Cu & its Alloys

Grades of Pure Cu

- Tough Pitch Cu (0.04 – 0.05)% O₂
- Deoxidized Cu (0)% O₂
- O. F. H. C - Oxygen free high conductivity

Cu Alloys

- Brass - Cu - Zn
- Bronze - Cu - Sn
- Cupronickel - Cu - Ni
- Cupronickel - Cu - Ni - Zn (Nickel – Silver alloy)
- Precipitation Hardening Alloy - Cu – Be
- Precipitation Hardening Alloy - Cu - Cr
Cu & its Alloys

Heat Treatment of Cu & its Alloy:

- Homogenizing
- Annealing
- Stress Relieving
- Solution Treating
- Precipitation Hardening (Aging)

Homogenizing:

- Process that employs high temp. for a prolonged period to eliminate or decrease **Segregation in Casting** that are to be hot (H) or Cold worked (C. W).

 - Cu – Sn

 - Cu – Si

 { Subjected to homogenizing treated.

 - Cu – Ni

 - If Sn > 8% (are noted for **Segregation & Coring**) Homogenizing at 200 °F above max. annealing temperature.
Cu & its Alloys

Annealing:

- Heating the (Wrought metal) to $^\circ$T
 - 500 – 1200 $^\circ$f (Wrought Cu)
 - 800 – 1450 $^\circ$f (Wrought Cu Alloy)
 - that causes Recrystallization.

- Temperature & time are very important factors during annealing wrought Cu alloys except ($\alpha – \beta$, certain Precipitation hardening alloys) see fig. (31 a, b, c, d)

![Annealing curve for yellow Brass (65% Cu – 35 Zn) hard drawn 63% for 1 hour.](image)
Annealing:

- An increased amount of C. W. prior to annealing lowers the Recrystallization temperature.
- Annealing may be achieved by subsequent anneals (one or two anneals before final anneal) to produce the final grain size.

Fig. (31 c & d) Annealing curve for yellow Brass (65% Cu – 35 Zn) hard drawn 63% for 1 hour.

An increased amount of C. W. prior to annealing lowers the Recrystallization temperature.

Annealing may be achieved by subsequent anneals (one or two anneals before final anneal) to produce the final grain size.
To obtain best results when annealing Cu & its alloys the following precautions should be observed:

- **Sampling & Testing.**
- Effect of pretreatment (C. W. & anneal prior C. W. effect result obtained during annealing).
- Effect of time (the time in Furnace has an important effect on temp. of the metal).
- Oxidation (should be kept a minimum).
- Effect of lubricant.
- H₂ embrittlement (H₂ + O₂ (in Cu) → H₂O (Vapor) under pressure).
- Impurities.
Copper & its Alloys

Stress Relieving:

- Residual stress contributes to stress corrosion cracking in Brass alloy (Zn > 20%).
- Stressed Phosphor Bronze & Cu – Ni alloy are more susceptible to fire cracking (failure similar to stress corrosion cracking but caused when the stressed metal is rapidly heated to above a Recrystallization temp.).
- Low temp. for prolonged time is the deal cycle for relieving stressed and retaining mechanical properties.
- Typical stress relieving temp. for Cu alloys are (375 – 500) °F at 1 hr.

Precipitation hardening:

Cu – Al (Al > 10%)
Cu – Be
Cu – Cr
Cu – Zr

Alloys which are Precipitation hardening

- These alloys are hardened by cooling rapidly from high temp. to produce Martensitic type of structure and then tempering at a lower °T.
Solution treating of (Cu – Be) alloys:

- Solution treating temp. (1400 – 1900) °f depending on %Be.
 - # it decrease as %Be increase.
 - 1800 – 1900 °f for %Be of 0.1%.
 - 1425 – 1460 °f for %Be of 2.6 – 2.85%.

- Time at °T is (1 – 3) hr.
- Aging °T is (650 – 950) °f.
- All alloys are water Quenched immediately from the solution treating temperature.
- Shorter time may be desirable to prevent grain growth.
Cu & its Alloys

Cu – Cr alloys:

- Cu – Cr (0.8%) is solution treated at (1750 – 1850) °f.
- Rapidly quenched, C. W. in a manner similar to unalloyed Cu.
- Aged at (750 – 930) °f for 4 hr or more.

Mechanical properties of (Cu – Cr) alloys increased as follows:

<table>
<thead>
<tr>
<th></th>
<th>Solution treated</th>
<th>Solution treated + aged</th>
<th>Drawn + aged</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ (psi)</td>
<td>35×10^3</td>
<td>60×10^3</td>
<td>70×10^3</td>
</tr>
<tr>
<td>R_B</td>
<td>50</td>
<td>60</td>
<td>80 - 85</td>
</tr>
</tbody>
</table>