Heat Treatment

Heat Treatment (H. T.):

A combination of heating & cooling operations, timed and applied to material or alloy in the solid state in a way that will produce a desired properties.

All basic (H. T.) of steel involves the transformation or decomposition of (γ).

H. T. of steel \longrightarrow 1st stage (heat above A₃)

2nd stage (cool at different cooling rates)

Types of (H. T.) of steel:

- a Annealing Process.
- b Hardening by Continuous cooling.
- c Isothermal treatment.

The purpose of Annealing Process:

Softening.
 Improvement machinability.
 Stress relief.
 Grain refinement.
 Homogenizing.

Steps of Annealing Process

- 1 Heating above A₃.
 2 Hold at a temperature for a definite time.
 Cooling to the Room Temperature (R. T.) at slow rate.
 - **Types of Annealing Process:**
- Full Annealing.
 Homogenizing.
 Normalizing.
 Stress relief anneal.
 Process Anneal (Recrystallization Anneal).
 Spherodizing.

3

Full Annealing:

Heating the Steel to the proper temp. and then cooling slowly through the transformation range (in furnace).

The purpose of annealing (a) - refine the grain. (b) - softness.
 (c) - improve electrical & magnetic properties. (d) - improve machinability.

* Refinement of the grain size of hypoeutectiode steel will occur about 50 °f above the lower critical temp. line ($A_{3,1}$). See fig. 2.

Fig. (2) The Change in microstructure during annealing of:

Homogenizing Treatment:

A heat treatment of an alloy intended to make it uniform in composition by eliminating Coring & Concentration gradient.

✤ It is achieved by heating to a temp. (1100 – 1200 °C) for (10 – 20 hour) followed by slow cooling in air or furnace.

***** Sometimes needed to refine the coarse grains.

Normalizing:

♦ It is carried out by heating to (100 °f) above (A_3) or (A_{cem}) followed by cooling in still air to Room Temp. (R_T) to :

a - produce harder & stronger steel than annealing.

- b improve machinability.
- c modify & refine cast dendritic structure.
- d refine the grain & homogenize the structure.

* less proeutectoid (α) in normalized hypoeutectiode steel & less proeutectoid Cementite (Fe₃C) in hypereutectoid steel as compared with annealed one because of there is less time for the formation of proeutectoid constituent.

* The faster the cooling rate, the lower the temp. of (γ) transformation and the finer the Pearlite (see fig. 3).

Fig. (3) The difference in P structure due to annealing & Normalizing

Stress relief annealing:

* It is useful in removing residual stresses due to Cold Work (C. W.) process.

* It is carried out at a Temp. below (A_1) (1000 – 1200 °f).

Process Annealing (Recrystallization – Anneal):

✤ It is used in the sheet & wire industries after (C. W.) see (fig. 4).

* It is carried out by heating the steel to a Temp. below (A_1) (1000 – 1250 °f).

Fig. (4) The cold – work cycle & Recrystallization diagram

Spherodizing:

* This process will produce a Spheroidal or Globular form of carbide in (α) matrix (as shown in fig. 5) to improve machinability.

***** One of the following methods may be used for Spherodizing:

1 - prolonged holding at a Temp. just below (A_1).

2 - Heating & cooling alternatively between a Temp. that just above and just below (A1).

3 - Heating to a Temp. above (A_1) and then either cooling very slowly in furnace or holding at a Temp. just below (A_1).

Fig. (5): Stages of Spheroidized Annealing.