Steel alloy that is highly resistance to Corrosion in a variety of environments.

Alloying elements (Cr > 11%, Ni, Mo, Al, Cu, Si, Cb).

 $Cr + O_2 \longrightarrow Cr_2O_3$ Stable oxide film \longrightarrow adherent Serves to protect (insulate) the surface from further corrosion reaction (Oxidation) this process is referred as (Passivation).

Classification of Stainless Steel:

No.	Stainless St. Type	%C	%Mn	%Cr	%Ni	%Others
1	Austenitic S. St (y. S. St.)	< 0.25	< 10	11 - 24	3 - 22	Mo, Ti, Si, Nb
2	Martensitic S. St (M. S. St)	< 0.2	< 1	11 - 18		
3	Ferritic S. St. (a. S. St.)	< 0.2	< 1	14 – 27		
4	Precipitation Hardening S. St.	< 0.12	< 0.75	15 - 17	4 – 10.5	Si (0.4 - 0.5) Al (1.15) Cu (3.6) Cb (0.25)

System Identify Stainless Steel:

No.	Series Designation	Groups			
1	2XX	γ . S. St. (Cr – Ni – Mn) non - hardenable, non – magnetic.			
2	ЗХХ	γ. S. St. (Cr – Ni) non - hardenable, non – magnetic.			
3	4XX	M. S. St. (Cr) hardenable + magnetic. α . S. St. (Cr) non - hardenable + magnetic.			
4	5XX	(Cr + low c) heat resisting.			

<u>Austenitic Stainless Steel (γ. S. St):</u>

Steel alloy that is highly resistance to Corrosion in a variety of environments.

The alloying elements are (Ni + Cr) > 23%.

They are not hardenable by H. T, they may be C. W to develop a wide range of T. S (ex. 350,000 psi).

* The Phase diagram is illustrated in fig. (28).

Composition (w/o)

<u>Fig. (28) Fe – Cr – Ni</u> (Ternary Phase diagram

Austenitic Stainless Steel (y. S. St):

* Type (302, 304, 316) are the basic alloys. They are susceptible to inter-granular corrosion (along the grain boundaries, this attack can take place when (α . S. St) sensitized by heating at °T (427 – 871) for sufficient period of time......

During this process: Cr – Carbide precipitate at the grain boundaries \implies depleting the Cr content (concentration in the matrix (Cr $_{1}$ < 12%).

* The remedies are:

1 – Using lower %C (C < 0.02%).

2 – Using such element have stronger Carbide – forming tendency than Cr (Mo, Ti).

3 – By solution treatment (thermal treatment) called Stabilization treatment consist of:

a – Heating to a °T (1000 - 1150) °C for a period of time sufficient to dissolve Car bide.

b – Cooling rapidly (Quenching).

Ferritic Stainless Steel (α. S. St):

They don't respond to
Heat Treatment because
these alloys are Ferritic.

- * Type (405, 430, 446) are the most type of (α. S. St.).
- Fig. (29) shows phase diagram which indicate that these steels fall outside (γ) loop.
- They are magnetic & can be C.W & H.W.

The strength of (α. S. St) is 50% higher than Carbon
St. if they are in the annealed condition.

Fig. (29) Fe – Cr Phase diagram

Ferritic Stainless Steel (α. S. St):

* Heat Treatment of (α. S. St.) is annealing to relieve welding and C. W stresses:

- + They annealed at $^{\circ}T > 850 < ^{\circ}T$ at which (γ) is formed.
- + They are not tempered since:
 - a The amount of (M) formed are negligible.
 - **b** Because of possible embrittlement.
 - c Cooled slowly.

Martensitic Stainless Steel (M. S. St):

* Types (410, 416) are the most popular alloys, they are used for turbine blade.

***** They are magnetic, can be C. W and are easily H. W., their corrosion resistance are < ($\alpha \& \gamma$ S. St.).

Martensitic Stainless Steel (M. S. St):

Heat Treatment of (M. S. St.):

- + Heating above transformation range 1850 °f.
- + Cooling in air or oil.
- + Time at °T is held to a min. to prevent:
 - a The decarburization.
 - b Grain growth.

* Tempering of these alloys should not be done in the range (750 – 950) °f because of drop in impact strength so it is usually done above 1100 °f which is the higher Temp. cause reduction in corrosion resistance.

***** Alloys type (501, 502) have excellent resistance to oxidation and better corrosion resistance than ordinary steel.

* These steels hardened by oil Quenching, their mechanical properties are really intermediate between [Cr – Steel & M. S. St.], they have used for Petroleum refining equipments.

Precipitation hardening Stainless Steel (PH. S. St):

Precipitation hardening Stainless Steel (PH. S. St):

Addition of (Al, Cu, Ti, Mo) Precipitation Hardening.
Heat Treatment for (ex. Alloy 17 – 7 ph. S. St) as following:
Solution treated at about 1050 °C dissolve coarse precipitates + obtain uniform (γ) solid solution.

Cooled rapidly (Quench) to RT supersaturated solid solution.

Aging at 510 °C fine, inter-metallic compound which strengthen the steel ($\sigma_T = 200 - 300 \times 10^{-3} \text{ psi}$).