CORROSION TYPES
CHAPTER 4
11) HYDROGEN DAMAGE

LECTURER
SAHEB M. MAHDI
11) Hydrogen Damage

It is a general term which refers to mechanical damage of a metal caused by the presence of, or interaction with, hydrogen.

Hydrogen damage may be classified into four distinct types:
- hydrogen blistering.
- hydrogen embrittlements.
- decarburization.
- hydrogen attack.

Blistering

Hydrogen enters the lattice of a metal, diffuses to voids, creates high internal stresses → blisters . . .

Blistering may occur during exposure to:
- hydrocarbons;
- electroplating solutions;
- chemical process streams;
- pickling solutions;
- H-containing contaminants during welding;
- general corrosive environments.

SAHEB M. MAHDI
Cross section of a carbon steel plate removed from a petroleum process stream showing a large hydrogen blister. Exposure time: 2 years.

N.B. The mechanism of hydrogen uptake by metals must involve atomic hydrogen - molecular hydrogen cannot diffuse through metal lattices. BUT . . . remember that molecular hydrogen may absorb and dissociate on metal surfaces.
Prevention of Blistering

► use steels with few or no voids; (Killed steel instead of rimmed)
► use coatings; (Metallic, inorganic and organic coatings, cladding, rubber and plastic coating and brick linings).
► use inhibitors
► remove poisons; (impurities that can promote hydrogen evolution. \(\text{S}^2\) (particularly bad), As compounds, \(\text{CN}^-\), etc.
► use different materials (Ni-base alloys have low diffusion rates for hydrogen).
Hydrogen Embrittlements
Similar to blistering . . . hydrogen enters metal lattice . . .
BUT . . . interaction with metal lattice different. High-strength (and more brittle) steels are susceptible. H-embrittlements different from SCC in nature of cracks . stress-corrosion cracks usually propagate anodically;

Direction of advancing cracking into metal

Anodic stress corrosion cracking
Hydrogen embrittlement

Region of anodic stress corrosion cracking
Region of immunity
Region of hydrogen embrittlement

SAHEB M. MAHDI
Prevention of Embrittlement

- reduce corrosion rate (inhibitors, coatings, etc.).
- change electroplating process to minimize H effects (voltage, current density, bath composition, etc.).
- bake material to remove H; (200-300 °F).
- minimize residual stresses; (annealing).
- use less susceptible material; (Alloying with Ni or Mb).
- maintain clean conditions during welding; (Dry condition).

Decarburization and Hydrogen Attack

High temperature process - C or carbide in steels can react with gaseous hydrogen

\[C + 2H_2 \rightarrow CH_4 \]

Note that the reaction can occur with atomic H in the metal lattice . . .

\[C + 4H \rightarrow CH_4 \]

May crack the steel from high internal pressure. May cause loss of strength as C disappears.