Review of strength of material

LectureNo. 1

-Review of strength of material-

1-1 Direct stress: -

1- Tensile stress. P g
2- Compression stress. B =—C Ce—r
p N
O'axiaI:E e 1.1
Where: -
Oaxia = aXial stress.
P = axial load (N).

A= cross section area (m?).

—£
=2 1.2

Where: -

g= Strain

E= modulus of easticity
2-2 Bending stress: -

My

Op= PP PPRELY 1.3

Where: - P

M= moment (N.m)
R: =P/2Z> ZIARZ =P/2

I= moment of inertia (m®)
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Review of strength of material

P [
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B
2-3 Shear stresses: -

The shear stress may be: -

a Direct sheer: - Thisoccurs over an area parallel to the applied

load.
P N

tag=3 2
Where: -
Tag =Average shear stress.
P = Shear force.
A = Area of the section.

b- Induced shear: - This occurs over section (or face shear).

_E N P
Tag=> —5 ..l = a | s

Where: -

Avivet =
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c- Torsien: -
TR
Thax—— ...... 15
]
TL
= — ......1.6
]G
Where: -
T= Torque.

L= Length of shaft.

G= Shear modulus or Modulus of rigidity.

O= Angle of twist.

J = Polar moment of inertia,
Shear stress distribution

. _ mh* in circular shaft
For solid shaft J= e

w(D*—dh)
32

For hollow shaft J=

2-4 Combined stresses: -

In sections 2.1, 2.2 and 2.3, we studied three basic types of loading, axial,
flexural (bending), shear and torsion. Each of three types was discussed on the
assumption that only one of these loadings was acting on a member at a time,
but in actual condition in most cases one or more of these loading act
simultaneously upon a member. There are four possible combinations of these
loadings.

a Axia and Flexura loadings.

b- Axia and Torsional loadings.

c- Torsional and Flexural loadings.

d- Axial, Torsional and Flexural loadings acting simultaneously.
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Combined stresses —E;Slrincipal stresses (01, 02, 03).
ax. Sheer stress (Tmax).

J+0 1 |
Glor Gmax: x2 Jlr+§ [ax ’J}J)E +4ijl;2 .-4],?
=k L [y 2 2
Where: -
01> 02

1
Tmax = EJEX = Uy)z + 4'Txy2

2-5 Thin wall cylinders subjected to internal pressure:-

L Txy

...1.9

Cylinders or spherical vessels are commonly used in industry to serve as

boilers or tanks. When vessael under pressure, the material of which they are

made is subjected to loading from all directions.

In general “thin wall” refers to a vessel having an inner radius to wall thickness

ratio of 10 or more.

e =210 Toh
<« — 0L
Pd
Oh=—7 (Hoop stress) ....1.10

Pd "
OoL=77 (Longitudinal stress).

Where: -

. 111
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N
P= Internal pressure (Paor — ).

d= 2r= Internal diameter.
t= Cylinder thickness.

For spherical vessdl: -

On

T

] —— Oh

Oh=0 = — ...1.12

Where: -

d=spherical radius (inner).

Prob.1 A steel bar ABCD consists of three sections: AB is of 20mm diameter
and 200 mm long, BC is 25 mm square and 400 mm long, and CD is of 12 mm
diameter and 200 mm long. The bar is subjected to an axial compressive load
which induces a stress of 30 MN/m? on the largest cross-section. Determine the
total decrease in the length of the bar when the load is applied. For steel E =
210GN/m?2,

Prob.2 A beam AB, 1.2 m long, is simply-supported at its ends A and Band
carries two concentrated loads, one of 10 kN at C, the other 15 kN at D. Point
Cis0.4 m from A, point D is1 m from A. Draw the S.F. and B.M. diagrams

for the beam inserting principal values.
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Prob.3 An |-section girder, 200 mm wide by 300 mm deep, with flange and
web of thickness 20 mm is used as asimply supported beam over a span of 7 m.
The girder carries a distributed load of 5 kN/m and a concentrated load of 20
KN at mid-span. Determine: (a) the second moment of area of the cross-section

of the girder, (b) the maximum stress set-up.

Prob.4 Determine the dimensions of a hollow shaft with a diameter ratio of 3:4
which is to transmit 60 kW at 200 rev/min. The maximum shear stress in the
shaft is limited to 70 MN/m? and the angle of twist to 3.8° in alength of 4 m.
For the shaft material G = 80 GN/m?2.

Prob.5 A circular bar ABC, 3 m long, isrigidly fixed at itsends A and C. The
portion AB is 1.8 m long and of 50 mm diameter and BC is 1.2 m long and of
25 mm diameter. If a twisting moment of 680 N.m is applied at B, determine
the values of the resisting moments at A and C and the maximum stress in each
section of the shaft. What will be the angle of twist of each portion?

For the material of the shaft G = 80 GN/m?,

Prob.6 A hollow shaft is 460 mm inside diameter and 25 mm thick. It is
subjected to an internal pressure of 2 MN/m?, a bending moment of 25 kN.m
and atorque of 40 kN.m. Assuming the shaft may be treated as a thin cylinder,
make a neat sketch of an element of the shaft, showing the stresses resulting
from all three actions.

Determine the values of the principal stresses and the maximum shear stress.
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Lecture No. 2

-Three dimensional stresses and Strains-

2-1 General.

Consider a cube of infinitesmal dimensions shown in figure (1), All stresses acting
on this cube are identified on the diagram. The subscripts (1) are the shear stress,
associ ate the stress with a plane perpendicular to a given axis, the second designate

the direction of the stress, i.e.

Txy

Face \Di rection

The stress symbolsin figure (1),

shows that three normal stresses: -

Ox= Txx, Oy=Tyy , 0z= 1z

and six shearing stresses, Txy , Txz ,

TyX1 Tyz ' TZX ' sz Flgure (1)

The force vector (P) has only three components Py , P, and P;.

Py
PTF
P,
And stress vector: -
T  Txy Txz Txx Txy Txz
Tyx Oy Tyz = Tyx Tyy Ty . 2.1

Tzxy Tzy Oy Tzx Tzy zz



Three dimensional stresses and strains

Thisisamatrix representation of the stress tensor. It is a second —rank tensor
requiring two indices to identify its elements or components. A vector isfirst- rank
tensor, and scalar is a zero tensor.

Sometimes, for brevity, a stress tensor iswritten in identical natation as Tjj , where

I, ] and k designations x, y and z.

The stress tensor is symmetric, i.e. Tij= Tjj or

Txy: Tyx
Txz— T 2.2
Tyz= Tzy

2-2 Two dimensional stress (Biaxial stress): -

For atwo dimensional case of plane stress where (03=0).

Where:-
Oy
ag= Normal stress
A Txy
T == Shear stress >
Ox
O Tz 0
— <+—
Oij=Tyx 0y 0 v

0 0 0

2-3 Threedimensional stress (Triaxial stress): -

There are nine components of stress. Moment equilibrium can be used to
reduce the number of stress componentsto six.
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y
Txy: Tyx
Oy
Txz— Tz y4
A
Tyz— sz i Tyz‘/—.r—yyx
Stresses in 3D is represented by vector ; XTY\
tensor: - Ox <" | Nanndht
Gr oy iz 2 R L
, «
Oijk=Tyx Oy Tyz O S
Tzx 1z Oy : v
y 5,
A homogenous linear equation has a solution only if the determinant of the
coefficient matrix is equal to zero this called Eigenvalue problem. Such as
T  Txy Txz 0
Tyx Oy Tyz = ) 2.3

In case that the equation isin eigenvalue problem such as: -
T  Txy Txz
tyre 9y Tyz=0 2.4
Tzx Tzy Oy
The determinant can be expanded to yield the equation

53_"1{10‘2"}*!2{}'_!3:{] . .25

Where [;, |, and |5 are the first, second and third invariants of the Cauchy stress

tensor.

L=0,+0,+0, .2.6
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II'E = JI'U}? -1_ ngﬁ + U}uﬂ'—z — .rx}.lz _— -rxzz — I 2 ...2.7

vz

= 2 2 2
1*3 s ngl}.lgg + zrxyrxzryz o Ux?.-_yz . U}-sz s Ugrxy ..e2-8

planes.

There are three roots the characteristic equation 2.5, o1, 02 and 0s. Each
root is one of the principal stresses. The direction cosines can be found
by substituting the principal stresses into the homogenous equation 2.3

and solving. The direction cosines define the principal direction or

0 max 2 Oin= Omin

G|1= 02= 03

T1p=01¢2

2

T 0z2—03

23=—"3

Ty 0193
13———2

Oin
...... 2.9
Omin
...... 2.10
0 max
=Tmax =~ eeeees 211

2-4 Poisson’s Ratio (v): -

Biaxial and Triaxia deformation another type of elastic deformation is the

change in transverse dimensions accompanying axial tension or compression.

Experiments show that if a bar is lengthened by axial tension, there is a

reduction in the transverse dimensions. Simeon D. Poisson showed in 1811 that the
ratio of the unit dimensions or strain in these directions is constant for stresses
within the proportional limit,

10
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Lateral strain

Poisson’s Ratio () =— TRl Sirain ..2.12
—_h__=&
Ex N Ex
Where: -

£, = Strain in x — direction.
gy, = Strain in y — direction.

£, = Strain in z — direction.

Note: - Minus sign indicates a decrease in transverse dimension position

as in the case of tensile elongation. 6d d
AL
EL = T l A
Y R . A oL
: 4
i | |
T s |
— _ Pdja i g
T L/L [TTTTTT7777

11
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2-5 Three Dimensional Strains:; -

For Tri-axial stress state.

s — x

If oy, 0, =0 _‘Eyz? and &, = —U?
Now, If gy,0, =0 - &, :% and &, = —u%
Ey=F-vF-vY ..2.13
=g ovioeg

So, the principal strains in terms of principal stresses,

1
&y = E(al — VO, — U03)

&y = %(az — VO, — V03) .24

12



Three dimensional stresses and strains
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Theories of failure

LectureNo. 3

-Theories of failure-

3-1 Stress - Strain diagram.
The properties of materials such as stiffness, hardness, toughness and ductility
are determined by making tests on materials and comparing the results with
established standards. One of these tests is the tension test for mild steel as an

example:
Elost C
A
~——————Partially plostic 4—{ Test
= specimen
Wy
E"'h '
£ ) P Cireular -
- cross-section ™ Gauge
e { length
- o e
L8
-
_____ - F

Eatension or stra:n

Fig. 3.1. Typical tensiletest curve for mild stedl.

For the first part of the test it will be observed that Hooke’s law is obeyed, i.e.
the materia behaves elastically and stress is proportional to strain, giving the
straight-line graph indicated. Some point A is eventually reached, however, when the
linear nature of the graph ceases and this point is termed the limit of proportionality.

For a short period beyond this point the material may still be elastic in the sense

that deformations are completely recovered when load is removed (i.e. strain returns to

15



Theories of failure

zero) but Simple Stress and Strain Hooke’s law does not apply. The limiting point B

for this condition is termed the elastic limit.

For most practical purposes it can often be assumed that points A and B are
coincident. Beyond the elastic limit plastic deformation occurs and strains are not

totally recoverable.

There will thus be some permanent deformation or permanent set when load is

removed.

After the points C, termed the upper yield point, and D, the lower yield point,
relatively rapid increases in strain occur without correspondingly high increases in
load or stress. The graph thus becomes much shallower and covers a much greater

portion of the strain axis than does the elastic range of the material.

For certain materials, for example, high carbon steels and non-ferrous metals, it
IS not possible to detect any difference between the upper and lower yield points and
In some cases no yield point exists a al. In such cases a proof stress is used to
indicate the onset of plastic strain or as a comparison of the relative properties with
another similar material. This involves a measure of the permanent deformation
produced by aloading cycle; the 0.1 % proof stress, for example, is that stress which,
when removed, produces a permanent strain or “set” of 0.1 % of the original gauge

length-see Fig. 3.2(a).

16
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Slress o

T

/
/ ;o
! L
& P Strain £ 0 ' - RS R
’_—-!C-.I% }____. aTramn e
Permanent ‘not!
Fig 3.2a Determination of Fig 3.2b Permanent deformation or
0.1% proof stress “set” after straining beyond the yield
point.

Beyond the yield point some increase in load is required to take the strain to
point E on the graph. Between D and E the material is said to be in the elastic-plastic
state, some of the section remaining elastic and hence contributing to recovery of the
origina dimensions if load is removed, the remainder being plastic. Beyond E the
cross-sectional area of the bar begins to reduce rapidly over a relatively small length
of the bar and the bar is said to neck. This necking takes place whilst the load reduces,

and fracture of the bar finally occurs at point F.

The nominal stress at failure, termed the maximum or ultimate tensile stress, is
given by the load at E divided by the original cross-sectional area of the bar. (Thisis

also known as the tensile strength of the material of the bar.)

17



Theories of failure

3-2 Theories of failure: -

Various theories of failure have been proposed, their purpose being to establish
from the behavior of a material subjected to simple tension or compression test, the
point at which failure will occur under any type of combined loading. By failure we

mean either yielding or actual rupture, whichever occursfirst.
The following are some of these theories: -

1- The maximum shear stresstheory (Tresca): -

This theory states that failure can be assumed to occur when the
maximum shear stress in the complex stress system becomes equal to that at the
yield point in the simple tensile test.

Since the maximum shear stress is half the greatest difference between

two principal stresses the criterion of failure becomes: -

1 1
2 (gnmx 22 "Jmin) = Eﬂymm " % |

2- The maximum stresstheory: -

The maximum stress theory is proposed by Rankine is the oldest as well
as the simplest of all of theories. It is based on the assumption that failure
occurs when the max. Principal stress on an element reaches a limiting value,
the limit being the yield point in asimple tension test (or ultimate strength if the
material is brittle). The theory disregards the effect of possible other principal

stresses and shearing stresses on the other through the element.

G-n-lax — Eyie{ti f‘DI’ dLlCtiIC iﬂﬂtcrld ..... 3.23.

18



Theories of failure

3- Maximum shear strain energy per unit volume( Von- Mises) : -

This theory assumes that yielding can occur in a genera three
dimensiona state of stress when the root mean square of the differences
between the principal stressesis equal to the same value in a tensile test.

It 0, = 0, = o3 are the principal stresses and gy, is the yield stress in
simple tension, this concept gives: -

(01 = 02)* + (02 — 03)* + (03 — 01)* = 2002 ... 3.3
For astate of 2D-stress, where o3 = 0

ol-aontat=0* L. 3.4

4- Mohr’s modified shear stress theory for brittle materials: -

Brittle materials in general show little ability to deform plastically and
hence will usually fracture at, or very near to, the elastic limit. Any of the so-
called “yield criteria” introduced above, therefore, will normally imply fracture
of a brittle material. It has been stated previously, however, that brittle
materials are usually considerably stronger in compression than in tension and
to alow for this Mohr has proposed a construction based on his stress circle in
the application of the maximum shear stresstheory.

¥ o
142 =1

Where: -

Oyt and 0, the yield strengths of the brittle material in tension and compression

respectively.

3-3 Summery: -
Experimental work shows best agreement with the Mises theory when

applied to ductile material but the Tresca maximum shear stress theory is the

19
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most conservative (i.e. the safest) theory and this, together with its easily
applied and smple formula, probably explains its widespread use in industry.
For brittle materials the maximum principal stress or Mohr “internal

friction” theories are most suitable.

Examples:. -

I:xar.Mf Sy o ; s s

Iy =% o e P ;F fef _;,.",-;_. PR S B~ =i AL f—nr:_f]{l o ;l;l_-?_a'ﬁ-’_ﬂ_‘-".-‘f’t" 'a

CJMF.I’.:H £ frecs ,S.,[L‘a_r}q.# 231;1_“ N - }#ﬂ_;’fr}'h" j‘lq_';#tf[l:hs:f'{:-
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Example: -

The cast iron used in the manufacture of an engineering component has

tensileand compressive strengths of 400 MN/m? and 1.20 GN/m? respectively.

If the maximum value of the tensile principal stress is to be limited to one-

guarter of the tensile strength, determine the maximum value and nature of the other

principal stress using Mohr’s modified yield theory for brittle materials.

Solution: -
: . 400
Maximum principal stress= — — 100M N/m?

According to Mohr’s theory

S %2 1
100+108 o,

400+10%  —1.2+107

O2=—900 MPa

22
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LectureNo. 4

-Fatigue-

4-1 Repeated L oading (Cyclic L oading): -

Many machine parts are subjected to varying stresses caused by repeated
loading and unloading. Parts subjected to such loading frequently fail at a stress
much smaller than the ultimate strength determined by a static tensile test. Such

type of failure of amateria is knows as Fatigue.

The failure is caused by means of a progressive crack formation which is
usualy fine and microscopic size. The failure may occur even without out any

prior indication.
The fatigue of material is effected by: -

1- The size of the component.
2- Relative magnitude of static and fluctuating loads.
3- The number of load reversal.

In order to properly design members that are subjected to stress reversal, it is
necessary to know the stress that can safely be carried an infinite number of
times (or a somewhat higher stress that can be carried safely for a limited
number of reversals, as when a machine is used only occasionally and may

therefore have along life).

Testing to determine these values is called fatigue testing.
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Fig 4.1 S-N curve showing (a) Fatigue limit. (b) Endurance limit

It is shown from figure 4.1 that if the stress is kept below a certain value,
as shown by dotted line, the material will not fail whatever may be the number
of cycles. This stress represented by the dotted line is known as Endurance or
Fatigue limit ( O¢).It is defines as a maximum value of the completely reversa

bending stress which a polished standard specimens can withstand without

failure for infinite life number of cycles usually 107 cycles.

Generally, ferrous metal specimens often produce S/N curves which exhibit
fatigue limits as indicated in Fig. 4.1la. The ‘Fatigue strength” or “endurance
limit”, is the stress condition under which a specimen would have a fatigue life
of N cycles as shown in Fig. 4.1b. Non-ferrous metal specimens show this
type of curve and hence components made from auminum, copper and

nickel, etc., must always be designed for afinitelife.



4-2 Typesof Stresses. -

Stresses

Fatigue

Static

Dynamic

I mpact (shock)

Fatigue

Completely Rever sed repeated Fluctuating
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Fig.4.2 Types of fatigue stresses
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TmaxtTmin

Mean or average stress g, = = 4.1
Amplitude stress (variable) o, = Eﬂ;ﬂ‘ﬂ 4.2
Stress Ratio R = :mL:: .43
Notes: -

1- For reversal loading R=-1.

2
3

For repeated loading R=0.

Oeisfor completely reversal loading.

30,

4- For any stress range, the endurancelimit  ¢,” = — 4.4

4.3 Effect of loading on Endurance limit -

The endurance limit 0e of a material as determined by the rotation beam

method is for reversal bending load. There are many machines members which
are subjected to loads other than reversal bending loads, thus endurance limit
will also be different for different types of loading.

The endurance limit depending upon the types of loading may be

modified as: -

Endurance limit for bending, (0,)p = 0, ...45

{ D8

-M
Endurance limit for reversal axid load, (6,), = 0.80, ...4.6
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Endurance limit for reversa shear, (¢,), = 0.550, AT

+T T

4-4 Factors effecting on Endurance Limit: -

1- Surfacefinish - reducece ... Kaur-

2- Sizefactor -reducece ... Ksize.

3- Hardness-reduces0e ... K hard-

4- Temperature - reduceGe ...l K temp-

5- Notch or stress concentration reduces Ge  ......... Kt
K= 1+ q (K;-1) ..4.8
Where: -

K = fatigue stress concentration factor.
g= notch sensitivity.
K= theoretical stress concentration factor.

KsurKsizeKnard Ktemp
Hﬂver —— Kr ---4-9

For reversa bending o,” = g, * K,yer ...4.10



Fatigue
For reversal axia load o,.," = 0.4 * Kover ..4.11

For reversal shear o,,." = g,; * K per ... 4.12

4-5 Relationship between Endurance limit and ou: -

For: -
Stedl, 0, = 0. 50y
Cast stedl, 0, = 0. 40y
Castiron, g, = 0.350,;;
Non ferrous metals and dloys, 0, = 0. 3a,;
4-6 Fatigue Theories: -

There are many theories of fatigue; the following are some of them.

a Goodman theory: -

1 O
Op = Opg(m——0——
v e (5\' F ﬂ-u“-
b- Soderberg theory: -
1 3
Oy, = O =
v e (5-. F Jyleld)

c- Gerber theory: -

g, = 0,

(o)
S.F Oult

When the dimensions of the e ement increase the stress decrease.
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(- Goodman

Eﬂ ’HGM
= =
2
g
G N\ _Soderberg
L'yl
g \
A\
N
O o

Dy T1g
Mean stress (ol

Fig 4.3 Amplitude-mean stress relationships as per Goodman, Gerber and
Soderberg.

4-7 Combined variable normal stress and variable shear stress:-

When a machine part is subjected to both normal stress and a variable

shear stress; then it is designed by using the following two theories of combined
stresses:-

1- Maximum shear stress theory.

2- Maximum normal stress theory.

We have discussed in sec. 4-6, that according to soderberg’s formula,

1 Oy

._.Um_l_

.... For reversed bending load.
SrF ﬂ'}l' Jeb

Multiplying throughout by gy, we get
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E i
SrF geﬂ

The term on the right hand side of the above expression is known as equivalent

normal stress due to reversed bending.

Equivalent normal stress due to reversed bending,

0y 0y
Opep = Om + 5
eh

Similarly, equivalent normal stress due to reversed axial loading,

0,0y,

Oneq = Om +
ea

And total equivalent normal stress,

c U}’
One = Oneb T Onea = S_F
For reversed torsional or shear loading,
1 Tm Ty
— + —
S.F 1, T,
Multiplying throughout by 7,
T T, T
¥y vey
—_— T -+
SFE TR

The term on the right hand side of the above expressionis

known as equivalent shear stress.

Equivalent shear stress due to reversed torsion or shear loading,
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TyTy

Tos =Ty t+
e

The maximum shear stress theory is used in designing machine

parts of ductile material.

According to this theory, maximum equivalent shear stress,

1 T
Tes(max) — E\[(Jne)z + 4(Tes)? = é

The maximum normal stress theory is used in designing machine

parts of brittle materials.

According this theory, maximum equivalent normal stress,

1 1 s
One(max) = EU“E + E\?r(.&ne)z + 4(1'35)2 = ﬁ
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Example (4):- A sted cantilever is 200 mm long. It is subjected to an axia
load which varies from 150 N compression to 450 N tension and also a
transverse load at its free end which varies 80 N up to 120 N down. The
cantilever is of circular cross section. It is of diameter 2d for the first 50 mm
and of diameter d for the remaining length. Determine its diameter taking a

factor of safety of (2). Assume the following values.

Yield stress = 330 MPa.
Endurance limit in reversed loading=300 M Pa.
Correction factors = 0.8 in reversed axial loading.
= linreversed bending.
K= 1.44 for bending, 1.64 for axial loading.
Ksze= 0.85, Kauface = 0.9, Notch sensitivity index = 0.9

A BN
ft———— 2{(){} mm -
—= 5} mm l_:” mm -
MIRS—7 7 + :
A [ 150 N 450 N
= _;J—I————— —— ] —— . —=
" VB A
Y
120N
Sol.
For axial load,

Wamax) + Wagminy 450 + (=150)

W, = > > = 150N
W — Wi 450 — (—150
Wv - a{max) > af{min) . ;E ) — 300N
o m:Wm = 15[}(4]_191 N.mmz

A wd? a2
_W, _ 300(4) 382

N.mm?
A nd?  d?

14
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Kra =1+ q(Kig — 1) =1+0.9(1.64 — 1) = 1.576
0 =300%0.8*0.85*0.9/1.576=300%(.388= 116.497MPa.

o,0y, 191 . 382 + 330
Ooq  d2  d?+116.497

191  1082.08 1273.08
=+
d? d? d?

Onea = Om +

Now for bending due to transverse |oad,
i Wt(max} + Wt{miﬂ) _ 120 + (—80)

W, = : z = 20N
W, — Wiemi 120 — (—80
Wp = t{max) > t(min) _ 2( ) — 100N

Mean bending moment at point A=20(200-50) =3000N.mm
And variable bending moment at point A=100(200-50) =15000N.mm

. Mm¥Y 30550
Mean of bending stress = === —— N/mm’
. . MyY 152750 ., )
Variable of bending stress = ;’ = —— N/mm’

Ky =1+q(Kp —1) =1+ 0.9(1.44 — 1) = 1.396
0 &=300* 1*0.85* 0.9/1.396=300*0.515= 164.398MPa

o0y 30550 " 152750 « 330
Ooq  d3 d3 * 164.398

30550 + 306618.69 33716B.60
h i3 e d3

Onea = Om +

1273.08 | 337168.69 Oy

One = Oneb T Onea = PT 1 FE SF

1273.08 | 337168.69 _330 ~165
d? d? 2

1273.08d+337168.69=165d°
d=129mm Ans.

15
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Example(5):- A hot rolled steel shaft is subjected to a torsional moment that
varies from 330 N.m clockwise to 110 N.m counterclockwise and an applied
bending moment at a critical section varies from 440 N.m to -220 N.m. The
shaft is of uniform cross section and no key way is present at the critical section.
Determine the required shaft diameter. The material has an ultimate strength of
550 MN/n?* and yield strength of 410 MN/m?. Take the endurance limit as half
the ultimate strength, factor of safety of 2, size factor of 0.85and a surface finish

factor of 0.62.
Sol.

For torsional moment,

T > > = 110N.m
T = Temsi 330 — (—110
T, = (max) (min) = ( ) — 220N.m
2 2
_ 16Ty, _ 16(110) _560 ., -
Mean shear stress,7,, = —= = ——— == N/m
and variable shear stress, 7, = 16Ty = 280220) 1120 \1/m2
md? md3 d3

Since the endurance limit in shear (7, ) 1S 0.550,and yield strength in shear
1S0.50
y

7, = 0.55(0.5 * 550)(0.62)(0.85) = 79.708 MP .
7, = 0.5(410) = 205 MPa.

TyTy _ 560 , 1120(205) 3440 N
Te  d3 = d3(79.708) d3 m?

Tes =T t+

For bending moment,
_ Mimaxy + Miminy 440 + (—220)

M,, = = 110N.m
2 2 2
M — Mni 440 — (=220
Mu = (max) (min) — ( ) = 330N.m
2 2
Mean bending stress,g,,, = 3§;"’;" = 32;;;0) _1;0 N/m?
and variable bending stress, g, = 3267':1 = 32(3?‘” —33‘20 N/m?
md- md- d

16
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6, =0.5(550)(0.62)(0.85)=144.925 MPa

0,0y 1120 . 3360 * 410
o,y d3  d®=144.925

_ 1120 9506 _ 10626
JﬂE‘b = d3 + dg s FE d.

Oneb = Om +

But,

1 T}.-
Tes(max) — E\/(Jne)z + 4(Tes)? = SF

1 |, 10626 3440, ., 205%10°
_= 2 y
_EJE ) TACE) 2

d=39.5mm Ans.
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Transmission Systems

LectureNo. 5

-Transmission Systems-

5-1 A machine: -

Is a combination of resistant bodies so arranged that by their means the
mechanical forces of nature can be compelled to produce some effect or works
accompanied with certain determinant motions. In general, it may properly be
said that a machine is an assemblage of parts interposed between the source of
power and the work; each of piecesin a machine either moves or helps to guide

some of the other piecesin their motion.

5-2 Transmission of motion (or power): -

a- Direct contact: -

When the driving member of a mechanism is in direct contact with the
driven piece the bodies constituting the driver and driven member are either in

pure rolling contact or there must be sliding between the surfacesin contact.

Figure5-1: -Sliding Contact
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b- Cams: -

A cam is plate, cylinder, or other solid with a surface of contact so designed
to cause or modify the motion of second piece, or of the cam itself. Either the
cam or the other piece or both may be moving. They have a curved outline or a
groove, which rotates about a fixed axis and by its rotation imports motion to a
piece in contact with it, known as the follower. A cam and it’s follower from an

application of principle of transmitting motion by direct sliding contact.

AL is3

Figure5-2: - Cam
c- Purerolling contact: -

Pure rolling contact consists of such a relative motion of two lines or
surfaces that the consecutive points or elements of one come successively
into contact with those of the other in their order

Case One: - Cylindersroll together without slipping, external contact
(Figure 5-3): -

Figure 5-3: -Cylinder rollsin external

contact.

C=R;+R> ....b.1

The surfaces will touch at point (P).
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Surface speed of cylinder 1 = 2mR1N3.

Surface speed of cylinder 2= 21TR2N>.

Therefore, if the surface speeds of (1) equals to the surface speed of (2),
(without slipping).

otRN=2R;N, or 2R 5.2
N: Ry

Case Two: - Cylindersroll together without slipping, internal contact

C=R1-R2 53
Also,
L R | 5.4
N, R, e,

Figure 5-4: - Cylinder rollsin internal contact.



Case Three: - Cones roll together without slipping.

N, R4
Ny R;

But R,= OP sinf and
R, = OP sina. therefore

Ry _ OPsinf _ sinf
R, ~ OPsina sina

slipping

Where: -

RS}

tn
=

Transmission Systems

O=ls the angle between shafts or shafts angle.

o= isthe cone or center angle of the cone 1.

B=is the cone angle 2.

N=rolling speed rpm.

Figure 5-5: - Conesrolls without

The cone angles when the angle between the axis and speed ratio are known.

Ny sinf

sin f§

sinfd

N, sina sin(d —f) 3 sinfcosfi — cos @ sin f

(sinﬁ ﬁ‘) tan B
_ cos
sin g-C0s @sin B i " sinf—cos Btanf
sin #
Then  tanf = -5
(E—+cos B)
1

.. 9.7
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In similar manner: -

tana =EN—15in—9) ...b.8

E§+cﬂ53

d -Gears: -

Gears are toothed wheels, as the gears turn, the teeth of one gear slide on
the other but are so designed that the angular speeds of the gears are the same as
those of the rolling bodies which they replace. Gears may be classified
according to the case for which they are designed. and as follows, Spur gears,

Bevel gears and Screw gears.

5-3 Power transmission by Belts, Ropesand Chains: -

When the distance between the driving shaft and the driven shaft is too
great to be connected by gears, a flexible connector is used. Flexible connectors

may be divided into three general classes: -

1- Chains are composed of metallic links jointed together and run on either
sprockets or drums grooved, notched or toothed to fit the links of the
chains.

Chains are usually used for connecting shafts that are less than 5 meter a
part. The speed of the chain will depend upon the type of chain.

2- Ropes made of manilahemp, cotton or wire is nearly circular in section
and run on either grooved pulleys or drums with flanges. Rope may be
used for connecting shafts up to 30 m apart and should operate at a speed
of less than 180 m/min.
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3- Belts made of leather, rubber or woven fabrics are flat, round, V-type
toothed or without toothed, and run on pulley. Belts may be run
economically at speed as high as 1500 m/min.

5-4 Speed ratio and directional relation of shafts connected by a belt.

Figure 5-6: -Open Type Belt.
Linear speed of pitch surface of 1 =N, (D, + t)
Linear speed of pitch surface of 2 =N, (D, + t)

If the belt speed is supposed to be equal to the speed of the pitch surfaces of the

pulleys then,
N, (Dy + t)=nN,(Ds + )
Then,
N, (Dy+t)

Where t= thickness of belt.

The belt shown in figure 5-6, is known as an open type belt and the
pulleys turn in the same direction as suggest by the arrows. The belt shown
in figure 5-7 is known as a crosses type belt and the pulleys turn in opposite

directions.
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?(D;@w

Figure 5-7: -Cross Type Belt.

a- Length of belt connecting parallel axes, Open Type: -

Figure 5-8:- Dimension’s parameters for open type belt.
Where:-

C = the distance between the pulley axes.
L = the length of the belt.

L =2(mn+no+op)

-(5+ 8)D +2Ccos 0+ (5 - 6)d

(D—d)?
4C

L=—(D +d) +2C + for Open type belt ... 5.10
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b- L.ength of belt connecting parallel axes, Cross Type: -

(D+d)*
4C

L==(D+d)+2C+ for Cross type belt ...5.11

c- Angle of Contact: -
For open belt,
a = (m—260) Angleof contact for opentypebelt ... 5.12
ry— 71z

sinf = e== but sin® = 6 where 6 isvery small.

=Tz

Then=—= .. 5.13

For cross belt,

Figure 5-9: - Dimension’s

parameters for Cross type belt.

a = (m+ 26) Angleof contact for cross type belt ...5.14
sinf =" Butsing = for 6 isvery small.
Then.
g =Dl .5.15

C
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d- Belt tension: -
.:——'I"—-—-._ TE
2 e
i | o ——
1/ \ s
_|'___4|___I|_ _____________ [ _|\3\,
\ A | | \ l‘-i /
w |
‘-_\ i /-_J'll ___._-‘____[_:_. ”
e T rven palley
. __|_____.¢-;’_——— Tight s i
Driving pulley

Figure5.10: - Tension in belt.

Power = torque (N.m) *angular velocity (rad/sec)
P=T*w

hp =746 watt.
Torque = Tir-Tar = (T -T))

Power =wr(Ty — T3)

P=V*(T1-T)

Where: -

T, =Tension in belt in tight side (N).
T>= Tension in belt in slack side (N).
V == Belt linear velocity (nm/s).

T, >T,
_Tmax =T, +T,
T, = mV?
Where: -

m= mass of belt per unit length=pA
p = Belt density (kg/m3).

..5.16

.. 0.17
... 0.18
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A = Bélt cross section area (m?).

Tc= Centrifugal Tension (N).

— = ehf ... 5.19

Where: -
u = Coefficient of friction between belt and pulley.

o = Angle of contact between the smallest pulley and belt in
radian.

Tmax

Orension — 4 ... 5.20

Where: -

Otension — lension stress in belt which depend upon the material
of the belt (G yield ).

_T+T;

Initial tension| T, .. 5.21
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Thick Cylinders

L ectureNo. 6
-Thick Cylinders-

6-1 Differencein treatment between thin and thick cylinders - basic assumptions:

The theoretical treatment of thin cylinders assumes that the hoop stress is
constant across the thickness of the cylinder wall (Fig. 6.1), and aso that there is no
pressure gradient across the wall. Neither of these assumptions can be used for thick
cylinders for which the variation of hoop and radial stresses is shown in (Fig. 6.2),

their values being given by the Lame equations: -

Oy = A +£ ...0.1

B

o =A—-—= 6.2
Where: -
oy= Hoop stress (}-?:r— = Pa).

o,= Radial stress (f; = Pa).

r= Radius (m). A and B are Constants.

Figure6.1: - Thin cylinder subjected to internal pressure.
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_— atmsy datributioss

/f_-_h‘-
p-l%l-\ﬁm
/w’ =, : :erfrns.IE:'
TF P
L ;_\‘;_ =
i’:fﬁx“x o, [compressive |

@ -ArD/t o, a-@°

Figure6.2: - Thick cylinder subjected to interna pressure.

6-2 Thick cylinder- internal pressureonly: -
Consider now the thick cylinder shown in (Fig. 6.3) subjected to an internal
pressure P, the external pressure being zero.

o
"2 \\
B

Figure 6.3: - Cylinder cross section.

The two known conditions of stress which enable the Lame constants A and B
to be determined are:

Atr=R;, o =-Pand ar=R,, 0,=0

Note: -The internal pressure is considered as a negative radia stresssinceit will
produce aradial compression (i.e. thinning) of the cylinder walls and the normal stress
convention takes compression as negative.

Substituting the above conditionsin egn. (6.2),
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B
J,- = A— T'_z
i =
“P_A—R._l?‘ and 0 =4 R
Then‘q—_PlH_lz___ andB—M
= {:Rzz—.’hz} = (REE_R12)
Substituting A and B in equations 6.1 and 6.2,
_ _PR® [ _R:
Or = Gr) l1-%] .63
__ PR,? Rz®
Oy = {:Rf—ﬂf} [1 ¥ 2 ...6.4

6-3 Longitudinal stress:. -

Consider now the cross-section of athick cylinder with closed ends subjected to

an internal pressure P; and an external pressure P,, (Fig. 6.4).

s b
; a— !
71 1 1 et
_?_. . -
/T B, I B/
2 L —= g‘.:--n—
(O I I BN
Clased ends

Figure 6.4: - Cylinder longitudinal section.
For horizontal equilibrium:
P> +mR* — P,2 + R, = oy * ]IT[R22 — Rﬁ]

Where g, isthe longitudinal stress set up in the cylinder walls,
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Longitudinal stress,

PiR1%—PyR;? 6.5
z z EREASE
(Rz*—Ry?)

G'L:

But for P, =0 (no external pressure),

PiRy*

———= = A, constant of the Lame equations. ....0.6
(Rz*—Ry7)

G.L:

6-4 Maximum shear stress: -

It has been stated in section 6.1 that the stresses on an element at any point in

the cylinder wall are principal stresses.

It follows. therefore, that the maximum shear stress at any point will be given

by equation of Tresca theory as,

% = gy = D ..6.7
Tmax = 2" .68
e =2](4+8) - (45
Ty = ....6.10

6-5 Change of diameter: -
It has been shown that the diametral strain on a cylinder equals the hoop or

circumferential strain.

Change of diameter = diametral strain x original diameter.

= circumferential strain x origina diameter.
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With the principal stress system of hoop, radial and longitudinal stresses, al

assumed tensile, the circumferential strain is given by

€y = -;_-{G'H — U0, — Vo) ....6.11

8D = %(UH — Vg, — vay) ....6.12

Similerly, the change of length of the cylinder is given by,

oL = IE (o, — vo, — voy) ....6.13

6-6 Comparison with thin cylinder theory: -

In order to determine the limits of D/t ratio within which it is safe to use the
simple thin cylinder theory, it is necessary to compare the values of stress given by
both thin and thick cylinder theory for given pressures and D/t values. Since the
maximum hoop stress is normally the limiting factor, it is this stress which will be

considered.

Thus for various D/t ratios the stress values from the two theories may be

plotted and compared; thisis shown in (Fig. 6.5).

Also indicated in (Fig. 6.5) is the percentage error involved in using the thin
cylinder theory.

It will be seen that the error will be held within 5 % if D/t ratios in excess of 15 are
used.
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2 \% errot Thick Cylinder N
POy
1 ~ ]
- // a2
=g
'8 LY
~ & ~ 50
& == 2
-1 / Thin cy.inder #*
b I = theary N e
o
XA NP T PR, 000 PR I Mg [
£ @ B 8 10 12 M@ M 18 20
K=0s51

Figure 6.5: - Comparison of thin and thick cylinder theories for various
diameter/thickness ratios.

6-7 Compound cylinders:-

From the sketch of the stress distributions in Figure 6.6 it is evident
that there is a large variation in hoop stress across the wall of a cylinder
subjected to internal pressure. The material of the cylinder is not therefore
used to its best advantage. To obtain a more uniform hoop stress
distribution, cylinders are often built up by shrinking one tube on to the
outside of another. When the outer tube contracts on cooling the inner tube
IS brought into a state of compression. The outer tube will conversely be
brought into a state of tension. If this compound cylinder is now subjected
to internal pressure the resultant hoop stresses will be the algebraic sum of

those resulting from internal pressure and those resulting from shrinkage as

6
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drawn in Fig. 6.6; thus a much smaller total fluctuation of hoop stress is
obtained. A similar effect is obtained if a cylinder is wound with wire or

steel tape under tension.

(a) Internal pressure {e) Shrinkoge on'y (¢) Combined shrinkage
only ond internal pressure

Figure 6.6: - Compound cylinders-combined internal pressure and shrinkage effects.

The method of solution for compound cylinders constructed from similar

materialsis to break the problem down into three separate effects:
(a) shrinkage pressure only on the inside cylinder.

(b) shrinkage pressure only on the outside cylinder.

(c) interna pressure only on the complete cylinder.

For each of the resulting load conditions there are two known values of radia

stress which enable the Lame constants to be determined in each case

condition (a) shrinkage - internal cylinder:
Atr=Ry, 0,=0

At r=R;,, o=-p (compressivesinceit tends to reduce the wall
thickness)

condition (b) shrinkage - external cylinder:

At r= Rz, Or =O
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At r=R, 0o =-p
condition (c¢) internal pressure- compound cylinder:

At r=R;, 0,=0

Atr=R;, o =-P,

Thus for each condition the hoop and radial stresses at any radius can be
evaluated and the principle of superposition applied, i.e. the various stresses are then
combined algebraically to produce the stresses in the compound cylinder subjected to
both shrinkage and internal pressure. In practice this means that the compound
cylinder is able to withstand greater internal pressures before failure occurs or,
aternatively, that a thinner compound cylinder (with the associated reduction in
material cost) may be used to withstand the same internal pressure as the single thick

cylinder it replaces.

f\_\

Internal pressure
-~

Shrinkage

L.ﬂ""— Shrinkage

{a) Hoop stresses (b) Rodial stresses

Figure6.7: - Distribution of hoop and radial stresses through the walls of a compound
cylinder.
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Example 6-1: - A thick cylinder of 100 mm internal radius and 150 mm external

radius is subjected to an internal pressure of 60 MN/m? and an external pressure of 30

MN/n?. Determine the hoop and radia stresses at the inside and outside of the

cylinder together with the longitudinal stress if the cylinder is assumed to have closed

ends.

Solution: -
At r=0.1m, o,=-60M Pa.

r=0.15m, 0,=-30 MPa

-60=A-100B ....1

30 MN/m?

-30=A-445B ....2
By solving equations 1 and 2,
A=-6 and B=0.54

Therefore at r=0.1m

B 1 -7 ——
l'_T” = 14. + T'_‘5 __6 + (0,1}2 48'\/' Pa.
At r=0.15m,
B_ 0.54 _
op =A+—=-6+ 0.15)7 |8MPa

PiRy2=PyR,% 60(0.1)%-30(0.15)2
(R2*—R,?) (0.152—0.12)

G.L:

=-6MPai.e. compression.
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Example 6-2: - An externa pressure of 10 MN/m? is applied to a thick cylinder of
internal diameter 160 mm and external diameter 320 mm. If the maximum hoop stress
permitted on the inside wall of the cylinder is limited to 30 MN/m?, what maximum
internal pressure can be applied assuming the cylinder has closed ends? What will be
the change in outside diameter when this pressure is applied? E = 207 GN/m?, v =
0.29.

Solution: -
At r =0.08m, 6,=-P, ;15=156
Atr=0.16 m, 0= -10, =39
And at r =0.08m, o= 30MPa
_10=A-39B ...(1) 30=A+156B ....(2)

Subtracting (1) from (2), A=-2 and B=0.205
Therefore, at r=0.08,0, =-p =A -156B=-2-156*0.205 = -34MPa.
i.e. the allowable internal pressure is 34 MN/m?.
The change in diameter is given by
6D = %(UH —vo, —vay) ... (3)

Buto, =- 10 MN/m?, oy = A + £:-2+39*0.205:6 MN/m?

10
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PiR%2=P;R;?  (340.082-10+0.16%)
(Rz*—R41?) (0.162—0.082)

And findly, g, =

COMpPressive.

-1.98 MPai.e

Substitute o, oyand o; N egn. 3,

sp = 932

i _ _ _ ﬁ:
= ———[6 — 0.29(~10) - 0.29(~1.98)]10° =14.7um

Example 6-3: - A compound cylinder is formed by shrinking a tube of 250 mm
internal diameter and 25 mm wall thickness onto another tube of 250 mm external
diameter and 25 mm wall thickness, both tubes being made of the same material.
The stress set up at the junction owing to shrinkage is 10 MN/m?. The compound tube
is then subjected to an internal pressure of 80 MN/m?. Compare the hoop stress
distribution now obtained with that of a single cylinder of 300 mm external diameter

and 50 mm thickness subjected to the same internal pressure.

A solution is obtained as described before by considering the effects
of shrinkage and internal pressure separately and combining the results
algebraically.

Shrinkage enly - outer tube, 25/

Atr=0.15,6.=0 andatr=0.125, g, = -10 MN/m? @
0 = drssm = AR U
(0.152)
B

10=A-—————=A -
A—oqzen = A~ 648

~ B =0.514, A=12285

hoop stress at 0.15 mradius= A + 44.58B = 45.7 MP .

11
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hoop stress at 0.125 mradius= A + 648 = 55.75MP .
Shrinkage ealy- inner tube,
At r=0.10,6,=0 and atr =0.125, g, = - 10 MN/m?

=A—- 1008

—10=A4 =A—-64B

- (0.1252)
~ B =-0.278, A=-278
hoop stress at 0.125 mradius= A + 64B = —45.6 MP .

hoop stress at 0.10 mradius= A + 1008 = —=55.6 MP .

Condsidering internal pressure only (on complete cylinder)
Atr =0.15,6,=0 and ar=0.10,0,=-80

= A—445B

~B=144, A=642
Atr=015m,  oy=A +44.5B = 128.4 MN/m?
r=0.125m, oy =A +64B =156.4 MN/m?
r=0.1m, o =A + 100B = 208.2 MN/m?

The resultant stresses for combined shrinkage and internal pressure are
then:

outer tube: r=0.15 oy =128.4+45.7 =174.1 MN/m?.

12



Thick Cylinders

r=0125 oy =156.4+55.75=212.15 MN/nm?.
inner tube: r =0.125 oy = 156.4-45.6 =110.8 MN/n?*.
r=01 on =208.2-55.6 =152.6 MN/n?.

13



Strain Energy

Lecture No. 7
-STRAIN ENERGY -

7-1 Introduction: -

Strain energy is as the energy which is stored within a materia when
work has been done on the material. Here it is assumed that the material remains
elastic whilst work is done on it so that al the energy is recoverable and no

permanent deformation occurs due to yielding of the material,
Strain energy U = work done

Thus for agradually applied load the work done in straining the material
will be given by the shaded area under the load-extension graph of Fig.

Figure 7.1: - Work done by a gradually applied load.

The unshaded area above the line OB of Fig. 7.1 is caled the
complementary energy, a quantity which is utilized in some advanced energy
methods of solution and is not considered within the terms of reference of this

text.
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7-2 Strain energy - tension or compression: -

a- Neglecting theweight of the bar: -

Consider asmall element of a bar, length ds, shownin Fig. 7.1. If agraph

Is drawn of load against elastic extension the shaded area under the graph gives
the work done and hence the strain energy,

U=2P3 ...(1)

[

Pd
But young modulus E= =

Pds ‘
A5 o 5_E e
Now, substituting eqn. (2) in (1)
PzdL
For bar element, U = 2
2AE
L P?ds
-~ Total strai lJ =
Total strain energy for abar of length L, fo 2£M:)
P2L
U !
2AE

b- Including theweight of the bar: -

Consider now a bar of length L mounted verticaly, as shown in Fig. 7.2.

At any section A B the total load on the section will be the external load P
together with the weight of the bar material below AB.

S A A
ds

1l e

?. —

L
3

L]

Figure7.2: - Direct load - tension or compression.
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Load on section AB =P + pgAs

The positive sign being used when P is tensile and the negative sign when
P is compressive. Thus. for atensile force P the extension of the element dsis

given by the definition of Young's modulus E to be

o ods
T E

5 (P + pgAs)ds
- AE

1 .
But work done = x load x extension

—(P + PQA?} {P+p{fﬁi‘“:lds

P
:—d 4 Peg P&] sds +(ng s2ds
2AE 2E

So, the total strain energy or work done s,

d +ILPPQ s _I_J-Eiﬁ'ﬂﬁﬂ. 2d

E}'?Ab
P2L . Ppgl? . (pg)*al?®
U= Sz e i T2
Z2AE 2E oF

7-2 Strain energy-shear: -

Consider the elemental bar now subjected to a shear load Q at one
end causing deformation through the angle y (the shear strain) and a shear
deflection 6, as shown in Fig. 7.3.

- "/:L-.:’/‘ -r":,:"f
Figure 7.3: - Shear. i ’__j/’




StrainenergyU:workdonezégﬁ = %Q},dg o (1)
But modulus of rigidity G = - = =
y vA
_e
V=6 - (2)
Substitute egn. (2) in (1),
.
i i
QH
Shear strain energy= ds
24G
- : L 0%
Total strain energy resulting from shear= _['D =
2
L
U= ¢
2AG

7-3  Strain energy —bending: -

Strain Energy

Let the element now be subjected to a constant bending moment M

causing it to bend into an arc of radius R and subtending an angle dO at the

center (Fig. 7.4). The beam will aso have moved through an angle do.

.--""'-’-HI'\
_.__'_.__,-'-' \1
- \
s ._'_,-'-""ﬂ e .
G St
| oot 7 )
) - P o
y s —_ 2
M e "-:-'- . i M
§
by !
§ |'IIH
- | !
- Y
’

Figure 7.4: - Bending.

Strain energy = work done = % moment X angle turned through (in radians)
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=~ Md6§ (D)

But ds = Rd#f and $=%

ds M
g = —_— — 2
- de = Ejds e (2)
Substitute egn. (2) in (1),
A
Strainenergy:lMﬂds il
2 El 2E1
: - i L M%ds
Tota strain energy resulting from bending, U = |, —
£ = M?L
~ 2EI

7-4  Strain energy —torsion: -
The element is now considered subjected to atorque T as shown in Fig.
7.5, producing an angle of twist dO radians.

Figure7.5: - Torsion.

Strain energy = work done = %T do e (1)

But, from the simple torsion theory,
T Gdf Td
—="anddd =— ....(2)
] ds GJ

Substitute egn. (2) in (1),

- Total strain energy resulting from torsion,
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L P T2L
U= [ -—ds -|U=—
26] 26 _

Note: - 1t should be noted that in the four types of loading case considered

above the strain energy expressions are all identical in form,

(unit applied load)* %L

" 2xProduct of two related constants

7-5 Castigliano’s first theorem assumption for deflection: -

If thetotal strain energy of abody or framework is expressed in terms of
the external loads and is partially differentiated with respect to one of the loads
the result is the deflection of the point of application of that load and inthe

direction of that load.

iea—ﬁu b_ﬁu dc_ﬁu
kT T ~ 8P,

Where g, b and ¢ are deflections of a beam under loads P,;, P, and P etc. as
showninfig 7.6.

P, P

LA

A O
Sgom looded with’ e S T -

F’H F'n ,F':r ah

Figure 7.6: - Any beam or structure subjected to a system of applied
concentrated loadsP o, Py, Pc, ...P,, €tcC.

In most beam applications the strain energy, and hence the deflection,
resulting from end loads and shear forces are taken to be negligible in

comparison with the strain energy resulting from bending (torsion not
normally being present),
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Mids
u=J 2EI
U _ au am
AP M AP
au 2Mds M au M aM
ap f 2EI P o ap fﬁiﬂPdS

7-6  Application of Castigliano’s theorem to angular movements:

If the total strain energy, expressed in terms of the externd
moments, be partialy differentiated with respect to one of the moments, the
result is the angular deflection (in radians) of the point of application of that

moment and in itsdirection,

e gl

El oM,

fME}M

Example 7-1. -Determine the diameter of an aluminum shaft which is
designed to store the same amount of strain energy per unit volume as a 50mm
diameter steel shaft of the same length. Both shafts are subjected to equal
compressive axia loads. What will be the ratio of the stresses set up in the two
shafts?

Esteel = 200 GN/mZ, Ealuminum = 67 GN/mZ.

2
Strain energy per unit volume = 2225 butP = gA

2
Strain energy per unit volume U = j—E

Since the strain energy/unit volume in the two shaftsis equal,

EJ'AE _ U’SH

2E4 2Es
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3 o
Es . 67 _1 approximately.

as® Eg 200 3

—

2_g252_ |1
30;.; g = :
2 2
e P
3 (f) £ (-.ﬂ._) but P,.=P,=Pand A = %DE
A s

3(=5) = () - 305" = Ds* - D, = ¥3Ds

z
Dy 5

« Dy = V3(0.050) = 0.0658 m

Example 7-2: - Two shafts are of the same material, length and weight.
One is solid and 100 mm diameter, the other is hollow. If the hollow shaft isto
store 25 % more energy than the solid shaft when transmitting torque, what
must be its internal and external diameters? Assume the same maximum shear

stress applies to both shafts.

al.

Let A beé the solid shaft and B the hollow shaft. If they are the same
weight and the same material their volume must be equal.

=D,;% == (Dg* — d5*)
D% = (Dg* —dg”) = (0.100%) = 0.1 m? ... (1)

Now for the same maximum shear stress,

TH
T ===
2]
TaD TgD T D
aba _TgDe _ Ta _ Dpla . (2
214 2]p Tg Dalp

But the strain energy of B = 1.25 x strain energy of A.



T#L

T 26G)

TgL TAL . Ta® ]
8 _=1254— 2 =_-4
2Gg 2G4 Tg 1.25]g

Now substitute eqn. (2) i (3),

Dg® s /e " Dg* _ Dgp*-dp*

D42 12514 D4®  1.25D4%

2 _ Dp*-dg’ % Dp*—(Dp?-0.1)?
B 1.25D 42 1.25D 42

. Dp = 115.47 mm  Substitutein egn. (1)

57.74 mm.

o dg

Strain Energy

. (3)

Example 7-3: - Using Castigliano's first theorem, obtain the expressions for (a)

the deflection under a single concentrated load applied to a simply supported
beam as shown in Figure below, (b) the deflection at the center of a simply

supported beam carrying a uniformly distributed load.

W
a- e o ol b
A | L | :—{
' ) C N

-Is
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(MM
o= J Er ow ™
[
C )
M AM MM
= JEaw ™ ) Eaw™
A C
I b
1 | Wbx, bx, I [ Wax, ax,
= = = i, d = Eh il d
EI’J-L L"”‘E:_I‘L“L“‘t“
Q L)
2 " - -
Wkt [ Ha
= | St g f”id"i
a 1]
Whia® Wa*h®  Wah? Wa'b?
T + 3 - -_z_{ﬂ+b]_
3L2E1 T 31%E1 T 3LPEI ALEI
b' P=0

: ? | wsunit length

+

nal® |
Fy

P
WL 2
i

rof o

L L/2
; N m Mm
**'-J‘E"'S—zf T
] O

wl  wx?

x
M - 5 and m:—i
L2 =
2 wlx wx’\x
=i ( 2 “T);‘-""

)]
L2
1
s 2 3
_E—-—fj (wlx® —wx)dx
0O
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Strain Energy

Example 7-4. - Derive the equation for the slope at the free end of a cantilever
carrying auniformly distributed load over itsfull length.

Sol.

11
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Example 7-5: -Determine, for the cranked member shown in Figure below:

(a) The magnitude of the force P necessary to produce a vertical movement of P
of 25 mm:;

(b) The angle, in degrees, by which the tip of the member diverges when the
force Pis applied.

The member has a uniform width of 50mm throughout. E = 200GN/m?.

— ﬁi ﬂlki)' "sf.
1 ] in—-—ﬁctmm
SREY (] 25 mm |7
| B R
=
fe— 530G MM — )
Sol. (a)
Horizontal beam: -
aMm
M = PI,E =X
. MoM
9= -rE.f 5P dx
bh®  0.05(0.025)° 1 _
g, =20 DOBQO2S) 1 _ 768+ 107

12 12 (ET}p

5hnr£zantui =769 +107° J-{JDIE Px?%dx

- 33 0.5 -
Shorizontar = 76.9 * 1076P [?]ﬂ =32%1076P

Vertical beam: -

aM
M = D'SP'-EF = 0.5

bh*®  0.05(0.05)% 1
= —

=9.6*107°
12 12 (EDy

L, =

Svertictar = 96 * 1076 [*° 0.5P(0.5)dx

12
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pertictal = 9-6 * 1076[0.25Px]%%° = 600 * 10~°P
Ototal = 5hun‘zanta£ + Sverrfcfﬂi

0.025 =3.2%107%P + 600 * 10" %P

P = 6.58kN.

Sol. (b)

Horjzontal beam: -

M‘—PI—I-MI-,%II
[

= 0.5
Bhorizontar = 76.9 » 107° fg (Px + M;)(1)dx

0.5%p
62 _  when

Onorizontat = 76.9 * 107° [f;'—z -+ fo]Z'S =76.9 %10~
M; =0

But P=6.58kN.

Onorizontar = 63.168 * 10 3rad.

Verfical beam: -

M-—O.SP+ME.%:—=1
i

Overticat = 9:6 % 1076 [P*°(0.5P + M) (1)dx

Operticar = 9.6 * 1078[0.5Px + M;x]32> but M; = 0 and P=6.58kN.
O portical =7.896%1073 rad.

Bmmt = Shnriznnmi o Sverrici’ui

Brotar = 63.168 * 10> +7.896* 10~3=0.071 rad=4.1°

13



Strain Energy

H.W. A semicircular frame of flexural rigidity (El) is built in at A and carries

a vertical load W at B as shown in Figure (1). Calculate the magnitude of
horizontal deflection at B.

//”__‘“‘““\1\
e

\La
|

L

T

Figure (1)

14
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LectureNo. 8
-Struts-
8-1 Introduction: -

Structural members which carry compressive loads may be divided
into two broad categories depending on their relative lengths and cross-
sectional dimensions. Short, thick members are generally termed columns
and these usually fail by crushing when the yield stress of the material in
compression is exceeded. Long, slender columns or struts, however, fal by
buckling some time before the yield stress in compression is reached. The

buckling occurs owing to one or more of the following reasons:
(@ The strut may not be perfectly straight initialy;
(b) Theload may not be applied exactly along the axis of the strut;

(c) one part of the material may yield in compression more readily than
others owing to some lack of uniformity in the material properties throughout
the strut.

8-2 Euler’s theory: -

a- Strut with pinned ends: -

Consider the axiadly loaded strut shown in Fig. 8.1 subjected to the
crippling load P, producing a deflection y at a distancex from one end.
Assume that the ends are either pin-jointed or rounded so that there is no
moment at either end.

-
B
o

Figure8.1:- Strut with axial load and pinned ends.
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Z
B.M. at C = Ef% =—Py

B8 i py =0
dIz Ey =

ffz}" Pe :

w Tra? =0

i.e. in operator form, with D=d/d X,
(D? +n?*)y = 0 wheren? = ZT*;
This is a second-order differential equation which has a solution of the form

y = Acosnx + Bsinnx

P e
= Acos |=x + Bsin |[=x .
y El + El

B.C.
At x=0, y=0 R e §

And at x=L, y=0 .. BsinL Jg =0

If B = 0theny = 0 and the strut has not yet buckled. Thus the solution required

IS,
- Pg PE
I—m==0.~L |==7
sinl \J El ' x’ EI

meEl
LZ

Pe == .81

It should be noted that other solutions exist for the equation,
: Py ; :
smLJ; =0Le.sinnL=20

The solution chosen of n L = i5just one particular solution; the
solutionsnL = 2w , 37, 57 etc. are equally as valid mathematically and they do.
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Figure 8.2:- Strut failure modes.

b- Oneend fixed, the other free: -

Consider now the strut of Fig. 8.3 with the origin at the fixed end.

E

K —
B

I

Figure 8.3: - Fixed-free strut.

dZy

BM.atC=El— = +P(a—y)
d’y Py _Pa
dx? * El  EI sesb2

(D* + n*)y = n®a
y = Acos nx + Bsin nx + (particular solution)

The particular solution 1s a particular value of y which satisfies egn. (8.2), and
in this case can be shown to be y = a.

y = Acosnx + Bsinnx + a

Now at x= 0, y=0 ~A=—-a
and at x=0, 2% = 0 ~B=0
dx
sy = —acosnx +a

But when x=L,y=a
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a=-a cosnL+a

0 = cosnlkL

The fundamental mode of buckling in this case therefore is given when n L =,

2
L&) =3

....8.3

c- Fixed ends: -

Consider the strut of Fig. 8.4 with the origin at the center.

" :\% i Lz ~r3-” "

Tk

Figure 8.4: - Strut with fixed ends.

In this case the B.M. at C is given by,
dzy
B.M.HIC:EFEZ M — Py

dy Py _ M
dx? ' EI  EI

(D=,

Here the particular sofution Is
M M

Y=%E P

. M
y=Acos nx+Bsin nx+ =

Now when X—'ﬂ,j—i == o B

1 M L
And when XZEL,y =0 ~4= —Fseci—
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B M nl +M
y_—Fseczcnsnx 5

But when X=— L, £y 0
2 dx

nM nlL nlL
0= sec—sin

P 2 2
0 th nk
= —tftan—
p N5

< : . : L
The fundamental buckling mode is then given when % =T

L, | P
El

[0 ]

42 El
o By = - ‘ ....8.4

8-3 Comparison of Euler theory with experimental results (see Fig. 8.5)

Between L / k =40 and L / k = 100 neither the Euler results nor the
yield stress are close to the experimental values, each suggesting a critical load
which is in excess of that which is actually required for fallure - a very unsafe
situation! Other formulae have therefore been derived to attempt to obtain closer
agreement between the actua failing load and the predicted value in this
particular range of slenderness ratio.

(&) Straight-lineformula,
P=oyA[l-n(L/Kk)]
thevaue of (n) depending on the material used and the end condition.
(b) Johnson parabolic formula,
P=oyA[l-b(L/k)?

the value of (b) depending also on the end condition.
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Neither of the above formulae proved to be very successful, and they
were replaced by:

(c) Rankine-Gordon formula,

1 1 1

—— e

Py P, P,

where Pe is the Euler bugkling load and Pc is the crushing (compressive
yield) load = Oy A. This formula has been widely used.

8-4 Euler "validity limit"

From the graph of Fig. 8.5 and the comments above, it is evident that
the Euler theory is unsafe for small L/k ratios. It is useful, therefore, to
determine the limiting value of L / k below which the Euler theory should not
be applied; thisistermed the validity limit.

Euvldr  Curvl
Ta

For stractural stesl, curves
coincios of LAk sBD

] T NS Yiedd or coliapsd BTRRAE
T = 3, e

th
E sperimant o, rﬁ %

Curvity Comncde
ot LAumi20

Shnoernem  rotie Lok

Figure 8.5: - Comparison of Experimental results with Euler curve.

The validity limit is taken to be the point where the Euler 0. equals the
yield or crushing stress gy, i.e. the point where the strut load

P=o0,A
Now the Euler load can be written in the form,
2 El m*EAk?
E -t R
where C is a constant depending on the end condition of the strut.

P.=C
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Therefore in the limiting condition

2 2
n-EAk
GyAz C Lz
L (ci-r?E)
ko Ty

The valueof this expression will vary with the type of end condition; asan
example, low carbon steel strutswith pinned endsgivelL / k = 80.

8-5 Rankine or Rankine-Gordon formula,

As stated above, the Rankine formulais a combination of the Euler and
crushing loads for a strut

1 1+1
PR Pe Pr:

*For very short struts P. is very large; 1/P. can therefore be neglected and P
= P..

*For very long struts Pe is very small and 1/P. is very large so that | /P can be
neglected. Thus The Rankine formula is therefore valid for extreme vaues of
L/k. Itisaso found to befairly accurate for the intermediate values in the range
under consideration. Thus, re-writ ng the formulain terms of stresses,

1 1 N 1
gA o,A oA

1 1 1 og.+a

—

o 0., d, 0.0,

¥

" O’Eﬂ'_}, ﬂ'},
— —
g, + o, [1 | (“ﬂy)]
e
For a strut with both ends pinned,
2 E
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i
a = a}' [ 7
1+ 25 (M)
Rankinestress op = —2—
1+ﬂ(Lfk)

a
where a =HT‘1,. theoretically, but having a value normaly found by
experiment for various materials. This will take into account other types of end
condition.

ayA

Therefore Rankineload|Pp = ———

Example 8-1:- A circular shaft of diameter 60 mm and its length is 1.5m. Given
afactor of safety of 3, a compressive yield stress of 300 MN/m? and a constant
(@ of 1/7500, determine the allowable load which can be carried by shaft
according to the Rankine-Gordon formul ae.

Sol.
4 = )4
" = D - H{ﬂ.ﬂbm) i {).361 % 10_?_”14
64 64
nD? 1(0.060)2
A= = ( ) = 2.827 * 10 3m?
4 4
I 361 %1077
k? =— L " = 2.2497 * 10~*m?*

A~ 2827%1073
According to Rankine —Gordon formula

o,A 300+109+2.827+1073
p= 2 = T A =363.443KN
1+ﬂ( fk) 1+?snn\z_249?.|[r"')

With & factor of safety of 3 the maximum permissible load therefore becomes,

_ 363.443

Pay = —— = 121.147KN.

Example 8-2:- In an experiment an aloy rod 1 m long and of 6 mm
diameter, when tested asa simply supported beam over alength of 750 mm,
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was found to have a maximum deflection of 5.8 mm under the action of a
central load of 5 N.

& Find the Euler buckling load when this rod is tested as a strut, pin-jointed
and guided at both ends.

b- What will be the central deflection of this strut when the material reaches
ayield stress of 240 MN/m??

Note: - Take maximum stress = E + FI—” where M = P8, .+

Sol.
nD* m(0.006)*
— — — =114
= = 6.361 % 10~ "'m
For simply supported beam with a concentrated load W at center,
5= L a75)- = 0.0058 > E = 119.0994 G N /m?
T 48 E] 48(6.361 *10°1M)E ~ it n' {m
m?El  1w%(119.0994 % 10%)(6.361 = 107'")
But P, = = = 74.77N
L2 12
74.77 74.77(8)(0.003)

. P M
Take maximum stress= 240 * 10° = - + — = —
A I m(0.003)2 6.361+10~11

240 % 10° = 2644447.8 + 3.526 * 10°§
& 6 =0.0673m

Example 8-3: - In tests it was found that a tube 2 mlong, 50 mm outside
diameter and 2 mm thick when used as apin-jointed strut failed at aload of
43 kN. In a compression test on a short length of this tube failure occurred at a
load of 115 kN.

& Determine whether the value of the critical load obtained agrees with that
given by the Euler theory.

b- Find from the test results the value of the constant a in the Rankine-
Gordon formula. Assume E = 200 GN/n?.

Sol.

_m(D* —d?) m(0.050% — 0.0467)
B 4 i 4

=3.016 * 10*m?
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=8.7* 10 %m*

- n(D* —d*) m(0.050* — 0.046")
- 64 il 64

MO i 381.308MP
= AT3016+10% " '
m?El _ w*(200%107)(8.7+107%)

LZ o 22

P = = 42.937kN So, yes

gy _ 381.308x10° 1
m2E  w?(200-10%) 51767

a=

Example 8-4: - A stanchion is made from two 200 mm x 75 mm channels
placed back to back, as shown in figure below, with suitable diagonal bracing
across the flanges. For each channel I« = 2010° m*, I,y = 1.5*10° m*, the
cross-sectional areais 3.510° m? and the centroid is 21 mm from the back of
the web.

At what value of p will the radius of gyration of the whole cross-section be the
same about the X and Y axes?

The strut is 6 m long and is pin-ended. Find the Euler load for the strut and
discuss briefly the factors which cause the actual failure load of such a strut to
be less than the Euler load. E = 210 GN/m?.

Y

' f«75 mms]

p

- "

X E : | ' X 200 mm

I

o

Sol.
For stanchion,

l,=2(20% 10°%) = 40 106 m?

10



=1, + Ad? =2[1.5%10%+ 3.5+ 10% (0.021+0.5p)

,?:A,I(Z—;,I(:‘]E
A

kxx:kyy and Axx:Ayy:A o !xx = ]ry}r
o 40% 10" =2[1.5*10"+ 3,510 (0.021+0.5p)9]
5 p=0.1034 m

m?El w%(210 * 10%)(40 « 107°) _
B = == = = 2.303 MN
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Fracture Mechanics

Lecture No. 9

-Introduction to Fracture M echanics-

9-1 Introduction.

Simple fracture is the separation of a body into two or more piecesin response
to an imposed stress that is static (i.e., constant or slowly changing with time) and at
temperatures that are low relative to the melting temperature of the material. The

applied stress may be tensile, compressive, shear, or torsional.

The study of how materials fracture is known as “fracture mechanics” and the
resistance of amaterial to fractureis colloquialy known asits “toughness”.
The theory of fracture mechanics assumes the pre-existence of cracks and

develops criteria for the catastrophic growth of these cracks.

9-2 Crack modes: -
In a stressed body, a crack can propagate in a combination of the three opening
modes shown in figure 9.1.
I- Mode represents opening in a purely tensile load
I1- Mode represents dliding in-plane shear |oad

[11- Mode represents tearing in anti-plane shear load

Note: - The most commonly found falures are due to cracks propagating
predominantly in mode I, and for this reason materials are generally characterized by
their resistance to fracture in that mode.
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I I m

Figure 9.1: - Modes of crack growth: mode I-tensile; mode I1-in-plane shear; mode

[11-anti-plane shear

9-3 Griffith crack theory: -

Griffith noted in 1921 that when a stressed plate of an elastic materid
containing a crack, the potential energy decreased and the surface energy increased.
Potential energy is related to the release of stored energy and the work done by the
external loads. The “surface energy” results from the presence of a crack as shown in

figure 9.2.

\
1_5/_._

P radius

—2a
8]

Figure 9.2 - Through thickness crack in alarge plate containing an

elliptical crack tip radius p.
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The total potential energy of the system is given by
U=U,-U,+ U, .91

mfa’c®B
E

U=U,~- + 2(2aBy,) ...9.2
where,

U = Potentia energy of the cracked body.

UJ,= Potential energy of uncracked body.

U,= Elastic energy due to the presence of the crack.

U, = Elastic-surface energy due to the formation of crack surfaces.

a = One-half crack length.

2(2aB) = Total surface crack area.

Y= Specific surface energy.

E = Modulus of elasticity.

o = applied stressand v = Poisson’s ratio.

f=1.for plane stressand # = 1 — v? for plane strain.

The equilibrium condition of eg. (9.2) is defined by the first order partial derive.
The equilibrium condition of eq. (9.2) is dcfined by the first order derivative with
respect to crack length. This derivative is of significance because the critical crack

size may be predicted very easily. If % = 0 the crack size and total surface energy

are, respectively

_ (2ys)E
Q= aRa? ...9.3
__ mfac*

(2ys) = — ..9.4
2

G = mf in plane stress.
2

G= mf; (1-v?) in plane strain.
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where G isthe strain energy release rate. While, Griffith criterion for fractureis:

Where o; is the fracture stress, ais half crack length at the beginning of fracture
If G = G, thisisthe criterion for which the crack will begin to propagate.

Returning to equation (9.3) and rearranging it, we will get asignificant expressionin

linear elastic fracture mechanics; (LEFM)

og\ITa = M ...95
B
K; = ovma ...9.6

The parameter K; is called the stress intensity factor which is the crack

driving force and its critical vaue is a material property known as fracture
toughness, which in turn, is the resistance force to crack extension.

Kic is the fracture toughness, is important to recognize that fracture parameter K,c

has different values when measured under piane stress and plane strain.

Fracture occurswhen K; = K.

9-4 Irwin theory: -

Griffith's criterion is an energy-based theory which ignores the actual stress
distribution near the crack tip. In this respect the theory is somewhat inflexible. An
aternative treatment of the elastic crack was developed by Irwin, who used a similar
mathematical model to that employed by Griffith except in this case the remotely
applied stress is biaxia as shown in figure 9.3. Irwin's theory obtained expressions

for the stress components near the crack tip. The most elegant expression of
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the stress field is obtained by relating the Cartesian components of stressto polar

coordinates based at the crack tip as shown in figure 9.4.

.

_ S‘“v'v“w
e
bl

- - BT o ﬂ

Crock E— -

——— T 7 T

Figure 9.4: - Coordinate system for stress componentsin Irwin's analysis.

~

5

K 0 .8 . 38
= cas; [1 + sm—sm?]

Y  \2mr 2
K e[ . 8 . 38
Oyy — ——COS— 1—sm-5m—] — .97
xx V2 2 2 2

T— E :r.inﬁ'c.t:usEat:«:»sE'9
\ ¥ " w2 2 2

For plane stress, a,, = 0

For planestrain, €,, =0 = 0,; = U(0yx + ayy)
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9-5 Stress intensity factor for different states: -

a- Through- thickness central erack.

K; = ovma for infinite plate.
K; = ovma (ﬁ tan%)% for plate of finite width, W.
$4440
<
B

YYVYVO

b- Single edge crack.

K}. — YJ\/E

Y =199-041(5)+187 (&)2 3848 (&)3 +53.85 (&)4
$444 0
4t p
b=

YYYYVY O

¢- Double edge crack.

K; = Yova

Y =199 4076 (%) - 8.48(2)" +27.36(2)’
144 o
4y H
<+

o
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Example 9.1: -Sted tie in a girder bridge has a rectangular cross-section 200
mm wide and 20 mm deep. Inspection reveals that a fatigue crack has grown from the
shorter edge and in a direction approximately normal to the edge. The crack has grown
23 mm across the width on one face and 25 mm across the width on the opposite face.
If Kic for the material is 55 MPa . mY? estimate the greatest tension that the tie can
withstand. Assume that the expression for K in a SEN specimen is applicable.

Solution
a=(23+25)/2 = 24 mm

alW = 24/200=0.12

from 9.5.b find Compliance function constants, then

a a2 a3 a?
Y = 1.99 — 0.41 (W) +18.7 (W) — 3848 (W) +53.85 (W)
Y =1.99 — 0.41(0.12) + 18.7(0.12)% — 38.48(0.12)? + 53.85(0.12)*

Y =2.154

At the onset of fracture K = K|,
H; = YJ\/E

P
5 %105 = 2.154——— /0.024
55 * 00202 VOO

Hencefallureload P = 659.282 kN

Example 9.2: - A thin cylinder has a diameter of 1.5 m and a wall thickness of
100 mm. The working internal pressure of the cylinder is 15 MN/m? and K¢ of the
materia is 38 MPamY?. Estimate the size of the largest flaw that the cylinder can
contain. Assume that for this physical configuration (K = ¢ v m a) and that the flaw is
sharp, of length 2a, and perpendicular to the hoop stress.
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Solution
Pd 15x 1.5
s 0 s = 112.5 MN/m?
O 3 T Bxli -
K =o/na
38=112.5/ma
a =643 mm
H.W.

A photoelastic model shows that a fringe has a maximum distance of 2.2 mm
from the crack tip. If the fringe constant is 11 N/mm?#fringe-mm and the model
thickness is 5 mm, determine the value of the stress-intensity factor under this applied
load.

Ans. 1.293 M Pa.m¥?2
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