Heat Treatment

Tempering:
- Reheating a quenched – hardened or a normalized Ferrous alloys to a Temp. below the transformation range & then cooling at any rate desired.
- The purpose of Tempering is to:
 - Relief residual stress.
 - Improve ductility attained at the sacrifice of (Rc) of Steel see fig. (15).
 - Improve Toughness.

- Certain alloys exhibit a phenomenon known as (Temper Britteness) which is a loss of notched – bar toughness when tempered in the range of (1000 - 1250 °F) followed by relating slow cooling.
 - (Mn, P, Cr) are promote susceptibility Temper Brittleness.
 - (Mo) have a retarding effect of Temper Brittleness.
 - Transformation product of (γ) & (M) for (0.8% C) steel is shown in fig. (16) below.

![Diagram](image-url)
Fig. (16)
Austempering:

- This is a heat – treating process developed from the I. T. diagram to obtain structure which is 100% Bainite (B).

- It is accomplished by:
 1. Heating the part to (γ) Temp. > (1400 °f) followed by cooling rapidly in a salt – bath (400 – 800 °f).
 2. The piece is left for a long time until transformation to Bainite is completed.
 3. No reheating is involved as in Tempering.

- Fig. (17) shows Austempering.

- The advantages of Austempering are:
 1. High reduction of area.
 2. High resistance to impact (as compared with Quench + Temper).
 3. Greater ductility & toughness along with high hardness.
 4. Less distortion & less danger of Quench Crack.

- Limitation of Austempering is section of < ½ in. thick is used.

![Image of Austempering process](image-url)
Martempering:

- Quenching an (γ) alloy in a medium at a Temp. at the upper part of (M) range & holding it in the medium until the Temp. throughout the alloy is substantially uniform, the alloy is then allowed to cool in Air through the (M) range see fig. (18).

Martempering: is Martensite tempered to a temp. of about (M_s). It is produced by following steps shown in fig. (18):

1) Heating a Steel to (γ) range above (A_3).
2) Quenching to a Temp. (T_0) just above (M_s) with cooling rate faster than (CCR).
3) Held at (T_0) sufficiently long for the entire piece of Steel to become the same (T_0) without transformation to Bainite.
4) Cooled in Air to change (γ) to (M).
5) The Steel is tempered.

Advantages of Martempering:
- minimize cracking.
- minimize distortion.
- reduce thermal shock.
Case Hardening (Surface heat treatment):

- Hardening a Ferrous alloy so that the outer portion or Case is made substantially harder than the inner portion or Case.

- Method of Case Hardening are:
 - Carburizing (adding Carbon (C)).
 - Nitriding (adding Nitrogen (N₂)).
 - Cyaniding or Carbonitriding (adding C + N₂).
 - Flame Hardening.
 - Induction Hardening.

- The first three methods change the chemical composition and the last two methods don’t change the chemical composition.

Carburizing:

- Oldest + Cheapest method.
- Low (C) Steel (< 0.2% C) placed in atmosphere contain (CO).
- The usual carburizing Temp. (T°) → 1700°f.
- The following reaction occurs:
 \[\text{Fe} + 2\text{CO} \rightarrow \text{FeC} + \text{CO₂} \]
 (C is dissolved in (γ).
- The part is furnace cooled & examined microscopically (fig. (19)).

Fig. (19): Microscopical schematic of Case hardening.
\[X = \sqrt{2D \cdot t} \]

Where:
- \(X \) = thickness in (cm).
- \(D \) = Diffusion coefficient (cm\(^2\)/sec).
- \(t \) = Time in (sec).

- Relation between time & Temp. for Case depth is shown in fig. (20).

Decarburizing (opposite of Carburizing):

- Removing \(C \) from the surface layer if the Steel is heated in atmosphere containing \(CO_2 \) [the carburizing equation is reversible and may proceed to the left].

Types of Carburizing

- **Pack Carburizing** (hardwood charcoal, Cook + 20% BaCO\(_3\)).
- **Gas Carburizing** (\(CH_4, C_2H_6, C_3H_8 \)) [3 – 4 hour].
- **Liquid Carburizing** (40% NaCO\(_3\) + 20% NaCN) [Bath of molten] (max. 1 hour) [0.5 mm depth].
Heat Treatment after Carburizing:

- It is illustrated as shown in fig. (21) below:

![Diagram showing heat treatment after carburizing](image-url)

Fig. (21): Heat treatment after Carburizing.
Various Heat Treatment for Carburized Steel

<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>CASE</th>
<th>CORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A—best adapted to fine-grained steels</td>
<td>Refined; excess carbide not dissolved</td>
<td>Unrefined; soft and machinable</td>
</tr>
<tr>
<td>B—best adapted to fine-grained steels</td>
<td>Slightly coarsened; some solution of excess carbide</td>
<td>Partially refined; stronger and tougher than A</td>
</tr>
<tr>
<td>C—best adapted to fine-grained steels</td>
<td>Somewhat coarsened; solution of excess carbide favored; austenite retention promoted in highly alloyed steels</td>
<td>Refined; maximum core strength and hardness; better combination of strength and ductility than B</td>
</tr>
<tr>
<td>D—best treatment for coarse-grained steels</td>
<td>Refined; solution of excess carbide favored; austenite retention minimized</td>
<td>Refined; soft and machinable; maximum toughness and resistance to impact</td>
</tr>
<tr>
<td>E—adapted to fine-grained steels only</td>
<td>Unrefined with excess carbide dissolved; austenite retained; distortion minimized</td>
<td>Unrefined but hardened</td>
</tr>
<tr>
<td>F—adapted to fine-grained steels only</td>
<td>Refined; solution of excess carbide favored; austenite retention minimized</td>
<td>Unrefined; fair toughness</td>
</tr>
</tbody>
</table>