Heat Treatment

Tempering:

* Reheating a quenched – hardened or a normalized Ferrous alloys to a Temp. below the transformation range & then cooling at any rate desired.

♦ The purpose of Tempering is to:

lr I

Relief residual stress.

Improve ductility attained at the sacrifice of (R_c) of Steel see fig. (15).

Improve Toughness.

♦ Certain alloys exhibit a phenomenon Known as (Temper Brittleness) which is a loss of a notched – bar toughness when tempered in the range of (1000 - 1250 °f) followed by relating slow cooling.

(Mn, P, Cr) are promote susceptibility Temper Brittleness. ↑

(Mo) have a retarding effect of Temper Brittleness.

✓

* Transformation product of (γ) & (M) for (0.8% C) steel is shown in fig. (16) below.

Fig. (15)

Fig. (16)

Austempering:

- * This is a heat treating process developed from the I. T. diagram to obtain structure which is 100% Bainite (B).
- * It is accomplished by:
- 1 heating the part to (γ) Temp. > (1400 °f) followed by cooling rapidly in a salt bath (400 800 °f).
- 2 The piece is left for a long time until transformation to Bainite is completed.
 - 3 No reheating is involved as in Tempering.
- * Fig. (17) shows Austempering.
- **The advantages of Austempering are:**
 - 1 High reduction of area.
- 2 High resistance to impact (as compared with (Quench + Temper).
- 3 Greater ductility & toughness along with high hardness.
- 4 Less distortion & less danger of Quench Crack.
- **\stackrel{\diamond}{\bullet}** Limitation of Austempering is section of $< \frac{1}{2}$ in. thick is used.

Fig. (17): Austempering.

Martempering:

* Quenching an (γ) alloy in a medium at a Temp. at the upper part of (M) range & holding it in the medium until the Temp. throughout the alloy is substantially uniform, the alloy is then allowed to cool in Air through the (M) range see fig. (18).

<u>Martempering:</u> is Martensite tempered to a temp. of about (M_s). It is produced by following steps shown in fig. (18):

- 1) Heating a Steel to (γ) range above (A_3) .
- Quenching to a Temp. (T°) just above (M_{s}) with cooling rate faster than (CCR).
- 3) Held at (T°) sufficiently long for the entire piece of Steel to become the same (T°) without transformation to Bainite.
- 4) Cooled in Air to change (γ) to (M).
- 5) The Steel is tempered.

Advantages of Martempering:

Fig. (18): Martempering.

minimize cracking.
minimize distortion.
reduce thermal shock.

Case Hardening (Surface heat treatment):

* Hardening a Ferrous alloy so that the outer portion or Case is made substantially harder than the inner portion or Case.

* The first three methods change the chemical composition and the last two methods don't change the chemical composition.

Fig. (19): Microscopical schematic of Case hardening.

$$X = \sqrt{2D *t}$$

<u>Where</u>: X =thickness in (cm).

D = Diffusion coefficient (cm² / sec).

t = Time in (sec).

* Relation between time & Temp. for Case depth is shown in fig. (20).

Decarburizing (opposite of Carburizing):

❖ Removing (C) from the surface layer if the Steel is heated in atmosphere containing (CO₂) [the carburizing equation is reversible and may proceed to the left].

Fig. (20): Relation of Time & Temp. for Case hardening.

Types of Carburizing

Pack Carburizing (hardwood charcoal, Cook + 20% BaCO₃).

Gas Carburizing (CH_4 , C_2H_6 , C_3H_8) [3 – 4 hour].

Liquid Carburizing (40% NaCO₃ + 20% NaCN) [Bath of molten] (max. 1 hour) [0.5 mm depth].

Heat Treatment after Carburizing:

❖ It is illustrated as shown in fig. (21) below:

Fig. (21): Heat treatment after Carburizing.

Various Heat Treatment for Carburized Steel

TREATMENT	CASE	CORE
A—best adapted to fine-grained steels	Refined; excess carbide not dissolved	Unrefined; soft and machinable
B—best adapted to fine-grained steels	Slightly coarsened; some solution of excess carbide	Partially refined; stronger and tougher than A
C-best adapted to fine-grained steels	Somewhat coarsened; solu- tion of excess carbide favored; austenite reten- tion promoted in highly alloyed steels	Refined; maximum core strength and hardness; better combination of strength and ductility than B
D—best treatment for coarse-grained steels	Refined; solution of excess carbide favored; austen- ite retention minimized	Refined; soft and machin- able; maximum tough- ness and resistance to impact
E-adapted to fine- grained steels only	Unrefined with excess car- bide dissolved; austenite retained; distortion minimized	Unrefined but hardened
F-adapted to fine- grained steels only	Refined; solution of excess carbide favored; austen- ite retention minimized	Unrefined; fair toughness