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Chapter 2 

 

2-1. Pressure: 

Pressure is defined as a normal force exerted by fluid per unit area. We 

speak of pressure only when we deal with a gas or liquid. The counterpart 

of pressure in solids is normal stress. Since pressure is defined as force 

per unit area, it has the unit of newtons per square meter (N/m2), which is 

called a Pascal (Pa), that is: 

1 Pa = 1 N/m2 

There are other pressure units commonly used in practice, especially in 

Europe, are bar, standard atmosphere, and kilogram-force per square 

centimeter: 

1 bar = 105 Pa = 0.1 M Pa = 100 k Pa 

1 atm = 101,325 Pa = 101.325 kPa = 1.01325 bars  

              1 kg/cm2  = 9.807 N/cm2  = 9.807 X 104 N/m2 = 9.807 X 104 Pa 

                                     = 0.9807 bar = 0.9679 atm  

The actual pressure at a given position is called the absolute pressure, and 

it is measured relative to absolute vacuum (i.e., absolute zero pressure). 

Most pressure-measuring devices, however, are calibrated  to read zero in 

the atmospheric (Figure 2-1), and so they indicate the difference between 

the absolute pressure and the local atmospheric pressure. This difference 

is called the gage pressure. Pgage can be positive or negative, but pressures 

below atmospheric are sometimes called and are measured by by vacuum 

gages that indicate the difference between the atmospheric pressure and 

the absolute pressure. Absolute, gage, and vacuum pressures are related 

to each other by: 

Pgage = Pabs - Patm 

Pvac = Patm - Pabs 
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This is illustrated in Figure 2-2. 

  

 

                            Figure 2-1. Some basic pressure gages. 

 

 

 

 

 

 

 

 

            

 

     Figure 2-2. Absolute, gages, and vacuum pressures. 
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The gage used to measure the air in an automobile tire reads the gage 

pressure. Often the letters "a" (for absolute pressure) and "g" (for gage 

pressure) are added to pressure units (such as psia and psig). 

Example 2-1: 

A vacuum gage connected to a chamber reads 40 kPa at a location where 

atmospheric is 100 kPa. Determine the absolute pressure in the chamber.  

Solution:  

The gage pressure of an vacuum chamber is given. The absolute pressure 

in the   chamfer is be determine.  

Analysis: the absolute pressure is easily determined from Equation 2 to be: 

Pabs  = Patm – Pvac = 100 – 40 = 60  kPa 

Discussion: Note that the local value of the atmospheric pressure is used 

when determining the absolute pressure. 

2-2. Pressure measurement Devices: 

2-2-1. The Barometer:  

Atmospheric pressure is measured by a device called a barometer, thus, 

the atmospheric pressure is often referred to as the barometric pressure. 

The Italian Evangelista Torricelli (1608-1647) was the first to conclusively 

prove that the atmospheric pressure can be measured by inverting a 

mercury-filled tube into a mercury container that is open to the 

atmosphere, as shown in Figure 2-3. The pressure at point 𝑩 is equal to the 

atmospheric pressure, and the pressure at 𝑪 can be taken to be zero since 

there is only mercury vapor above point 𝑪 and the pressure is very low 

relative to 𝑷atm  and can be neglected to an excellent approximation. Writing 

a force balance in the vertical direction gives: 

                                                     𝑷atm = 𝝆𝒈𝒉                                                   (2.1) 

Where 𝝆 is the density of mercury, 𝒈 is the local gravitational acceleration, 

and 𝒉 is the height of the mercury column above the free surface. Note that 
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the length and cross-sectional area of the tube have no effect on the height 

of the fluid column of a barometer (Figure 2-4).                                                         

                      

 

 

 

 

 

 

 

 

      Figure 2-3. The basic barometer.      Figure 2-4.  

A frequently used pressure unit is the standard atmospheric, which is 

defined as the pressure produced by a  column of mercury  760 mm in 

height at 0℃ (𝝆Hg = 13595 kg/m3) under standard gravitational acceleration 

(𝒈 = 9.807 m/s2). If water instead of mercury were used to measure the 

standard atmospheric pressure, a water column of about 10.3 m would be 

needed. Pressure is sometimes expressed (especially by weather 

forecasters) in terms of the height of the mercury column. The standard 

atmospheric pressure, for example, is 760 mmHg at 0℃. The unit mmHg is 

also called the torr in honor of Torricelli. Therefore, 1 atm = 760 torr and 1 

torr = 133.3 Pa. 

 

Example 2-2: 

Determine the atmospheric pressure at a location where the barometric 

reading is 740 mm Hg and the gravitational acceleration is 𝒈 = 9.805 m/s2. 

Assume the temperature of mercury to be 10℃, at which its density is 

13570 kg/m3. 
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Solution: 

Assumptions: The temperature of mercury is assumed to be 10℃. 

Properties: The density of mercury is given to be 13570 kg/m3. 

Analysis: The atmospheric pressure is determined to be: 

𝑷atm = 𝝆𝒈𝒉 

        = (13570 kg/m3)(9.805 m/s2)(0.740 m)  
𝟏 𝐍

𝟏 𝐤𝐠.𝐦/𝐬𝟐
  

𝟏 𝐤𝐏𝐚

𝟏𝟎𝟎𝟎 𝐍/𝐦𝟐  

      = 98.5 kPa 

2-2-2. The Manometer:  

Consider the manometer shown in Figure 2-5 that is used to measured the 

pressure in the tank. Since the gravitational effects of gases are negligible, 

the pressure anywhere in the tank and position 1 has the same value. 

Furthermore, since pressure in a fluid does not vary in the horizontal 

direction within a fluid, the pressure at point 2 is the same as the pressure 

at point 1, 𝑷2 = 𝑷1.   

The differential fluid column of height 𝒉 is in static equilibrium, and it is 

open to the atmosphere. Then the pressure at point 2 is determined directly 

from the flowing equation: 

                                                𝑷2 = 𝑷atm + 𝝆𝒈𝒉                                               (2.2) 

 

 

 

 

 

 

     Figure 2-5. The basic manometer. 
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Example 2-3: 

A manometer is used to measure the pressure of a gas in a tank. The fluid 

used has a specific gravity of 0.85, and the manometer column height is 55 

cm, as shown in Figure 2-6. If the local atmospheric pressure is 96 kPa, 

determine the absolute pressure within the tank? 

Solution: 

The reading of a manometer 

attached to a tank and the 

atmospheric pressure are given. 

The absolute pressure in the tank 

is to be determined. 

Assumption: the density of the gas 

in the tank is much lower than the 

density of the manometer fluid. 

Properties: The specific gravity of 

the manometer fluid is given to be 

0.85. We take the standard density 

of water to be 1000 kg/m3.                                            

                                                               Figure 2-6. Schematic for Example 2-3. 

Analysis: The density of the fluid is obtained by multiplying its specific 

gravity by the density of water. 

𝝆 = SG (ρH2O) = (0.85)(1000 kg/m3) = 850 kg/m3 

Then from Equation 2.2: 

𝑷 = 𝑷atm + 𝝆𝒈𝒉 

   = 96 kPa + (850 kg/m3)(9.81 m/s2)(0.55 m) 
𝟏 𝐍

𝟏 𝐤𝐠.𝐦/𝐬𝟐
  

𝟏 𝐤𝐏𝐚

𝟏𝟎𝟎𝟎 𝐍/𝐦𝟐   

   = 100.6 kPa 

Discussion: Note that the gage pressure in the tank is 4.6 kPa 
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The last principles, which is a result of Pascal's law, allows us to "jump" 

from one fluid column to next in manometers without worrying about 

pressure change as long as we stay in the same continuous fluid and the 

fluid is at rest. Then the pressure at any point can be determined by 

starting with a point of known pressure and adding or subtracting 𝝆𝒈𝒉 

terms as we advance toward the point of interest. For example, the 

pressure at the bottom of the tank in Figure 2-7 can be determine by 

starting at the free surface where the pressure is 𝑷atm moving downward 

until we reach point 1 at the bottom, and setting the result equal to 𝑷1. It 

gives: 

𝑷atm + 𝝆1𝒈𝒉1 + 𝝆2𝒈𝒉2 + 𝝆3𝒈𝒉3 = 𝑷1 

In the special case of all fluids having the same density, this relation 

reduces to 𝑷atm +𝝆𝒈 (𝒉1 + 𝒉2 + 𝒉3) = 𝑷1.  

 

 

 

 

 

 

 

 

                                      Figure 2-7. 

Figure 2-7. In stacked-up fluid layers at rest, the pressure change across 

each fluid layer density and height 𝒉 is𝝆𝒈𝒉. 

          Manometers are particularly well-suited to measure pressure drops 

across a horizontal flow section between two specified points due to the 

presence of a device such as a valve or heat exchanger or any resistance 

to flow. This is done by connecting the two legs of the manometer to these 

two points, as shown in Figure 2-8.    
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The working fluid can be either a 

gas or a liquid whose density is 

𝝆𝟏. The density of the manometer 

fluid is 𝝆𝟐, and the differential 

fluid height is 𝒉. the two fluids 

must be immiscible, and 𝝆𝟐 must 

be greater than 𝝆𝟏. A relation for 

the pressure difference 𝑷1 – 𝑷2 can 

be obtained by starting at point 1 

with 𝑷1, moving along the tube by 

adding or subtracting the 𝝆𝒈𝒉 

terms until we reach point 2, and 

setting the results equal to 𝑷2:          Figure 2-8.  

                                  𝑷1 +  𝝆𝟏𝒈 (𝒂 + 𝒉) - 𝝆𝟐𝒈𝒉 -  𝝆𝟏𝒈𝒂 = 𝑷2                           (2.3) 

Note that we jumped from point 𝑨 horizontally to point 𝑩 and ignored the 

part underneath since the pressure at both points is the same. Simplifying, 

                                               𝑷1 – 𝑷2 = (𝝆𝟐 - 𝝆𝟏) 𝒈𝒉                                         (2.4) 

Note that the distance a must be included in the analysis even though it 

has no effect on the result. Also, when the fluid flowing in the pipe is a gas, 

then 𝝆𝟏 ≪ 𝝆𝟐 and the relation in Equation 2.4 simplifies to 𝑷1 – 𝑷2 ≅ 𝝆𝟐𝒈𝒉. 

 

2-3. Flow of incompressible fluid: 

2-3-1. Fiction factor and pressure drop in pipes: 

Consider steady, fully developed flow in a straight pipe of length 𝑳 and 

internal  diameter 𝒅𝒊. As shown in Figure 2-9  a force balance on a 

cylindrical element of the fluid can be written as:  

𝑨 ∆𝑷𝒇 = 𝑨s 𝝉w                                             (2.5) 

𝝅

𝟒
 𝒅𝒊𝟐∆𝑷𝒇= 𝝅 𝒅𝒊𝑳 𝝉w 
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                         Figure 2-9.                                                    

                                                    ∆𝑷𝒇 = 4 𝝉w 
𝑳

𝒅𝒊
                                          (2.6)  

It was noted that the friction pressure drop for turbulent flow in a pipe 

varies as the square of the flow rate at very high values of 𝑹𝒆. At lower 

values of 𝑹𝒆 the pressure drop varies with flow rate, and therefore with 𝑹𝒆, 

to a slightly lower power which gradually increases to the value 2 as 𝑹𝒆 

increases. The pressure drop in turbulent flow is also proportional to the 

density of the fluid. This suggests writing Equation 2.6 in the form:  

                                               ∆𝑷𝒇 = 4 
𝑳

𝒅𝒊
  

𝝉𝒘

𝝆𝒖𝟐
 𝝆𝒖

𝟐
                                     (2.7) 

In the range where ∆𝑷𝒇 varies exactly as 𝒖𝟐 the quantity 𝝉𝒘/𝝆𝒖𝟐 must be 

constant, while at lower values of 𝑹𝒆 the value of 𝝉𝒘/𝝆𝒖𝟐 will not quite be 

constant but will decrease slowly with increasing 𝑹𝒆. Consequently, 𝝉𝒘/𝝆𝒖𝟐 

is a useful quantity with which to correct pressure drop data. A slightly 

different form of Equation 2.7 is obtained by replacing the two occurrences 

of 𝝆𝒖𝟐 with 
𝟏

𝟐
𝝆𝒖𝟐 :                                     

                                         ∆𝑷𝒇 = 4 
𝑳

𝒅𝒊
  

𝝉𝒘
𝟏

𝟐
𝝆𝒖𝟐

   
𝟏

𝟐
𝝆𝒖𝟐                                     (2.8) 

The quantity 
𝟏

𝟐
𝝆𝒖𝟐 will be recognized as the kinetic energy per unit volume 

of the fluid. 

𝒖 
 

𝒅𝒊 
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The term 𝝉w/(
𝟏

𝟐
𝝆𝒖𝟐) in Equation 2.7 defines a quantity known as the Fanning 

friction factor 𝒇, thus: 

                                                         𝒇 = 
𝝉𝒘

𝟏
𝟐
𝝆𝒖𝟐

                                                  (2.9) 

It will be appreciated that the factor of 
𝟏

𝟐
 in Equation 2.9 is arbitrary and 

various other friction factors are in use. For example, in the first the basic 

friction factor denoted by  𝒋𝒇 was used. This is defined by: 

                                                      𝒋𝒇 = 
𝝉𝒘

𝝆𝒖𝟐
                                                 (2.10)  

Thus   

                                                           𝒋𝒇 = 𝒇/2                                                 (2.11)  

When using 𝒋𝒇, the pressure drop is given by Equation 2.7. using the 

fanning friction factor, which is defined by Equation 2.10, Equation 2.8 may 

be written as:               

                                       ∆𝑷𝒇 = 4𝒇  
𝑳
𝒅𝒊
  
𝝆𝒖𝟐

𝟐
 = 
𝟐𝒇𝑳𝝆𝒖𝟐

𝒅𝒊
                                 (2.12)  

This is the basic equation from which the frictional pressure drop may be 

calculated. It is valid for all types of fluid and for both laminar and turbulent 

flow. However, the value of 𝒇 to be used does depend on these conditions. 

For laminar flow of a Newtonian fluid in pipe, the Fanning factor is given 

by: 

𝒇 = 
𝟏𝟔

𝑹𝒆
                                    (2.13) 

For turbulent flow of a Newtonian fluid, 𝒇 decreases gradually with 𝑹𝒆, 

which must be the case in view of the fact that the pressure drop varies 

with flow rate to a power slightly lower than 2.0. It is also found with 

turbulent flow that the value of 𝒇 depends on the relative roughness of the 

pipe wall. The relative roughness is equal to 𝒆/𝒅I where 𝒆 is the absolute 
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roughness and 𝒅i the internal diameter of the pipe. Values of absolute 

roughness for various kinds of pipes and ducts are given in Table 2.1. 

        Table 2.1. 

 

      

 

 

 

 

 

 

 

Values of the friction factor are traditionally presented on a friction factor 

chart such as that shown in Figure 2-10. It will be noted that the greater the 

relative roughness, the higher the value of 𝒇 for a given value of 𝑹𝒆. At 

higher values of 𝑹𝒆, the friction factor becomes independent of 𝑹𝒆; this is 

true for the region of the chart above and to the right of the broken line. In 

the region of transition between laminar and turbulent flow, the flow is 

rather unpredicted and caution should be exercised in relying on the 

values of 𝒇 used. 

Considerable effort has been expended in trying to find algebraic 

expression to relate 𝒇 to 𝑹𝒆 and 𝒆/𝒅I. For turbulent flow in smooth pipes, 

the simplest expression is the Blasius equation: 

                                                        𝒇 = 0.079 𝑹𝒆- 0.25                                                (2.14)  

The equation is valid for the range of 𝑹𝒆 from 3000 to 1 x 105 . 

Similarly, the Drew equation: 

                                            𝒇 = 0.00140 + 0.125 𝑹𝒆- 32                                  (2.15) 
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Is good for 𝑹𝒆 from 3000 to at least 3 x 106. 

The most widely accepted relationship for turbulent flow in smooth pipes is 

the von Karman equation: 

                               
𝟏

𝒇𝟏/𝟐 = 4.0 log (𝒇𝟏/𝟐 𝑹𝒆) – 0.40                         (2.16) 

This equation is very accurate but has disadvantage of being implicit in𝒇. 

Figure 2-10. 

Example 2-4: 

Calculate the frictional pressure drop for a commercial steel pipe with the 

following characteristics:   

Length 𝑳                                  = 30.48 m 

Inside diameter 𝒅I                   = 0.0526 m 

Pipe roughness 𝒆                   = 0.000045 m 

Steady liquid flow rate 𝑸       = 9.085 m3/h 
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Liquid dynamic viscosity 𝝁  = 0.01 Pa s 

Liquid density 𝝆                    = 1200 kg/m3  

Solution: 

Mean velocity 𝒖  = 
𝑸

 𝝅𝒅𝒊
𝟐 /𝟒

 

From the given values: 

𝝅𝒅𝒊
𝟐

𝟒
 = 

 𝟑.𝟏𝟒𝟐 (𝟎.𝟎𝟓𝟐𝟔 𝐦)𝟐

𝟒
 = 0.002173 m2            

    𝑸 = 
𝟗.𝟎𝟖𝟓 𝐦𝟑/𝐡

𝟑𝟔𝟎𝟎 𝐬/𝐡
 = 0.002524 m3/s 

Therefore  

𝒖 = 
 𝟎.𝟎𝟎𝟐 𝟓𝟐𝟒 𝐦𝟑/𝐬

𝟎.𝟎𝟎𝟐𝟏𝟕𝟑 𝐦𝟐  = 1.160 m/s 

The Reynolds number is given by:  

𝑹𝒆  = 
𝝆𝒖𝒅𝒊

𝝁
 

Substituting the given values: 

𝑹𝒆 = 
 𝟏𝟐𝟎𝟎

𝐤𝐠

𝐦𝟑  𝟏.𝟏𝟔𝟎
𝐦

𝐬
 (𝟎.𝟎𝟓𝟐𝟔 𝐦)

𝟎.𝟎𝟏𝐏𝐚.𝐬
 = 7322 

Relative roughness is given by: 

𝒆

𝒅𝒊
 = 
𝟎.𝟎𝟎𝟎𝟎𝟒𝟓 𝐦

𝟎.𝟎𝟓𝟐𝟔 𝐦
 = 0.000856 

From the graph of 𝒇 against Re in Figure 2-10, 𝒇 = 0.0084 for Re = 7322 and  

𝒆/𝒅𝒊= 0.000856. 

The frictional pressure drop is given by: 
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∆𝑷𝒇 = 4𝒇  
𝑳
𝒅𝒊
  
𝝆𝒖𝟐

𝟐
 

From the given values: 

 
𝑳

𝒅𝒊
  = 

𝟑𝟎.𝟒𝟖 𝒎

𝟎.𝟎𝟓𝟐𝟔 𝒎
 = 579.5 

And 

𝝆𝒖𝟐

𝟐
 = 

 𝟏𝟐𝟎𝟎
𝒌𝒈

𝒎𝟑 (𝟏.𝟏𝟔𝟎
𝒎

𝒔
)𝟐

𝟐
 = 807.4 N/𝐦𝟐 

Therefore  

∆𝑷𝒇 = 4 (0.0084)(579.5)(807.4 N/𝐦𝟐) 

                                           = 15720 N/𝐦𝟐 

 

2-4. Pumps: 

Pumps are devices for supplying energy or head to a flowing liquid in order 

to overcome head losses due to friction and also, if necessary, to raise the 

liquid to a higher level. In general, pumps added energy to the fluid-they do 

work on the fluid; turbines extract energy from the fluid-the fluid does work 

on them as shown in Figure 2-11. The term "pump" will be used to 

generically refer to all pumping machines, including pumps, fans, blowers, 

and compressors. Fluid machines can be divided into two main categories: 

positive displacement machines (denoted as the static type) and 

turbomachines (denoted as the dynamic type).  

Some fundamental parameters are used to analyzed the performance of a 

pump. The mass flow rate 𝒎  of fluid through the pump is an obvious 

primary pump performance parameter. For incompressible flow, it is more 

common to use volume flow rate 𝑽  rather than mass flow rate. In the 

turbomachinery industry, volume flow rate is called capacity and is simply 

mass flow rate divided by fluid density, 
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Volume flow rate (capacity):             𝑽  = 
𝒎 

𝝆
                                                ( 2.17)  

 Figure 2-11.                                               Figure 2-12. 

The performance of a pump is characterized additionally by its net head 𝑯, 

defined as the change Bernoulli head between the inlet and the outlet of the 

pump, 

Net head:            𝑯  =  
𝑷

𝝆𝒈
+ 

𝑽𝟐

𝟐𝒈
+ 𝒛 out -  

𝑷

𝝆𝒈
+ 

𝑽𝟐

𝟐𝒈
+ 𝒛 in            (2.18) 

The dimension of net head is length, and it is often listed as an equivalent 

column height or water, even for a pump that is not pumping water.   

For the case in which a liquid is being pumped, the Bernoulli head at the 

inlet equivalent to the energy grade line at the inlet, 𝐄𝐆𝐋in obtained by 

aligning a Pitot probe in the center of the flow as illustrated in Figure 2-12. 

The energy grade line at the outlet 𝐄𝐆𝐋out is obtained in same manner, as 

also illustrated in the figure. In the general case, the outlet of the pump may 

be at a different elevation than the inlet, and its diameter and average 
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speed may not be the same as those at the inlet. Regardless of these 

differences, net head 𝑯 is equal to the difference between 𝐄𝐆𝐋out and 𝐄𝐆𝐋in,  

Net head for a liquid pump:                𝑯 = 𝐄𝐆𝐋out - 𝐄𝐆𝐋in   

Consider the special case of incompressible flow through a pump in which 

the inlet and outlet diameters are identical, and there is no change in 

elevation. Equation 2.18 reduces to: 

Special case with 𝑫out = 𝑫in and 𝒛out = 𝒛in:                𝑯 = 
𝑷𝐨𝐮𝐭−𝑷𝐢𝐧

𝝆𝒈
 

For this simplified case, net heat is simply the pressure rise across the 

pump expressed as a head (column height of the fluid). 

Net head is proportional to the useful power actually delivered to the fluid. 

It is traditional to call this power the water horsepower, even if the fluid 

being pumped is not water, and even if the power is not measured in units 

of horsepower. By dimensional reasoning, we must multiply the net head of 

Equation 2.18 by mass flow rate and gravitational acceleration to obtain 

dimensions of power. Thus, 

Water horsepower:             𝑾 water horsepower = 𝒎 𝒈𝑯 = 𝝆𝒈𝑽 𝑯                        (2.19) 

All pumps suffer from irreversible losses due to friction, internal leakage, 

flow separation on blade surfaces, turbulent dissipation, etc. Therefore, the 

mechanical energy supplied to the pump must be larger than 𝑾 water horsepower. 

In pump terminology, the external power supplied to the pump is called the 

brake horsepower, which we abbreviate as bhp.  

Brake horsepower:              bhp = 𝑾 shaft = 𝝎𝐓shat                                       (2.20) 

where 𝝎 is the rotational speed of the shaft (rad/s) and 𝐓shat is the torque 

supplied to the shaft. We define pump efficiency 
pump

 as the ratio of 

useful power to supplied power: 

pump efficiency:  
pump

 = 
𝑾 𝐰𝐚𝐭𝐞𝐫 𝐡𝐨𝐫𝐬𝐞𝐩𝐨𝐰𝐞𝐫 

𝑾 𝐬𝐡𝐚𝐟𝐭
 = 

𝑾 𝐰𝐚𝐭𝐞𝐫 𝐡𝐨𝐫𝐬𝐞𝐩𝐨𝐰𝐞𝐫 

𝐛𝐡𝐩
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                                 
pump

= 
𝝆𝒈𝑽 𝑯

𝝎𝐓𝐬𝐡𝐚𝐭
                                                           (2.21) 

2-4-1. Pump performance curves and matching a pump to a piping system: 

It is important to realize that for steady conditions, a pump can operate 

only along its performance curve. Thus, the operating point of a piping 

system is determined by matching system requirements (required net 

head) to pump performance (available net head). In a typical application, 

𝑯required and 𝑯available mach at one unique value of flow rate-this is the 

operating point or duty point of the system. 

For a given piping system with its major and minor losses, elevation 

changes, etc., the required net head increases with volume flow rate. On 

the other hand, the available net head of most pumps decreases with flow 

rate, as in Figure 2-13, at least over the majority of its recommended 

operating range. Hence, the system curve and the pump performance curve 

intersect as sketched in Figure 2-14, and this establishes the operating 

point. If we are lucky, the operating point is at or near the best efficiency 

point of the pump. 

 

 

 

 

 

 

 

           

Figure 2-13.                                                 Figure 2-14.       

   Typical pump performance curves           The operating point of a piping             

   for centrifugal pump.                                 system.                                                                                                                                        
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2-4-2. Pump cavitation and net positive suction head: 

When pumping liquids, it is possible for the local pressure, 𝑷 inside the 

pump to fall below the vapor pressure, 𝑷v of the liquid (𝑷v is also called the 

saturation pressure 𝑷sat and is listed in thermodynamics tables as a 

function of saturation temperature.) when 𝑷 < 𝑷v, vapor-filled bubbles 

called cavitation bubbles appear. In other words, the liquid boils locally, 

typically on the surface side of the rotating impeller blades where the 

pressure is lowest (Figure 2-15). It is this collapse of the bubbles that is 

undesirable, since it causes noise, vibration, reduced efficiency, and most 

importantly, damage to the impeller blades. To avoid cavitation, we must 

ensure that the local pressure everywhere inside the pump stays above the 

vapor pressure. Since pressure is most easily measured (or estimated) at 

the inlet of the pump, cavitation criteria are typically specified at the pump 

inlet. It is useful to employ a flow parameter called net positive suction 

head (NPSH), defined as the difference between the pump's inlet stagnation 

pressure head and the vapor pressure head: 

Net positive suction head:       𝐍𝐏𝐒𝐇 =  
𝑷

𝝆𝒈
+ 

𝑽𝟐

𝟐𝒈
 pump inlet - 

𝑷𝐯

𝝆𝒈
             (2.22) 

The required net positive suction head (𝐍𝐏𝐒𝐇required), defined as the 

minimum 𝑵𝑷𝑺𝑯 necessary to avoid cavitation in the pump. The measured 

value of 𝐍𝐏𝐒𝐇required varies with volume flow rate, and therefore 𝐍𝐏𝐒𝐇required 

is often plotted on the same pump performance curve as head (Figure 2-

16). Since irreversible head losses through the piping system upstream of 

the inlet increase with flow rate, the pump inlet stagnation pressure head 

decreases with flow rate. Therefore, the value of 𝐍𝐏𝐒𝐇 decreases with 𝑽 , as 

sketched in Figure 2-17. By indentifying the volume flow rate at which the 

curves of actual 𝐍𝐏𝐒𝐇 and 𝐍𝐏𝐒𝐇required intersect, we estimate the maximum 

volume flow rate that can be delivered by the pump without cavitation 

(Figure 2-17). 
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Figure 2-15.                                              Figure 2-16. 

 

 

 

 

 

 

 

 

 

                         

                     Figure 2-17.    

                      

2-4-3. Pumps in series and parallel:  

When faced with the need to increase volume flow rate or 

pressure rise by a small amount, you might consider adding an 

additional smaller pump in series or in parallel with the original 
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pump. While series or parallel arrangement is acceptable for 

some applications, arranging dissimilar pumps in series or in 

parallel may lead to problems, especially if one pump is much 

larger than the other (Figure2-18). 

 

 

 

 

 

 

 

 

          Figure 2-18. 

Figure 2-19.                                     Figure 2-20.                                 
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There are many applications where two or more similar (usually 

identical) pumps are operated in series or in parallel. When 

operated in series, the combined net head is simply the sum of 

the net heads of each pump (at a given volume flow rate): 

Combined net head for n pumps in series: 𝑯combined =  𝑯𝒊
𝒏
𝒊=𝟏  (2.23) 

Equation 2.23 is illustrated in Figure 2-19. 

When two or more identical (or similar) pumps are operated in 

parallel, their individual volume flow rates (rather than net heads) 

are summed: 

Combined capacity for n pumps in parallel:𝑽 combined =  𝑽 𝒊
𝒏
𝒊=𝟏  (2.24) 

As an example, consider the same three pumps, but arranged in 

parallel, than in series. The combined pump performance curve is 

shown in Figure 2-20. 

 

2-5. Pumps classifications: 

2-5-1. Positive-displacement pumps: 

Positive-displacement pumps are ideal for high-pressure applications like 

pumping viscous liquids or thick slurries and for applications where 

precise amounts of liquid are to be dispensed or metered, as in medical 

applications. Examples of positive-displacement pumps as shown in Figure 

2-21: (𝒂) flexible-tube peristaltic pump, (𝒃) three-lobe rotary pump, (𝒄) gear 

pump, and (𝒅) double screw pump. 

In Figure 2-22 four phases (one-eighth of a turn apart) in the operation of a 

two-lobe rotary pump, a type of positive-displacement pump. The light blue 

region represents a chunk of fluid pushed through the top rotor, while the 

dark blue region represents a chunk of fluid pushed through the bottom 

rotor, which rotates in the opposite direction. Flow is left to right. 
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         Figure 2-21. 

 

 

 

 

 

 

          

         Figure 2-22.     
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Analysis of positive-displacement pumps is fairly straightforward. From the 

geometry of the pump, we calculate the closed volume (𝑽closed) that is filled 

(and expelled) for every 𝒏 rotations of the shaft. Volume flow rate is the 

equal to rotation rate 𝒏  times 𝑽closed divided by 𝒏. 

Volume flow rate positive-displacement pump:         𝑽  =  𝒏  
𝑽𝐜𝐥𝐨𝐬𝐞𝐝

𝒏
        (2.25)  

2 -5-2. Dynamic Pumps: 

There are three types of dynamic 

pumps that involve rotating 

blades called impeller blades or 

rotor blades, which impart 

momentum to fluid. For this 

reason they are sometimes called 

rotodynamic pumps or simply 

rotary pumps (not to be confused 

with rotary positive-displacement 

pumps, which use the same 

name). Rotary pumps are 

classified by the manner in which 

flow exits the pump as shown in 

Figure 2-23: (𝒂) centrifugal 

pumps (radial-flow pumps), (𝒃) 

mixed flow, and (𝒄) axial flow. In 

an axial-flow pump, fluid enters 

and leaves axially, typically along 

the outer portion of the pump 

because of blockage by shaft, 

motor, hub, etc. A mixed –flow 

pump is intermediate between 

centrifugal and axial, with the 

flow entering axially, not 

necessary in the center, but 

leaving at some angle between   

radially and axially.                          Figure 2-23. 
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2 -5-3. Centrifugal Pumps: 

There are three types of centrifugal 

pump that based on the impeller blade 

geometry, as sketched in Figure 2-24: (𝒂) 

backward-inclined blades, (𝒃) radial 

blades, and (𝒄) forward-inclined blades. 

Net head and brake horsepower 

performance curves for these three 

types of centrifugal pump are compared 

in Figure 2-24𝒅. The curves have been 

adjusted such that each pump achieves 

the same free delivery (maximum 

volume flow rate at zero net head). Note 

that these are qualitative sketches for 

comparison purposes only-actual 

measured performance curves may 

differ significantly in shape, depending 

on details of the pump design. 

Centrifugal pumps with backward-

inclined blades (Figure 2-24𝒂) are the 

most common. These yield the highest 

efficiency of the three because fluid 

flows into and out of the blade passages 

with the least amount of turning. 

Sometimes the blades are airfoil shaped, 

yielding similar performance but even 

higher efficiency. The pressure rise is 

intermediate between the other two 

types of centrifugal pumps. Centrifugal 

pumps with radial blades (also called 

straight blades, Figure 2-24𝒃) have the 

simplest geometry and produce the 

pressure rise of the three for a wide 

range of volume flow rate.                             Figure 2-24. 

 



Lecturer: Dr Jafar Ghani Majeed Page 25 
 

Examples-Chapter 2 

2-1 Barometer: 

Example 2-1  

Intravenous infusions usually are driven by gravity by hanging the fluid 

bottle at sufficient height to counteract the blood pressure in the vein and 

to force the fluid into body (Figure 2-1). The higher the bottle is raised, the 

higher the flow rate of the fluid will be. (a) it is observed that the fluid and 

the blood pressures balance each other when the bottle is 1.2 m above the 

arm level, determine the gage pressure of the blood. (b) if the gage 

pressure of the fluid at the arm level needs to be 20 kPa for sufficient flow 

rate, determine how high the bottle must be placed. Take the density of the 

fluid to be 1020 kg/m3.  

solusion: 

Assumption: 1. The fluid is 

incompressible.     2. The IV bottle 

is open to the atmosphere.  

Properties: the density of the IV 

fluid is given to be 𝝆 = 1020 kg/m3. 

(a) Noting that the IV fluid and the 

blood pressures balance each 

other when the bottle is 1.2 m 

above the arm level, the gage 

pressure of the blood in the arm is 

simply equal to gage pressure of      Figure 2-1. 

the IV at a depth of 1.2 m: 

      𝑷gage, arm = 𝑷abs – 𝑷atm = 𝝆𝒈𝒉atm-bottol 

                     = (1020 kg/m3)(9.81 m/s2)(1.2 m) 
𝟏𝐤𝐍

𝟏𝟎𝟎𝟎 𝐤𝐠.𝐦/𝐬𝟐
  

𝟏 𝐤𝐏𝐚

𝟏 𝐤𝐍/𝐦𝟐  

                     = 12.0 kPa 
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(b) to provide a gage pressure of 20 kPa at the arm level, the height of the 

surface of the IV fluid in the bottle from the arm level is again determined 

from 𝑷gage, arm = 𝝆𝒈𝒉atm-bottol to be:     

      𝒉arm-bottle = 
𝑷𝐠𝐚𝐠𝐞,𝐚𝐫𝐦

𝝆𝒈
 =  

𝟐𝟎 𝐤𝐏𝐚

 𝟏𝟎𝟐𝟎 𝐤𝐠

𝐦𝟑
 (𝟗.𝟖𝟏𝐦

𝐬𝟐
)
  
𝟏𝟎𝟎𝟎 𝐤𝐠.𝐦/𝐬𝟐

𝟏 𝐤𝐍
  

𝟏 𝐤𝐍/𝐦𝟐

𝟏 𝐤𝐏𝐚
  

                      = 2.0 m  

 

2-2 Manometer: 

Example 2-2  

A closed tank contains compressed air and oil (𝑺𝑮oil = 0.90) as is shown in 

Figure 2-2. A U-tube manometer using mercury (𝑺𝑮Hg = 13.6) is connected 

to the tank as shown. The column heights are 𝒉1 = 36 in, 𝒉2 = 6 in, and 𝒉3 = 

9 in. Determine the pressure reading (in psi) of the gage. 

Solution: 

The pressure at level (1) equal to 

pressure at level (2):  

𝑷1 = 𝑷2  

𝑷1 = 𝑷air + 𝜸oil (𝒉1 + 𝒉2) = 𝑷2 = 𝑷atm + 𝜸Hg 𝒉3 

Since,   𝑷atm = 0  

Thus, the manometer equation can be 

expressed as: 

𝑷air + 𝜸oil (𝒉1 + 𝒉2) – 𝜸Hg 𝒉3 = 0 

or                                                                 Figure 2-2. 

𝑷air + (𝑺𝑮oil)(𝜸H2O)( 𝒉1 + 𝒉2) – (𝑺𝑮Hg)(𝜸H2O) 𝒉3 = 0 

For the value given: 
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        𝑷air =  – (0.9)(62.4 Ib/ft3)  
 𝟑𝟔+𝟔 𝐢𝐧

𝟏𝟐  𝐢𝐧/𝐟𝐭
   + (13.6)(62.4 Ib/ft3)  

𝟗 𝐢𝐧

𝟏𝟐 𝐢𝐧/𝐟𝐭
   

               = 440 Ib/ft2 

Because the specific weight of the air above the oil is much smaller than 

the specific weight of the oil, the gage should read the pressure we have 

calculate; that is: 𝑷gage = 𝑷air – 𝑷atm,   since, 𝑷atm = 0    

Then,            𝑷air = 𝑷gage = 
𝟒𝟒𝟎 𝐈𝐛/𝐟𝐭𝟐

𝟏𝟒𝟒 𝐢𝐧𝟐/𝐟𝐭𝟐
 = 3.06 psi 

Example 2-3 

The water in a tank is pressurized by air, and the pressure is measured by a 

multifluid manometer as shown in Figure 2-3. The tank is located on a 

mountain at an altitude of 1400 m where the atmospheric pressure is 85.6 

kPa. Determine the air pressure in the tank if 𝒉1 = 0.1 m, 𝒉2 = 0.2 m, and 𝒉3 = 

0.35 m. take the densities of water, oil, and mercury to be 1000 kg/m3, 850 

kg/m3, and 13600 kg/m3, respectively. 

Solution: 

Assumption: The air pressure in the 

tank is uniform (i.e., its variation with 

elevation is negligible due to its low 

density), and we can determine the 

pressure at the air-water interface. 

Properties: the densities of water, oil, 

and mercury are given to be 1000 

kg/m3, 850 kg/m3, and 13600 kg/m3, 

respectively.  

Analysis: starting with pressure at 

point 1 at the air-water interface, 

moving along the tube by subtracting 

the 𝝆𝒈𝒉 terms until we reach point 2, 

and setting the result equal to 𝑷atm since                        Figure 2-3. 
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 the tube is  open to the atmosphere gives: 

                  𝑷1 + 𝝆water  𝒈𝒉1 + 𝝆oil𝒈𝒉2 – 𝝆mercury 𝒈𝒉3 = 𝑷2 = 𝑷atm  

Solving for 𝑷1 and substituting, 

      𝑷1 = 𝑷atm – 𝝆water  𝒈𝒉1 – 𝝆oil𝒈𝒉2 + 𝝆mercury 𝒈𝒉3 

           = 𝑷atm +𝒈 (𝝆mercury 𝒉3 - 𝝆water𝒉1 - 𝝆oil𝒉2) 

           = 85.6 kPa + (9.81 m/s2)[(13600 kg/m3)(0.35 m) – (1000 kg/m3)(0.1 m) – 

- (850 kg/m3)(0.2 m)] 
𝟏 𝐍

𝟏 𝐤𝐠.𝐦/𝐬𝟐
  

𝟏 𝐤𝐏𝐚

𝟏𝟎𝟎𝟎 𝐍/𝐦𝟐  

      𝑷1 = 130 kPa 

 

Example 2-4 

Consider a U-tube whose arms are open to the atmosphere. Now water is 
poured into the U-tube from one arm, and light oil (𝝆 = 790 kg/m3) from the 
other. One arm contains 70-cm-high water, while the other arm contains 
both fluids with an oil-to-water height ratio of 6. Determine the height of 
each fluid in that arm.  
 
 
 
 
                                                                                                         
 
 
 
 
                    Figure 2-4. 

Solution:                                           

Water is poured into the U-tube from one arm and oil from the other arm. 
The water column height in one arm and the ratio of the heights of the two 
fluids in the other arm are given. The height of each fluid in that arm is to 
be determined. 
 



Lecturer: Dr Jafar Ghani Majeed Page 29 
 

Assumptions: Both water and oil are incompressible substances. 
 
Properties: The density of oil is given to be ρoil = 790 kg/m3. We take the 
density of water to be ρw = 1000 kg/m3. 
 
Analysis: The height of water column in the left arm of the manometer is 
given to be hw1 = 0.70 m. We let the height of water and oil in the right arm 
to be hw2 and ha, respectively. Then, ha = 6hw2. Noting that both arms are 
open to the atmosphere, the pressure at the bottom of the U-tube can be 
expressed as: 
 
Pbottom = Patm + ρw ghw1 and Pbottom = Patm + ρw ghw2 + ρa gha 
 
Setting them equal to each other and simplifying, 
 
ρw ghw1 = ρw ghw2 + ρa gha → ρw hw1 = ρw hw2 + ρa ha → hw1 = hw2 + (ρa / ρw )ha 
 
Noting that ha = 6hw2 and we take ρa = ρoil, the water and oil column heights 
in the second arm are determined to be: 
 
               0.7 m = hw2 + (790/1000)6hw2 → hw2 = 0.122 m 
 
               0.7 m = 0.122 m+ (790/1000)ha → ha = 0.732 m 

 

Example 2-5 

Freshwater and seawater flowing in parallel horizontal pipelines are 
connected to each other by a double U-tube manometer, as shown in Fig. 
2-5. Determine the pressure difference between the two pipelines. Take the 
density of seawater at that location to be 𝝆 = 1035 kg/m3. Can the air  
column be ignored in the analysis? 
 

 

 

 

        Figure 2-5. 
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Solution:   

Fresh and seawater flowing in parallel horizontal pipelines are connected 
to each other by a double U-tube manometer. The pressure difference 
between the two pipelines is to be determined. 
 
Assumptions: 1 All the liquids are incompressible. 2 The effect of air 
column on pressure is negligible. 
 
Properties:  The densities of seawater and mercury are given to be ρsea = 
1035 kg/m3 and ρHg = 13,600 kg/m3. We take the density of water to be ρw = 
1000 kg/m3. 
 
Analysis: Starting with the pressure in the fresh water pipe (point 1) and 
moving along the tube by adding (as we go down) or subtracting (as we go 
up) the ρgh terms until we reach the sea water pipe (point 2), and setting 
the result equal to P2 gives: 
 
        P1 + ρw ghw − ρHg ghHg − ρair ghair + ρsea ghsea = P2 
 
Rearranging and neglecting the effect of air column on pressure, 
 
       P1 − P2 = −ρw ghw + ρHg ghHg − ρsea ghsea = g(ρHghHg − ρw hw − ρsea hsea ) 
Substituting, 
 
       P1 – P2 = (9.81 m/s2)[(13600 kg/m3 )(0.1 m) 

                        – (1000 kg/m3)(0.6 m) – (1035 kg/m3)(0.4 m)] 
𝐤𝐍

𝟏𝟎𝟎𝟎 𝐤𝐠.𝐦/𝐬𝟐
  

                    = 3.39 kN/m2 = 3.39 kPa 

Therefore, the pressure in the fresh water pipe is 3.39 kPa higher than the 
pressure in the sea water pipe. 
 
Discussion:  A 0.70-m high air column with a density of 1.2 kg/m3 
corresponds to a pressure difference of 0.008 kPa. 
 
Therefore, its effect on the pressure difference between the two pipes is 

negligible. 
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Example 2-6 

The gage pressure of the air in the tank shown in Fig. 2-6 is measured to be 
65 kPa. Determine the differential height h of the mercury column. 

 

 

 

 

 

 

 

 

                     Figure 2-6. 

 

Solution: 

The gage pressure of air in a pressurized water tank is measured 
simultaneously by both a pressure gage and a manometer. The differential 
height h of the mercury column is to be determined.  
 
Assumptions: The air pressure in the tank is uniform (i.e., its variation with 
elevation is negligible due to its low density), and thus the pressure at the 
air-water interface is the same as the indicated gage pressure. 
 
Properties: We take the density of water to be ρw =1000 kg/m3. The specific 
gravities of oil and mercury are given to be 0.72 and 13.6, respectively. 
 
Analysis: Starting with the pressure of air in the tank (point 1), and moving 
along the tube by adding (as we go down) or subtracting (as we go up) the 
ρgh terms until we reach the free surface of oil where the oil tube is 
exposed to the atmosphere, and setting the result equal to Patm gives: 
 
              P1 + ρw ghw − ρHg ghHg − ρoil ghoil = Patm 



Lecturer: Dr Jafar Ghani Majeed Page 32 
 

Rearranging, 
               P1 − Patm = ρoil ghoil + ρHg ghHg − ρw ghw 
or, 
 

           
𝐏𝟏,𝐠𝐚𝐠𝐞

𝛒𝐰𝐠
  = SGoil hoil + SGHg hHg − hw 

 
Substituting, 
 

 
𝟔𝟓 𝐤𝐏𝐚

 𝟏𝟎𝟎𝟎
𝐤𝐠

𝐦𝟑 (𝟗.𝟖𝟏
𝐦

𝐬𝟐
)
  

𝟏𝟎𝟎𝟎 𝐤𝐠.𝐦/𝐬𝟐

𝟏 𝐤𝐏𝐚.𝐦𝟐   = 0.72 x (0.75 m) + 13.6 x hHg − 0.3 m 

 
 
Solving for hHg gives hHg = 0.47 m. Therefore, the differential height of the 
mercury column must be 47 cm. 
 
Discussion: Double instrumentation like this allows one to verify the 
measurement of one of the instruments by the measurement of another 
instrument. 
 
Example 2-7 

Consider a double-fluid manometer attached to an air pipe shown in Fig. 2-
7. If the specific gravity of one fluid is 13.55, determine the specific gravity 
of the other fluid for the indicated absolute pressure of air. Take the 
atmospheric pressure to be 100 kPa.  
FLUID MECHANICS 

 

 

 

 

 

 

                Figure 2-7. 
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Solution: 

A double-fluid manometer attached to an air pipe is considered. The 
specific gravity of one fluid is known, and the specific gravity of the other 
fluid is to be determined. 
 
Assumptions: 1 Densities of liquids are constant. 2 The air pressure in the 
tank is uniform (i.e., its variation with elevation is negligible due to its low 
density), and thus the pressure at the air-water interface is the same as the 
indicated gage pressure.  
 
Properties: The specific gravity of one fluid is given to be 13.55. We take 
the standard density of water to be 1000 kg/m3. 
 
Analysis: Starting with the pressure of air in the tank, and moving along the 
tube by adding (as we go down) or subtracting (as we go up) the ρgh terms 
until we reach the free surface where the oil tube is exposed to the 
atmosphere, and setting the result equal to Patm give: 
 

Pair + ρ1gh1 −ρ2 gh2 = Patm → Pair − Patm = SG2 𝝆wgh2 − SG1 𝝆wgh1   

Rearranging and solving for SG2, 

SG2 = SG1 
𝒉𝟏

𝒉𝟐
 + 

𝑷𝐚𝐢𝐫− 𝑷𝐚𝐭𝐦

𝝆𝒘𝒈𝒉𝟐
 = 13.55 

𝟎.𝟐𝟐 𝐦

𝟎.𝟒𝟎 𝐦
 +  

 𝟕𝟔−𝟏𝟎𝟎 𝐤𝐏𝐚

 𝟏𝟎𝟎𝟎 𝐤𝐠

𝐦𝟑  𝟗.𝟖𝟏𝐦
𝐬𝟐

 (𝟎.𝟒𝟎 𝐦)
 * 

                                                                                                        *  
𝟏𝟎𝟎𝟎 𝐤𝐠.𝐦/𝐬𝟐 

𝟏 𝐤𝐏𝐚.𝐦𝟐    = 1.34               

Discussion: Note that the right fluid column is higher than the left, and this 
would imply above atmospheric pressure in the pipe for a single-fluid 
manometer. 

 

Example 2-8 

The pressure difference between an oil pipe and water pipe is measured by 
a double-fluid manometer, as shown in Fig. 2-8. For the given fluid heights 

and specific gravities, calculate the pressure difference ∆P = PB - PA. 
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  Figure 2-8. 

 

Solution: 

The pressure difference between two pipes is measured by a double-fluid 
manometer. For given fluid heights and specific gravities, the pressure 
difference between the pipes is to be calculated.  

 
Assumptions: All the liquids are incompressible. 
 
Properties: The specific gravities are given to be 13.5 for mercury, 1.26 for 
glycerin, and 0.88 for oil. We take the standard density of water to be ρw 
=1000 kg/m3. 
 
Analysis: Starting with the pressure in the water pipe (point A) and moving 
along the tube by adding (as we go down) or subtracting (as we go up) the 
ρgh terms until we reach the oil pipe (point B), and setting the result equal 
to PB give: 
PA + ρw ghw + ρHg ghHg −ρgly ghgly + ρoil ghoil = PB 
 
Rearranging and using the definition of specific gravity, 
 
PB – PA = SGw ρw ghw + SGHg ρw ghHg – SGgly ρw ghgly + SGoil ρw ghoil 

           = ρw g (SGw hw + SGHg hHg – SGgly hgly + SGoil hoil)  
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Substituting, 

PB – PA = (1000 kg/m3) (9.81 m/s2)[1 (0.55 m) + 13.5 (0.2 m) –1.26 (0.42 m)  

                                                                       + 0.88 (0.1 m)] 
𝟏 𝐤𝐍

𝟏𝟎𝟎𝟎 𝐤𝐠.𝐦/𝐬𝟐
  

            = 27.55 kN/m2 = 27.55 kPa 

Therefore, the pressure in the oil pipe is 27.7 kPa higher than the pressure 

in the water pipe. 

Discussion: Using a manometer between two pipes is not recommended 
unless the pressures in the two pipes are relatively constant. Otherwise, an 
over-rise of pressure in one pipe can push the manometer fluid into the 
other pipe, creating a short circuit. 
 

Example 2-9 

Consider the system shown in Fig. 2-9. If a change of 0.7 kPa in the 
pressure of air causes the brine-mercury interface in the right column to 
drop by 5 mm in the brine level in the right column while the pressure in 
the brine pipe remains constant, determine the ratio of A2/A1.  
 

 

 

 

 

 

 

 

 

 

               Figure 2-9.   
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Solution: 

The fluid levels in a multi-fluid U-tube manometer change as a result of a 
pressure drop in the trapped air space. For a given pressure drop and brine 
level change, the area ratio is to be determined. 
 
Assumptions: 1 All the liquids are incompressible. 2 Pressure in the brine 
pipe remains constant. 3 The variation of pressure in the trapped air space 
is negligible. 
 
Properties: The specific gravities are given to be 13.56 for mercury and 1.1 
for brine. We take the standard density of water to be ρw = 1000 kg/m3. 
 
Analysis: It is clear from the problem statement and the figure that the 
brine pressure is much higher than the air pressure, and when the air 
pressure drops by 0.7 kPa, the pressure difference between the brine and 
the air space also increases by the same amount. Starting with the air 
pressure (point A) and moving along the tube by adding (as we go down) or 
subtracting (as we go up) the ρgh terms until we reach the brine pipe (point 
B), and setting the result equal to PB before and after the pressure change 
of air give: 
 
               Before: PA1 + ρw ghw + ρHg ghHg,1 − ρbr ghbr,1 = PB 
              After: PA2 + ρw ghw + ρHg ghHg,2 − ρbr ghbr,2 = PB 

Subtracting, 

PA2 − PA1 + ρHg gΔhHg − ρbr gΔhbr = 0 → 
𝑷𝐀𝟏−𝑷𝐀𝟐

𝛒𝐰 𝐠
 = SGHg∆hHg - SGbr∆hbr= 0 (1) 

where ΔhHg and Δhbr are the changes in the differential mercury and brine 
column heights, respectively, due to the drop in air pressure. Both of these 
are positive quantities since as the mercury-brine interface drops, the 
differential fluid heights for both mercury and brine increase. Noting also 
that the volume of mercury is constant, we have A1ΔhHg,left = A2ΔhHg,right 
and: 
 
PA2 − PA1 = − 0.7 kPa = −700 N/m2 = −700 kg/m.s2 

 

Δhbr = 0.005 m 
 
ΔhHg = ΔhHg,right + ΔhHg,left = Δhbr + Δhbr A2 /A1 = Δhbr (1+ A2 /A1 ) 



Lecturer: Dr Jafar Ghani Majeed Page 37 
 

 
Substituting, 
 

 
 (𝟕𝟎𝟎 𝐤𝐠/𝐦.𝐬𝟐)

 𝟏𝟎𝟎𝟎
𝐤𝐠

𝐦𝟑 (𝟗.𝟖𝟏 𝐦/𝐬𝟐)
 = [13.56x0.005 (1 + A2/A1) – 1.1x0.005] m 

 ِ  
It gives: 
 
A2/A1 = 0.134  
 
Discussion: In addition to the equations of hydrostatics, we also utilize 

conservation of mass in this problem. 

 

Example 2-10 

A multifluid container is connected to a U-tube, as shown in Fig. 2-10. For 
the given specific gravities and fluid column heights, determine the gage 
pressure at A. Also determine the height of a mercury column that would 
create the same pressure at A. 
 

 

 

 

 

 

 

 

 

 

 

                         Figure 2-10.   
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Solution: 

A multi-fluid container is connected to a U-tube. For the given specific 
gravities and fluid column heights, the gage pressure at A and the height of 
mercury column that would create the same pressure at A are to be 
determined. 
 
Assumptions: 1 All the liquids are incompressible. 2 The multi-fluid 
container is open to the atmosphere. 
 
Properties: The specific gravities are given to be 1.26 for glycerin and 0.90 
for oil. We take the standard density of water to be ρw =1000 kg/m3, and the 
specific gravity of mercury to be 13.6. 
 
Analysis: Starting with the atmospheric pressure on the top surface of the 
container and moving along the tube by adding (as we go down) or 
subtracting (as we go up) the ρgh terms until we reach point A, and setting 
the result equal to PA give: 
 
Patm + ρoil ghoil + ρw ghw − ρgly ghgly = PA 
 
Rearranging and using the definition of specific gravity, 
 
PA – Patm = SGoil ρw ghoil  + SGw ρw ghw – SGgly ρw ghgly

 

or 
PA,gage = ρw g (SGoil hoil + SGw hw - SGgly hgly)  
 
Substituting, 
 
PA,gage = (1000 kg/m3) (9.81 m/s2) [0.90 (0.70 m) + 1 (0.3 m) –1.26 (0.70 m)] * 

                                                                                  * 
𝟏 𝐤𝐍

𝟏𝟎𝟎𝟎 𝐤𝐠.𝐦/𝐬𝟐
                                            

            = 0.471 kN/m2 = 0.471 kPa  
   
The equivalent mercury column height is: 

hHg = 
𝑷𝐀,𝐠𝐚𝐠𝐞

𝛒𝐇𝐠 𝒈
 =

𝟎.𝟒𝟕𝟏 𝐤𝐍/𝐦𝟐

 𝟏𝟑.𝟔  𝟏𝟎𝟎𝟎 𝐤𝐠

𝐦𝟑
 (𝟗.𝟖𝟏𝐦

𝐬𝟐
)
 *  

𝟏𝟎𝟎𝟎 𝐤𝐠.𝐦/𝐬𝟐

𝟏 𝐤𝐍
  = 0.00353 m 

Discussion: Note that the high density of mercury makes it a very suitable 
fluid for measuring high pressures in manometers.                                                                                          
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Example 2-11 

A glass tube is attached to a water pipe, as shown in Fig. 2-11. If the water 
pressure at the bottom of the tube is 115 kPa and the local atmospheric 
pressure is 92 kPa, determine how high the water will rise in the tube, in m. 
Assume g = 9.8 m/s2 at that location and take the density of water to be 
1000 kg/m3. 
 

 

 

 

 

 

 

 

                                 Figure 2-11.    

Solution: 

A glass tube open to the atmosphere is attached to a water pipe, and the 
pressure at the bottom of the tube is measured. It is to be determined how 
high the water will rise in the tube. 
 
Properties: The density of water is given to be ρ = 1000 kg/m3. 
 
Analysis: The pressure at the bottom of the tube can be expressed as: 

                     P = Patm + (ρgh) 

Solving for h, 

  h = 
𝑷− 𝑷𝒂𝒕𝒎

𝛒 𝒈
 = 

 𝟏𝟏𝟓−𝟗𝟓 𝐤𝐏𝐚

 𝟏𝟎𝟎𝟎
𝐤𝐠

𝐦𝟑 (𝟗.𝟖𝟏
𝐦

𝐬𝟐
)
 *  

𝟏𝟎𝟎𝟎 𝐍/𝐦𝟐

𝟏 𝐤𝐏𝐚
  *  

𝟏 𝐤𝐠.𝐦/𝐬𝟐

𝟏 𝐍
  = 2.35 m 

Discussion: Even though the water is flowing, the water in the tube itself is 
at rest. If the pressure at the tube bottom had been given in terms of gage 
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pressure, we would not have had to take into account the atmospheric 
pressure term.                      
                                          

2-3 pumps: 

Example 2-12 

A two-lobe rotary positive-displacement pump, moves 0.45 cm3 of SAE 30 

motor oil in each lobe volume 𝑽lobe as sketched in Figure 2-12. Calculate the 

volume flow rate of oil for the case where 𝒏  = 900, and for (1) half of a 

rotation, and for (2) one rotation.  

Solution:     

We are to calculate the volume flow rate 

of oil through a positive-displacement 

pump for given values of lobe volume 

and rotation rate.   

Assumptions: 1 The flow is steady in 

the mean. 2 There are no leaks in the 

gaps between lobes or between lobes 

and the casing. 3 The oil is 

incompressible.                                         Figure 2-12. 

Analysis: We see that for (1) half of a rotation (180o for 𝒏 = 0.5 rotations), 

and for (2) one rotation (360o for 𝒏 = 1 rotation), of the two counter-rotating 

shafts, the total volume of oil pumped is:  

(1) 𝑽closed = 2 𝑽lobe. The volume flow rate is then calculated from following 

equation:  

𝑽  = 𝒏  
𝑽𝐜𝐥𝐨𝐬𝐞𝐝

𝒏
 = (900 rot/min) 

𝟐 (𝟎.𝟒𝟓 𝐜𝐦𝟑)

𝟎.𝟓 𝐫𝐨𝐭
 = 1620 cm3/min 

(2) 𝑽closed = 4 𝑽lobe. The volume flow rate is then calculated from following 

equation:  

𝑽  = 𝒏  
𝑽𝐜𝐥𝐨𝐬𝐞𝐝

𝒏
 = (900 rot/min) 

𝟒 (𝟎.𝟒𝟓 𝐜𝐦𝟑)

𝟏 𝐫𝐨𝐭
 = 1620 cm3/min  


