PRINCIPLES OF ENVIRONMENTAL ENGINEERING AND SUSTAINABILITY

LECTURE EIGHT: HYDRAULICS OF WATER ...CONT.
FRICTION HEAD LOSS AND OPEN-CHANNEL FLOW
DEPARTMENT OF ENVIRONMENTAL ENGINEERING

LOSS OF HEAD FROM PIPE FRICTION

- Energy loss resulting from friction in a pipeline is commonly termed the *friction head loss* (h_I).
- This is the loss of head caused by pipe wall friction and the viscous dissipation in flowing water.
- Friction loss is sometimes referred to as the *major loss* because of its magnitude,
- and all other losses are referred to as *minor losses*.

THE DARCY-WEISBACH EQUATION

• The most popular pipe flow equation was derived by *Henri Darcy* (1803 to 1858), *Julius Weisbach* (1806 to 1871), and others about the middle of the nineteenth century. The equation takes the following form: $h_f = f\left(\frac{L}{D}\right)\frac{V^2}{2g}$

• This equation is commonly known as the *Darcy-Weisbach* equation. It is conveniently expressed in terms of the velocity head in the pipe. Moreover, it is dimensionally uniform since in engineering practice the *friction factor* (*f*) is treated as a dimensionless numerical factor; h_L and V²/2g are both in units of length.

EMPIRICAL EQUATIONS FOR FRICTION HEAD LOSS THE HAZEN-WILLIAMS EQUATION

- One of the best examples is the *Hazen- Williams* equation, which was developed for water flow in larger pipes (D ≥ 5 cm, approximately 2 in within a moderate range of water velocity (V ≤ 3m/sec, approximately 10 ft/sec).
- This equation has been used extensively for the designing of watersupply systems in the Untied States. The *Hazen-Williams* equation, originally developed for the British measurement system, has been written in the form:

$$V = 1.318 C_{HW} R_h^{0.63} S^{0.54}$$

THE HAZEN-WILLIAMS EQUATION...CONT.

$$V = 1.318 C_{HW} R_h^{0.63} S^{0.54}$$

• where S is the slope of the **energy grade** line, or the head loss per unit length of the pipe $(S = h_f/L)$, and R_h is the hydraulic radius, defined as the water cross-sectional area (A) divided the wetted perimeter (P). For a circular pipe R_h is given by:

 $R_h = \frac{A}{P} = \frac{\pi D^2 / 4}{\pi D} = \frac{D}{4}$

THE *HAZEN-WILLIAMS* EQUATION...CONT.

• The Hazen-Williams coefficient, C_{HW} is not a function of the flow conditions (i.e., Reynolds number). Its values range from 140 for very smooth, straight pipes down to 90 or even 80 for old, unlined rough pipes. Generally, the value of 100 is taken for average conditions. The values of C_{HW} for commonly used water-carrying conduits are listed in Table 3.2.

TABLE 3.2 Hazen-Williams Coefficient, CHW for Different Types of Pipes

Pipe Materials	C_{HW}	
Brass	130-140	
Cast iron (common in older water lines)		
New, unlined	130	
10-year-old	107-113	
20-year-old	89-100	
30-year-old	75-90	
40-year-old	64-83	
Concrete or concrete lined		
Smooth	140	
Average	120	
Rough	100	
Copper	130-140	
Ductile iron (cement mortar lined)	140	
Glass	140	
High-density polyethylene (HDPE)	150	
Plastic	130-150	
Polyvinyl chloride (PVC)	150	
Steel		
Commercial	140-150	
Riveted	90-110	
Welded (seamless)	100	
Vitrified clay	110	

THE HAZEN-WILLIAMS EQUATION IN SI UNITS

- Note that the coefficient in the Hazen-Williams equation has units of $ft^{0.37}$ /sec. Therefore, Equation 3.25 is applicable *only* for the British units in which the velocity is measured in feet per second and the hydraulic radius (R_b) is measured in feet.
- Because 1.318 $ft^{0.37}/sec = 0.849 \text{ m}^{0.37}/sec$, the *Hazen-Williams* equation in SI units may be written in the following form:

$$V = 0.849 C_{HW} R_h^{0.63} S^{0.54}$$

where the velocity is measured in meters per second and R_h is measured in meters.

EMPIRICAL EQUATIONS FOR FRICTION HEAD LOSS THE MANNING EQUATION EQUATION

• Another popular empirical equation is the *Manning equation*, which was originally developed in metric units. The Manning equation has been used **extensively for open-channel designs**. **It is also quite commonly used for pipe flows**. The Manning equation may be expressed in the following form:

$$V = \frac{1}{n} R_h^{2/3} S^{1/2}$$

THE MANNING EQUATION EQUATION...CONT.

- where the velocity is measured in meters per second and the hydraulic radius is measured in meters. Then *n* is *Manning's* coefficient of roughness, specifically known to hydraulic engineers as *Manning's n*.
- In British units, the Manning equation is written as:

$$V = \frac{1.486}{n} R_h^{2/3} S^{1/2}$$

TABLE 3.3 Manning's Roughness Coefficient, n, for Pipe Flows

Type of Pipe	Manning's n		
	Min.	Max.	
Brass	0.009	0.013	
Cast iron	0.011	0.015	
Cement mortar surfaces	0.011	0.015	
Cement rubble surfaces	0.017	0.030	
Clay drainage tile	0.011	0.017	
Concrete, precast	0.011	0.015	
Copper	0.009	0.013	
Corrugated metal (CMP)	0.020	0.024	
Ductile iron (cement mortar lined)	0.011	0.013	
Glass	0.009	0.013	
High-density polyethylene (HDPE)	0.009	0.011	
Polyvinyl chloride (PVC)	0.009	0.011	
Steel, commercial	0.010	0.012	
Steel, riveted	0.017	0.020	
Vitrified sewer pipe	0.010	0.017	
Wrought iron	0.012	0.017	

Example 3.8

A horizontal pipe (old cast iron) with a 10-cm uniform diameter is 200 m long. If the measured pressure drop is 24.6 m of water, what is the discharge?

Solution

Area:
$$A = \frac{\pi}{4}D^2 = \frac{\pi}{4}(0.1)^2 = 0.00785 \text{ m}^2$$

Wetted perimeter: $P = \pi D = 0.1\pi = 0.314 \text{ m}$

Hydraulic radius: $R_h = A/P = \frac{0.00785}{0.314} = 0.0250 \text{ m}$

Energy slope: $S = h_f/L = \frac{24.6 \text{ m}}{200 \text{ m}} = 0.123$

Manning's roughness coefficient: $n = 0.015$ (Table 3.3)

Substituting the above quantities into the Manning equation, Equation 3.28, we have

$$V = \frac{Q}{A} = \frac{1}{n} R_h^{2/3} S^{1/2}$$

$$Q = \frac{1}{0.015} (0.00785) (0.025)^{2/3} (0.123)^{1/2} = 0.0157 \text{ m}^3/\text{sec}$$

WATER FLOW IN OPEN CHANNEL FLOW

• In Figure 6.1, open-channel flow is schematically compared to pipe flow. Figure 6.1(a) shows a pipe flow segment with two open-ended vertical tubes (piezometers) installed through the pipe wall at an upstream section, 1, and a downstream section, 2. The water level in each tube represents the pressure head (P/γ) in the pipe at the section. A line connecting the water levels in the two tubes represents the hydraulic grade line (HGL) between these sections. The velocity head at each section is represented in the familiar form, $V^2/2g$, where V is the mean velocity, V = Q/A, at the section. The total energy head at any section is equal to the sum of the elevation (potential) head (h), the pressure head (P/γ), and the velocity head ($V^2/2g$). A line connecting the total energy head at the two sections is called the energy grade line (EGL). The amount of energy lost when water flows from section 1 to section 2 is indicated by P_L .

WATER FLOW IN OPEN CHANNEL FLOW

Figure 6.1(b) shows an open-channel flow segment The free water surface is subjected to only atmospheric pressure, which is commonly referred to as the zero pressure reference in hydraulic engineering practice.

The pressure distribution at any section is directly proportional to the depth measured from the free water surface. In this case, the water surface line corresponds to the hydraulic grade line in pipe flow.

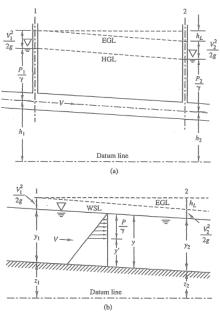


Figure 6.1 Comparison of: (a) pipe flow and (b) open-channel flow

WATER FLOW IN OPEN CHANNEL FLOW...CONT.

 To solve open-channel flow problems, we must seek the interdependent relationships between the slope of the channel bottom, the discharge, the water depth, and other channel characteristics. The basic geometric and hydraulic definitions used to describe open-channel flow through a channel section are:

Discharge (Q)	Volume of water passing through a flow section per unit time
Flow area (A)	Cross-sectional area of the flow
Average velocity (V)	Discharge divided by the flow area: $V = Q/A$
Flow depth (y)	Vertical distance from the channel bottom to the free surface
Top width (T)	Width of the channel section at the free surface

WATER FLOW IN OPEN CHANNEL FLOW...CONT.

Wetted perimeter (P)	Contact length of the water and the channel at a cross section
Hydraulic depth (D)	Flow area divided by the top width: $D = A/T$
Hydraulic radius (R _h)	Flow area divided by the wetted perimeter: $R_h = A/P$
Bottom slope (S_0)	Longitudinal slope of the channel bottom
Side slope (m)	Slope of channel sides defined as 1 vertical over m horizontal
Bottom width (b)	Width of the channel section at the bottom

Table 6.1 depicts the cross-sectional characteristics for various types of channel sections and their geometric and hydraulic relationships.

TABLE 6.1 Cross-Sectional Relationships for Open-Channel Flow

Section Type	Area (A)	Wetted perimeter (P)	Hydraulic Radius (R_h)	Top Width (T)	Hydraulic Depth (D)
Rectangular T y y b	by	b + 2y	$\frac{by}{b+2y}$	b	у
Trapezoidal	(b + my)y	$b+2y\sqrt{1+m^2}$	$\frac{(b+my)y}{b+2y\sqrt{1+m^2}}$	b + 2my	$\frac{(b+my)y}{b+2my}$
Triangular 1	my²	$2y\sqrt{1+m^2}$	$\frac{my}{2\sqrt{1+m^2}}$	2my	<u>y</u> 2
Circular (θ is in radians)	$\frac{1}{8}(2\theta - \sin 2\theta)d_0^2$	θd_0	$\frac{1}{4}(1-\frac{\sin 2\theta}{2\theta})d_0$	$(\sin \theta)d_0$ or $2\sqrt{y(d_0-y)}$	$\frac{1}{8} \left(\frac{2\theta - \sin 2\theta}{\sin \theta} \right) d_0$

Source: V. T. Chow, Open Channel Hydraulics (New York: McGraw-Hill, 1959).

Chezy's formula for open-channel flow

$$V = C\sqrt{R_h S_e} (6.2)$$

$$C = -\frac{1}{n} R_h^{1/6} \tag{6.3}$$

Substituting Equation 6.3 into Equation 6.2, we have Manning's equation:

$$V = \frac{k_M}{n} R_h^{2/3} S_e^{1/2} \tag{6.4}$$

$$Q = AV = \frac{k_M}{n} A R_h^{2/3} S_e^{1/2}$$
 (6.5)

Setting $k_M = 1$ in the SI unit system, these equations become

$$V = \frac{1}{n} R_h^{2/3} S_e^{1/2} \tag{6.4a}$$

and

$$Q = AV = \frac{1}{n} A R_h^{2/3} S_e^{1/2}$$
 (6.5a)

MANNING FORMULA FOR OPEN CHANNEL FLOW

where V has units of m/sec, R_h is given in m, S_e in m/m, A is given in m², and Q is given in m³/sec. On the right-hand side of this equation, the water area (A) and the hydraulic radius (R_h) are both functions of water depth (y), which is known as the *uniform depth* or *normal depth* (y_n) when the flow is uniform.

Setting $k_M = 1.49$ in the BG system, Manning's equation is written as

$$V = \frac{1.49}{n} R_h^{2/3} S_e^{1/2} \tag{6.4b}$$

or

$$Q = \frac{1.49}{n} A R_h^{2/3} S_e^{1/2} \tag{6.5b}$$

MANNING FORMULA FOR OPEN CHANNEL FLOW...CONT.

where V is in ft/sec, Q is in ft^3 /sec (or cfs), A in ft^2 , R_h in ft, and S_e in ft/ft. The computation of uniform flow may be performed by the use of either Equation 6.4 or Equation 6.5 and basically involves seven variables:

- the roughness coefficient (n);
- 2. the channel slope (S_0) (because $S_0 = S_{\epsilon}$ in uniform flow);
- 3. the channel geometry that includes the water area (A) and
- the hydraulic radius (R_h);
- 5. the normal depth (y,);
- the normal discharge (Q); and
- the mean velocity (V).

TABLE 6.2 Typical Values of Manning's n

Channel Surface	n
Glass, PVC, HDPE	0.010
Smooth steel, metals	0.012
Concrete	0.013
Asphalt .	0.015
Corrugated metal	0.024
Earth excavation, clean	0.022 - 0.026
Earth excavation, gravel and cobbles	0.025 - 0.035
Earth excavation, some weeds	0.025 - 0.035
Natural channels, clean and straight	0.025 - 0.035
Natural channels, stones or weeds	0.030 - 0.040
Riprap lined channel	0.035 - 0.045
Natural channels, clean and winding	0.035 - 0.045
Natural channels, winding, pools, shoals	0.045 - 0.055
Natural channels, weeds, debris, deep pools	0.050 - 0.080
Mountain streams, gravel and cobbles	0.030 - 0.050
Mountain streams, cobbles and boulders	0.050-0.070

Example 6.1

A 3-m-wide rectangular irrigation channel carries a discharge of 25.3 m³/sec at a uniform depth of 1.2 m. Determine the slope of the channel if Manning's coefficient is n = 0.022.

Solution

For a rectangular channel, the wetted perimeter and the hydraulic radius are

$$A = by = (3)(1.2) = 3.6 \text{ m}^2$$

 $P = b + 2y = 5.4 \text{ m}$
 $R_h = \frac{A}{P} = \frac{3.6}{5.4} = \frac{2}{3} = 0.667 \text{ m}$

Equation 6.5a can be rewritten as

$$S_0 = S_e = \left(\frac{Qn}{AR_h^{2/3}}\right)^2 = 0.041$$

END OF LECTURE EIGHT