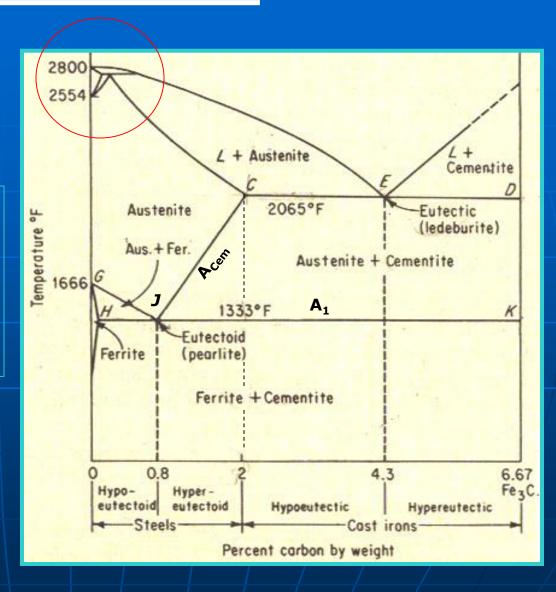


Fig. (1): The Fe - Fe₃C diagram

Peritectic reaction may be written as:

$$L + \delta_1 \longrightarrow \delta_2$$

$$L + \delta \longrightarrow \gamma$$

- It is an isothermal reversible reaction in which a liquid phase reacts with a solid phase to produce another solid phase on cooling.
- The maximum solubility of (C) in (δ) Fe [b. c. c] is 0.1% C at point M.
- **Eutectic** reactions may be written as:

L
$$\gamma$$
 + Cementite (Fe₃C) (L \rightarrow S₁ + S₂)

Ledeburite (Eutectic mixture)

- It is an isothermal reversible reaction in which a liquid solution is converted into two or more mixed solids on cooling, the no. of solids formed being the same as the no. of compositions in the system.
- ***** Eutectoid reaction may be written as:

$$S_1 \xrightarrow{\text{Cooling}} S_2 + S_3 \quad (\text{at 1333 }^0 f) \longrightarrow \gamma \xrightarrow{\text{Cooling}} \alpha + \text{Fe}_3 C \quad (\text{Cementite})$$

Pearlite (Eutectoid mixture)

- It is an isothermal reversible reaction in which a solid phase (usually a solid solution) is converted into two or more mixed solids on cooling, the no. of solids formed being the same as the no. of compositions in the system.

Types of Microstructure in Fe - Fe₃C diagram:

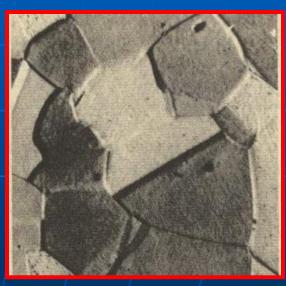
1. Cementite (Fe₃C):

It's a typical hard and brittle interstitial compound of low T. S (σ) \approx 5000 psi, but high Compressive Strength, contains 6.67% C, its crystal structure is Orthorhombic crystal structure.

$$E\%~\approx~0\%~,~~R_c~\approx~72$$

$$R_c \approx 72$$

2. Austenite (γ):

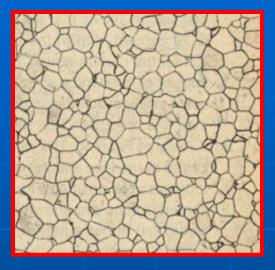

It's an interstitial solid solution of C dissolved in γ (f. c. c) iron. Maximum solubility is 2% C at 2065 of point (C) in fig. 1. Its normally not stable at T_{room} (R_T), but under certain conditions it is possible to obtain γ at R_T .

T. S
$$\approx$$
 150,000 psi, E% \approx 10%, $R_c \approx 40$

$$E\% \approx 10\%,$$

$$R_c \approx 40$$

3. Ledeburite:

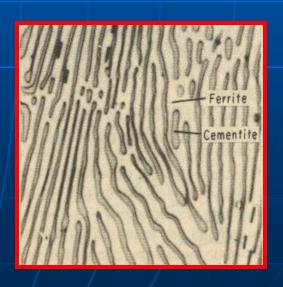

y microstructure

It is a Eutectic mixture of (γ) and Cementite (Fe₃C). It contain 4.3% C and it is formed at 2065 of point (E).

4. Ferrite (α):

It's an interstitial solid solution of small amount of (C) dissolved in α (b. c. c) iron. Maximum solubility is 0.025% C at 1333 °f point (H) in fig. 1. It is the softest structure. The average properties are:

T. S $\approx 40,000$ psi, E% $\approx 4.0\%$, $R_c \approx 0$



a microstructure

5. Pearlite:

It is a Eutectic mixture containing 0.8% (C) and is formed at 1333 °f point (J) in fig. 1 on very slow cooling. It is a very fine plate like or lamellar mixture of (α) + Fe₃C. The average properties are:

T. S \approx 120,000 psi, E% \approx 20%, $R_c \approx$ 20

Pearlite microstructure