
Software Techniques 12/1/2014

1

Data Structure

Dr. Sawsan M. Mahmoud
Computer & Software Engineering

College Engineering
Al- Mustansiriyah University

2014-2015

Contact
Name: Sawsan M. Mandalawi

Email: sawsan.mandalawi@yahoo.com

Room: Room 6 in the Department of Computer &
Software Engineering

Lecture Time: Tuesday 11:30 - 02:30

Thursday 08:30 - 11:30

Notes: Other office hours are available by an appointment.
The contents of this syllabus is not to be changed during the
current semester.

Monday, December 01, 2014 2Data Structure

Software Techniques 12/1/2014

2

What is this Module all about?

This course introduces the basic data structures used in
computer software

• Understand the data structures
• Analyze the algorithms that use them
• Know when to apply them

Also, practice design and analysis of data structures and
practice using these data structures by writing programs.

On successful completion of this course, you will understand:
• What the tools are for storing and processing common data

types
• Which tools are appropriate

So that you will be able to make good design choices as a
developer, project manager, or system customer

Monday, December 01, 2014
3Data Structure

Module Content
Introduction to data structure and C++ programming language

Declaration, Comments, Numbers, Variables, I/O data (cout,
cin).

Expressions and Assignments, Increment and Decrement
Operator, Combined Operator.

Selection and Switch, If statement Nested If, If else, Switch

Repetition statement, While, Do While For Nested For
statement.

One dimensional array.

Two dimensional array.

Stack (Insertion, Deletion).

Evaluation and Translation of Expression.

Queue, Circular Queue (Insertion, Deletion).

Structure

Linked List, Linear Structure (Insertion).

4Data Structure
Monday, December 01, 2014

Software Techniques 12/1/2014

3

Sources of Information
Book

• James F. Korsh,Leonard J.Garrett (2008), Data Structures, Algorithms, and Program style
using(c), Textbook.

Suggested references

• Clifford A. Shaffer, Virginia Tech (2011), Data Structures and Algorithm Analysis.

• Michael T. Goodrich, Roberto Tamassia. David M. Mount (2007), Data Structures and
Algorithms in C++ .

5Data Structure
Monday, December 01, 2014

Assessment Software Techniques

Assessment of Learning: The student will be evaluated based
on homework, exams, and class participation.

Examination Information: The exams will cover material that
has been discussed in class or covered in the book.

Assignments: Homework must be submitted at the beginning
of class on the date which it is due. Late homework will be
accepted only when special circumstances are approved by the
instructor.

Terms examination: 30%
Term 1

Half Term

Term 2

Final Exam: 70%

6Data Structure
Monday, December 01, 2014

Software Techniques 12/1/2014

4

Lecture one
Introduction to Data Structure and

C++ Programming Language

7Data Structure
Monday, December 01, 2014

The Task of Programming
Programming: writing instructions that enable a
computer to carry out tasks
Programs are frequently called applications
Learning a computer programming language requires
learning both vocabulary and syntax
The rules of any language make up its syntax
Types of errors:

• Syntax errors
• Logical errors

o Semantic errors

8Data Structure
Monday, December 01, 2014

Software Techniques 12/1/2014

5

The Task of Programming
Machine language: language that computers can
understand; it consists of 1s and 0s
Interpreter: program that translates programming
language instructions one line at a time
Compiler: translates entire program at one time
Run a program by issuing a command to execute the
program statements
Test a program by using sample data to determine
whether the program results are correct

Monday, December 01, 2014 9Software Techniques

Data Structures: What?
Data Structures can be defined as: An
organization of information, usually in memory,
for better algorithm efficiency, such as stack,
queue, linked list, dictionary, and tree.
Need to organize program data according to
problem being solved
Abstract Data Type (ADT) - A data object and a
set of operations for manipulating it

• List ADT with operations insert and delete
• Stack ADT with operations push and pop

10Data Structure
Monday, December 01, 2014

Software Techniques 12/1/2014

6

Data Structures: Why?

Program design depends crucially on how data is
structured for use by the program

• Implementation of some operations may become easier or
harder

• Speed of program may dramatically decrease or increase

• Memory used may increase or decrease

• Debugging may be become easier or harder

11Data Structure
Monday, December 01, 2014

Selection of Data Structures

The volume of data
Speed and method of use of the data
The dynamic nature of the data, such as
changed and adjusted periodically
The required storage capacitance
Time required to retrieve any information
from the data structure
Method of programming

Monday, December 01, 2014 Software Techniques 12

Software Techniques 12/1/2014

7

Data and Information

Data is a collection of facts, figures and statistics related
to an object. Data can be processed to create useful
information.
Example: Students fill an admission form when they get
admission in college.
The manipulated and processed form of data is called
information. Data is used as input for processing and
information is output of this processing.
Example: Data collected from census is used to
generate different type of information. Governments can
use the information in important decision

13Data StructureMonday, December 01, 2014

Monday, December 01, 2014 Software Techniques 14

What is C?
Programming languages
provide the appropriate
formulas to define and use
primitive data types.
C is a rather old
programming language
(1972, Richie, Bell Labs)
Originally designed as a
systems software platform
(OS and the like)
Procedural, block oriented
language (no object-oriented
programming)

Dennis Ritchie
Inventor of the

C Programming Language

Software Techniques 12/1/2014

8

Monday, December 01, 2014 Software Techniques 15

Why learn C++?
Small, extensible language. Progenitor of many
languages.
Many applications and much support due to its
age and general use
Many tools written to support C development.
Close to the hardware, programmer manages
memory
Common embedded systems language
Can be fast, efficient (most cited reason)

Software Techniques 12/1/2014

1

Lecture Two
Declaration, Comments,

Numbers, Variables, I/O data
(cout, cin).

hello world

#include <iostream.h>

/*
hi mom
*/

int main () {
cout<<“hello world\n”;

}

#include statement

2Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

2

hello world

#include <iostream.h>

/*
hi mom
*/

int main () {
cout<<“hello world\n”;

}

#include statement

comments

3Data StructureMonday, December 01, 2014

hello world

#include <iostream.h>

/*
hi mom
*/

int main () {
cout<<“hello world\n”;

}

#include statement

comments

Main program

4Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

3

#include statement
Lines that begin with # sign,
A preprocessor directive is an instruction to the
preprocessor. Named file inclusion is concerned
with adding the content of a header file to a source
program file. Standard header files. For example,
#include <iostream.h>
#include causes a header file to be copied into the
code.
programmer-defined header file surrounded by
double quotation marks. #include “header1.h” to
advantage in partitioning large programs into
several files.

5Data StructureMonday, December 01, 2014

Comments

Standard C++ comments are bracketed between
the symbols /* and the symbols */
Anything in between (spacing, tabs, newlines,
punctuation, code, etc.) is ignored

/*
hi mom
*/

“hi mom” is a comment

6Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

4

the main function

Every C program that can be run must have a
main function.
When the system starts the executable, it runs
that function by default

int main () {

/* your code goes here */

}

7Data StructureMonday, December 01, 2014

The { } symbols

A set of statements grouped together called a
block.
A “block” is indicated here by the beginning and
end of the { } symbols

8Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

5

;

The ; character is used to indicate the end “of a
statement”
The end of a statement is not necessarily the
end of a line. Statement is logical, line is layout

9Data StructureMonday, December 01, 2014

hello world

#include <iostream.h>

/*
hi mom
*/

int main () {
cout<<“hello world\n”;

}

No semicolon here

Don’t care whether there
are semicolons or not

Main program

Each statement should be
terminated with a
semicolon unless it defines
a block of statements {…}

10Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

6

cout

cout is the function that takes a string as input
and prints it as indicated
Strings are listed between “ “.
Remember that to get a newline, you must
explicitly include \n
� Example:

cout<<“hello world\n”;

11Data StructureMonday, December 01, 2014

Escape characters

Characters that are hard to express:
• \n newline
• \t tab
• \’ print a single quote
• \\ print a backslash
• many others

12Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

7

#include: < > versus “ “

< > means get the built-in variable/function
definitions from “the standard place” (usually
include)
“ “ means get them from the current directory,
i.e, your own variable/function definitions

#include <iostream.h>
#include "simpleCalc.h”

13Data StructureMonday, December 01, 2014

simplecalc.h (Header file)

double
INSTALLATION_FEE = 230.00, //
installation fee
COST_PER_FOOT = 3.25; // pipe cost
per foot

14Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

8

Single-line comment: //

in C++ you can use // as a comment
Ignore everything from // to the end of the line

double

INSTALLATION_FEE = 230.00; // installation fee

This is the comment part

15Data StructureMonday, December 01, 2014

Why do we need variable
declaration? Answer: memory
Here is how C++ deals with memory
� Imagine the system memory as a nice, flat stretch

of beach
� You want a variable, you need to dig a hole in the

sand and dump the value in
� How big a hole?

16Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

9

Declare variable before use
Declare a variable to be of type integer,
the compiler allocates a memory location
for that variable. The size of this memory
location depends on the type of the
compiler.
When you declare a variable, you are
telling the compiler the size of value the
variable may hold (its type)
You cannot change the type of value a
variable can hold once declared.

17Data StructureMonday, December 01, 2014

Must declare before use

Every variable must be declared before it can be
used (its type must be indicated)
Syntax:

<variable_type> <variable_name> [=<initial_value>];

Example:
int length, width = 5, height = 10;

18Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

10

Common types, “regular” C

int : an integer, usually 4 bytes
float: float, usually 4 bytes
double : float, usually 8 bytes
char : single char, value in single quotes

19Data StructureMonday, December 01, 2014

Monday, December 01, 2014 Software Techniques 20

Basic Types
Type (16 bit) Smallest Value Largest Value

short int -32,768(-215) 32,767(215-1)

unsigned short int 0 65,535(216-1)

Int -32,768 32,767

unsigned int 0 65,535

long int -2,147,483,648(-231) 2,147,483,648(231-1)

unsigned long int 0 4,294,967,295

Software Techniques 12/1/2014

11

Monday, December 01, 2014 Software Techniques 21

Basic Types
Type (32 bit)s Smallest Value Largest Value

short int -32,768(-215) 32,767(215-1)

unsigned short int 0 65,535(216-1)

Int -2,147,483,648(-231) 2,147,483,648(231-1)

unsigned int 0 4,294,967,295

long int -2,147,483,648(-231) 2,147,483,648(231-1)

unsigned long int 0 4,294,967,295

Rules for Variable Names

1. Must begin with a letter or an underscore.; any
combination of letters, digits and underscore: A
to Z , a to z , 0 to 9 , and the underscore “_”

2. Only the first 32 characters as significant.
3. There can be no embedded blanks.
4. Reserved words cannot be used as identifiers.
5. Identifiers are case sensitive.

• E.g., int x; int weight,height;

22Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

12

Constant is an identifier whose value is fixed and
does not change during the execution of a program
in which it appears. const double CITY_TAX_RATE =

0.0175;

In C++ the declaration of a named constant begins
with the keyword const.
During execution, the processor replaces every
occurrence of the named constant .

Monday, December 01, 2014 Software Techniques 23

Constants

Constants
fixed values CITY_TAX_RATE = 0.0175 is an example of
a constant.
Integer Constants: commas are not allowed in
integer constants.
Floating-Point Constants: either in conventional or
scientific notation. For example, 20.35; 0.2035E+2

Character Constants and Escape Sequences: a
character enclosed in single quotation marks.
Precede the single quotation mark by a backslash,

cout<<“%c”, ‘\”;

Escape sequence: causes a new line during
printing. \n

24Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

13

Strings
A string is a sequence of characters that is treated
as a single data item. A string variable is a variable
that stores a string constant.
characters surrounded by double quotation marks.
format specified for output converts the internal
representation of data to readable characters.(%f)
for example, City tax is 450.000000 dollars.

backslash character can be used as a continuation
character:
cout<< “THIS PROGRAM COMPUTES \ CITY INCOME

TAX”;

25Data StructureMonday, December 01, 2014

Strings
how to declare string variables.

• Begin the declaration with the keyword char,
Char report_header [41]

• To initialize a string variable at complie time,
char report_header [41] = “Annual Report”

26Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

14

Statements

A statement is a specification of an action
to be taken by the computer as the
program executes.
Compound Statements: is a list of
statements enclosed in braces, { }

Monday, December 01, 2014 Software Techniques 27

C++ Keywords
Keywords are predefined reserved identifiers that
have special meanings.
They cannot be used as identifiers in your
program.
C reserved words must be typed fully in
lowercase.
The reserved words of C++ may be conveniently
placed into several groups.
In the first group we put those that were also
present in the C programming language and have
been carried over into C++. There are 32 of these,
and here they are:

28Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

15

C++ Keywords

auto const double float int
short struct unsigned break continue
else for long signed switch
void case default enum goto
register sizeof typedef volatile char
do extern if return static
union while

Monday, December 01, 2014 Software Techniques 29

C++ Keywords
There are another 30 reserved words that
were not in C, are therefore new to C++,
and here they are:
asm dynamic_cast namespace
reinterpret_cast try bool explicit
new static_ cast typeid catch
false operator template typename
class friend private this using
const_cast inline public throw virtual
delete mutable protected true wchar_t

Monday, December 01, 2014 Software Techniques 30

Software Techniques 12/1/2014

16

cout, more detail

31Data StructureMonday, December 01, 2014

Many descriptors

%s string
%d decimal
%e floating point exponent
%f floating point decimal
%u unsigned integer
and others

32Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

17

Full Format string
The format string contains a set of format
descriptors that describe how an object is to be
printed

% -#0 12 .4 h d

start
specification

Flags

Width

Precision

size
modifier
(h for short int)

Conversion
Type
(d for decimal)

33Data StructureMonday, December 01, 2014

Examples

cout<<“%f\n”,M_PI;
3.141593

cout<<“%.4f\n”,M_PI;
3.1416 (4 decimal points of precision, with rounding)

cout<<“%10.2f\n”,M_PI;
3.14 (10 spaces in total including the number and
the decimal point)
cout<<“%10.2f is PI\n”,M_PI;

3.14 is PI

34Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

18

Input

35Data StructureMonday, December 01, 2014

cin

cin is an input routine
� useful for reading in string input and doing

conversion to the correct type, all at once
� syntax is “kind of like” cout

� beware the use of the & operator!!!

cout<<“Please enter the yards of pipe used: “;
cin>>”%f“,&yardsOfPipe;

36Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

19

Basic form

To understand input, it is probably better to start
with an example.

Cin>>“%d, %f”, &myInt, &myFloat;

is waiting for input of the exact form
25, 3.14159

37Data StructureMonday, December 01, 2014

Arithmetic Expression

38Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

20

Types determine results

For integers: +,-,*,/ all yield integers. Thus
division can lead to truncation (2/3 has value 0).
% gives the remainder
For floats: +,-,*,/ all work as advertised. No
remainder.

39Data StructureMonday, December 01, 2014

Mixed computation

As with most languages, C++ expects to work
with like types. 1 + 1, 3.14. + 4.56
When mixing, usually errors except where C++
can “help”
It will promote a value to a more “detailed” type
when required
1 + 3.14 yields a float (1 promoted to 1.0)

40Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

21

coercion, cast
Explicit type conversion:
� (double) 3
� convert int 3 to double 3.0. Note the parens!
� (int) 3.14
� convert 3.14 to int. No rounding!
� Makes a new value, does not affect the old one!

41Data StructureMonday, December 01, 2014

#include <stdio.h>

int main(){
// const means the variable value cannot be changed from this initial setting
const int A = 3, B = 4, C = 7;
const double X = 6.5, Y = 3.5;

printf("\n*** Integer computations ***\n\n");

printf("%d + %d equals %d\n",A,B,A+B);
printf("%d - %d equals %d\n",A,B,A-B);
printf("%d * %d equals %d\n",A,B,A*B);
printf("%d / %d equals %d with remainder %d\n",A,B,A/B,A%B);
printf("\n");

printf("\n*** Real computations ***\n\n");
printf("%f + %f equals %f\n",X,Y,X+Y);
printf("%f - %f equals %f\n",X,Y,X-Y);
printf("%f * %f equals %f\n",X,Y,X*Y);
printf("%f / %f equals %f\n",X,Y,X/Y);

42Data StructureMonday, December 01, 2014

Example

Software Techniques 12/1/2014

22

printf("\n*** Mixed-type computations ***\n\n");
printf("%f + %d equals %f\n",X,A,X+A);
printf("%f - %d equals %f\n",X,A,X-A);
printf("%f * %d equals %f\n",X,A,X*A);
printf("%f / %d equals %f\n",X,A,X/A);

printf("\n*** Compound computations ***\n\n");
printf("%d + %d / %d equals %d\n",C,B,A,C+B/A);
printf("(%d + %d) / %d equals %d\n",C,B,A,(C+B)/A);
printf("\n");
printf("%d / %d * %d equals %d\n",C,B,A,C/B*A);
printf("%d / (%d * %d) equals %d\n",C,B,A,C/(B*A));

printf("\n*** Type conversions ***\n\n");
printf("Value of A: %d\n",A);
printf("Value of (double)A: %f\n",(double)A);
printf("Value of X: %f\n",X);
printf("Value of (int)X: %d\n",(int)X);

return 0;
}

43Data StructureMonday, December 01, 2014

Example

Assignment

the “=“ means assignment, not equalty.
Assignment means:
� do everything on the lhs of the =, get a value
� dump the value into the memory indicated by the

variable on the rhs
� variable now associated with a value

declare first, assign second!

44Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

23

example

int val1, val2;
val1 = 7 * 2 + 5; // 19 now in val1
val2 = val1 + 5; // 24 in val2
val2 = val2 + 10; // calc lhs (34),

// reassign to val2

45Data StructureMonday, December 01, 2014

rules

rhs must yield a value to be assigned
lhs must be a legal name
type of the value and the variable must either
match or there be a way for a conversion to take
place automatically

46Data StructureMonday, December 01, 2014

Software Techniques 12/1/2014

24

Example

47Data StructureMonday, December 01, 2014

// Addition program
#include <iostream.h>

int main()
{

i nt integer1, integer2, sum; /*declaration */
cout<< "Enter first integer\n”; /* prompt */
sin>>"%d", &integer1; /* read an

integer */cout<<"Enter second integer\n”; /* prompt */
cin>>"%d", &integer2; /* read an

integer */sum = integer1 + integer2; /*
assignment of sum */cout<<"Sum is %d\n", sum ; /* print sum
*/

return 0; /* indicate that program ended
successfully */}

48

#include <stdio.h>

int main (void)

{

double number;

cout<<“Enter a number : “;

cin<<“%lf” , &number;

Inverse = 1.0 / number ;

cout<<“Inverse of %f is %f” << number, inverse;

}

Example

48Data StructureMonday, December 01, 2014

Software Techniques 12/20/2014

1

Lecture Three
Flow Control and Booleans

Logical Expressions
Relational and logical operators – result is boolean-valued
• == equal to counter == 0

• != not equal to counter != 0

• > greater than counter > 0

• < less than counter < 0

• >= greater than or equal to counter >= 0

• <= less than or equal to counter <= 0

• && logical and 0 < i && i < 10

• | | logical or i <= 0 || i >= 10

• ! logical not ! done

Saturday, December 20,
2014

Software Techniques 2

Software Techniques 12/20/2014

2

Flow of Control Statements
Sequential Statements: all statements are executed once, one
after another.

Saturday, December 20,
2014

Software Techniques 3

Selective Execution

Saturday, December 20,
2014 Data Structure 4

boolean

expression

statement 1

true false

statement 2

Software Techniques 12/20/2014

3

Structure of an if statement

Saturday, December 20,
2014 Data Structure 5

if(expression1)

statement1;

else if(expression2) /* Optional */

statement2;

else /* Optional */

statement3;

If expression1 is true, execute statement1.

Otherwise, test to see if expression2 is true. If

so, execute statement2.

Otherwise, execute statement3.

The expressions are boolean expressions that

resolve to a true or a false.

if statements
The if statement

Fundamental means of flow control

How we will make decisions

Boolean expressions

The actual determination of

the decision

if(age > 39)

cout<<“You are so

old!\n”;

age > 39

c == 0

l <= 0

(age >= 18) && (age

< 65)

6Data StructureSaturday, December 20, 2014

Important: The test for equality is ==,

not =. This is the most common error in

a C program.

Software Techniques 12/20/2014

4

Example if statements

Saturday, December 20,
2014 Data Structure 7

if(age < 18)

cout<<“Too young to vote!\n”;

if(area == 0)

cout<< “The plot is empty\n”;

else

cout<< “The plot has an area of %.1f\n”, area;

if(val < 0)

cout<< “Negative input is not allowed\n”;

else if(val == 0) ;

cout<< “A value of zero is not allowed\n”;

else

cout<< “The reciprocal is %.2f\n”, 1.0 / val;

1

Note the indentation

Example if statements

Saturday, December 20,
2014 Data Structure 81

Note the indentation

if (strcmp(s1, s2))
cout<<"s1&s2 differ\n”;

else
cout<<“s1&s2 are
equal\n”;

if (n % 2)
cout<<"n is odd\n”;

else
cout<<"n is even\n”;

Software Techniques 12/20/2014

5

Blocks

Saturday, December 20,
2014 Data Structure 9

cout<<“This is statement\n”;

{

“All items in a curly brace\n”;

cout<< “as if there are one statement”;

cout<< “They are executed sequentially”;

}

Single Statement

Block

Where is this useful?

Saturday, December 20,
2014 Data Structure 10

if(value > 0)

{

result = 1.0 / value;

cout<<"Result = %f\n", result;

}

If the expression is true,

all of the statements in

the block are executed

Software Techniques 12/20/2014

6

Where is this useful?

Saturday, December 20,
2014 Data Structure 11

if(value > 0)

{

result = 1.0 / value;

cout<<"Result = %f\n", result;

}

Will these two sections

of code work

differently?

if(value > 0)

result = 1.0 / value;

cout<<"Result = %f\n", result;

Where is this useful?

Saturday, December 20,
2014 Data Structure 12

if(value > 0)

{

result = 1.0 / value;

cout<<"Result = %f\n", result;

}

Yes!

if(value > 0)

result = 1.0 / value;

cout<<"Result = %f\n", result;

Will always execute!

Software Techniques 12/20/2014

7

Nested Blocks

Saturday, December 20,
2014 Data Structure 13

if(bobsAge != suesAge) /* != means "not equal" */

{

cout<<"Bob and Sue are different ages\n”;
if(bobsAge > suesAge)

{

cout<<"In fact, Bob is older than Sue\n”;
if((bobsAge - 20) > suesAge)

{

cout<<"Wow, Bob is more than 20 years
older\n”;

}

}

} What does this do?

Importance of indentation

Saturday, December 20,
2014 Data Structure 14

if(bobsAge != suesAge) /* != means "not equal"

*/

{

cout<<"Bob and Sue are different ages\n”;

if(bobsAge > suesAge)

{

cout<<"In fact, Bob is older than Sue\n”;

if((bobsAge - 20) > suesAge)

{

cout<<“Wow, Bob is more than 20 years older\n”;

}

}

}
See how much harder

this is to read?

Software Techniques 12/20/2014

8

Saturday, December 20,
2014 Data Structure 15

Boolean Expressions

An expression whose value is true or false
In C:
� integer value of 0 is “false”
� nonzero integer value is “true”

Example of Boolean expressions:

� age < 40
� graduation_year == 2010

Relational operator

#include <iostream.h>

#include <stdbool.h>

int main()

{

const bool trueVar = true, falseVar = false;

const int int3 = 3, int8 = 8;

cout<<"No 'boolean' output type\n”;

cout<<"bool trueVar: %d\n",trueVar;

cout<<"bool falseVar: %d\n\n",falseVar;

cout<<"int int3: %d\n",int3);

cout<<"int int8: %d\n",int8);

}

Library that defines: bool, true, false

What does the

output look like?

Saturday, December 20,
2014 Data Structure 16

Software Techniques 12/20/2014

9

// Example3 (continued…)

cout<<"\nint3 comparators\n”;

cout<<"int3 == int8: %d\n",(int3 == int8);

cout<<"int3 != int8: %d\n",(int3!=int8);

cout<<"int3 < 3: %d\n",(int3 < 3);

cout<<"int3 <= 3: %d\n",(int3 <= 3);

cout<<"int3 > 3: %d\n",(int3 > 3);

cout<<"int3 >= 3: %d\n",(int3 >= 3);

Comparing

values of two

integer

constants

What does the

output look

like?

Saturday, December 20,
2014 Data Structure 17

More Examples

char myChar = ‘A’;
� The value of myChar==‘Q’ is false (0)

Be careful when using floating point equality
comparisons, especially with zero, e.g.
myFloat==0

Saturday, December 20,
2014 Data Structure 18

Software Techniques 12/20/2014

10

Suppose?

Saturday, December 20,
2014 Data Structure 19

What if I want to know if a value is in a range?

Test for: 100 ≤ L ≤ 1000?

You can’t do…

Saturday, December 20,
2014 Data Structure 20

if(100 <= L <= 1000)

{

cout<<“Value is in range…\n”);

}

This code is WRONG

and will fail.

Software Techniques 12/20/2014

11

Why this fails…

Saturday, December 20,
2014 Data Structure 21

if((100 <= L) <= 1000)

{

cout<<“Value is in range…\n”);

}

C ++ Treats this

code this way

Suppose L is 5000. Then 100 <= L is true, so (100 <= L)

evaluates to true, which, in C, is a 1. Then it tests 1 <= 1000,

which also returns true, even though you expected a false.

Saturday, December 20,
2014 Data Structure 22

Compound Expressions

Want to check whether -3 <= B <= -1
� Since B = -2, answer should be True (1)

But in C++, the expression is evaluated as
� ((-3 <= B) <= -1) (<= is left associative)
� (-3 <= B) is true (1)
� (1 <= -1) is false (0)
� Therefore, answer is 0!

Software Techniques 12/20/2014

12

Compound Expressions

Solution (not in C): (-3<=B) and (B<=-1)

In C: (-3<=B) && (B<=-1)
Logical Operators
� And: &&
� Or: ||
� Not: !

Saturday, December 20,
2014 Data Structure 23

Saturday, December 20,
2014 Data Structure 24

Compound Expressions
#include <iostream.h>

int main()

{

const int A=2, B = -2;

cout<<"Value of A is %d\n", A;

cout<<"0 <= A <= 5?: Answer=%d\n", (0<=A) && (A<=5);

cout<<"Value of B is %d\n", B;

cout<<"-3 <= B <= -1?: Answer=%d\n", (-3<=B) && (B<=-1);

}

Software Techniques 12/20/2014

13

Saturday, December 20,
2014 Data Structure 25

Compound Expressions
#include <iostream.h>

int main()

{

const int A=2, B = -2;

cout<<"Value of A is %d\n", A);

cout<<"0 <= A <= 5?: Answer=%d\n", (0<=A) && (A<=5);

cout<<"Value of B is %d\n", B);

cout<<"-3 <= B <= -1?: Answer=%d\n", (-3<=B) && (B<=-1);

}

Correct

Answer!!!

Saturday, December 20,
2014 Data Structure 26

Compound Expressions
#include <stdio.h>

int main()

{

const int A=2, B = -2;

cout<<"Value of A is %d\n", A;

cout<<"0 <= A <= 5?: Answer=%d\n", (0<=A) && (A<=5);

cout<<"Value of B is %d\n", B;

cout<<"-3 <= B <= -1?: Answer=%d\n", (-3<=B) && (B<=-1);

}

Correct

Answer!!!

Software Techniques 12/20/2014

14

Saturday, December 20,
2014 Data Structure 27

Truth Tables

p q !p p && q p || q

True True

True False

False True

False False

Not And Or

Saturday, December 20,
2014 Data Structure 28

Truth Tables

p q !p p && q p || q

True True False

True False False

False True True

False False True

Not And Or

Software Techniques 12/20/2014

15

Saturday, December 20,
2014 Data Structure 29

Truth Tables

p q !p p && q p || q

True True True

True False False

False True False

False False False

Not And Or

Saturday, December 20,
2014 Data Structure 30

Truth Tables

p q !p p && q p || q

True True True

True False True

False True True

False False False

Not And Or

Software Techniques 12/20/2014

16

Saturday, December 20,
2014 Data Structure 31

Truth Tables

p q !p p && q p || q

True True False True True

True False False False True

False True True False True

False False True False False

Not And Or

Our comparison operators:

< <= == != >= >

Conditional Expressions

Saturday, December 20,
2014

Software Techniques 32

Based on the Conditional Operator ?:
(expr 1)?(expr 2 :expr 3)
• If expr 1 is true, expr 2 is the

value of the overall expression
• If expr 1 is false, expr 3 is the

value of the overall expression
• Parentheses are not syntactically

required
• Typically used because ? has a

high Precedence

max = (x > y) ? x : y;

min = (x < y) ? x : y;

index = (index+1 == size) ? 0 :
++index;

Software Techniques 12/20/2014

17

Precedence & Associatively

Relational operators have precedence and
associatively (just like arithmetic operators)

Use () when in doubt

Can you guess what’s the answer?

Data StructureSaturday, December 20, 2014

int A=4, B=2;
Cout<<“Answer is %d\n”,A+B>5&&(A=0)<1>1A+B-2;

(((A + B) > 5) && (((A=0) < 1) > ((A + B) – 2)))

((6 > 5) && (((A=0) < 1) > ((A + B) – 2)))

(1 && ((0 < 1) > ((A + B) – 2)))

(1 && (1 > (2 – 2)))

(1 && (1 > 0))

(1 && 1)

Answer: 1 Precedence: +/-

> <

&&

Saturday, December 20,
2014 Data Structure 34

Software Techniques 12/20/2014

18

Associativity
“=“ is right associative

Example: X=Y=5

right associative: X = (Y=5)

expression Y=5 returns

value 5: X = 5

35Data StructureSaturday, December 20, 2014

You should refer to the

C++ operator

precedence and

associative table

Or just use

parentheses whenever

you’re unsure about

precedence and

associativity

Saturday, December 20,
2014 Data Structure 36

Software Techniques 12/20/2014

19

Saturday, December 20,
2014

Data Structure 37

Switch Statement
A less general substitute for the multi branch if.
It is used for selecting among discrete values
(int), i.e. not continuous values.

switch (int_expression)
{

case_list:
statement_list;

case_list:
statement_list;

default:
statement_list;

}

switch Example

Saturday, December 20,
2014

Software Techniques 38

/* counts characters, words, and
lines in a file */

switch(c)

{ case '\n' : lines++; /*
fall through */

case ' ' :

case '\t' : inword = 0;

break;

default : if (! inword) /*
start word */

{ inword = 1;

words++;

}

break;

}

Software Techniques 12/20/2014

20

Saturday, December 20,
2014

Data Structure 39

Behavior

The int_expression is evaluated. If the value is
in a case_list, execution begins at that
statement_list and continues through
subsequent statement_lists until: break, return,
or end of switch.

#include <stdio.h>

void main()

{

int gender;

cout<<"Enter your gender (male=1, female=2): “;

cin>>"%d",&gender;

switch(gender)

{

case 1:

cout<<"You are a male\n”;

break;

case 2:

cout<<"you are a female\n”;

break;

default:

cout<<"Not a valid input\n”;

break;

}

}
Saturday, December 20,
2014 Data Structure 40

Software Techniques 12/20/2014

1

Lecture Four
Loops and Repetition

Loops and Repetition

Saturday, December 20,
2014 Data Structure 2

Loops in programs allow us to
repeat blocks of code.
Useful for:
�Trying again for correct input

� Counting
� Repetitive activities
� Programs that never end

Software Techniques 12/20/2014

2

Three Types of
Loops/Repetition in C

Saturday, December 20,
2014 Data Structure 3

while
� top-tested loop (pretest)

for
� counting loop
� forever-sentinel

do
� bottom-tested loop (posttest)

The while loop

Saturday, December 20,
2014 Data Structure 4

Top-tested loop (pretest)

while (condition)

statement;

Note that, as in IF selection, only one
statement is executed. You need a
block to repeat more than one
statement (using { })

Software Techniques 12/20/2014

3

While Loop

Saturday, December 20,
2014

Software Techniques 5

Test at the top
• May not be executed
Loops while expression is true

while (expression)
statement;
int n = 100;
while (n > 0)
Cout<<"%d\n", n--;

Similar to the if statement

Saturday, December 20,
2014 Data Structure 6

Check the boolean condition
If true, execute the statement/block
Repeat the above until the boolean is
false

Software Techniques 12/20/2014

4

Example

Saturday, December 20,
2014 Data Structure 7

bool valid = true; // Until we know otherwise

cout<<"Enter l: “;

cin>>"%lf", &l;

/* Test to see if the user entered an invalid value */

if(l <= 0)

{

cout<<“you entered an invalid number!\n”;

valid = false;

}

else

cout<<"Okay, right\n”;

Remember this? What if we input invalid values?

Example with while loop

Saturday, December 20,
2014 Data Structure 8

bool valid = false; /* Until we know otherwise */

while(!valid) /* Loop until value is valid */

{

cout<<"Enter l: “;

cin>>"%lf", &l;

/* Test to see if the user entered an invalid value */

if(l < 0)

{

cout<<“you entered a negative number!\n”;

}

else if(l == 0)

{

cout<<“you entered zero.\n”;

}

else

{

cout<<"Okay, I guess that's reasonable\n”;

valid = true;

}

} What does this do different?

Software Techniques 12/20/2014

5

while

Saturday, December 20,
2014

Data Structure 9

condition

statement

true

false
while (condition)

statement;

while (condition)

{

statement1;

statement2;

}

while(!valid) /* Loop until value is valid */

{

cout<<"Enter the inductance in millihenrys: “;

cin>>"%lf", &l;

if(l > 0)

{

valid = true;

}

}

int i = 10;

while(i > 0)

{

cout<<"i=%d\n", i;

i = i - 1;

}

Forever loops and never loops

Saturday, December 20,
2014 Data Structure 10

Because the conditional can be “always
true” or “always false”, you can get a
loop that runs forever or never runs at
all.

int count=0;

while(count !=0)

cout<<“Hi Mom”;

while (count=1)

count = 0;

What is wrong with

these statements?

Software Techniques 12/20/2014

6

How to count using while
First, outside the loop, initialize the counter
variable
Test for the counter’s value in the boolean
Do the body of the loop
Last thing in the body should change the
value of the counter!

Saturday, December 20,
2014 Data Structure 11

i = 1;

while(i <= 10)

{

cout<<"i=%d\n", i;

i = i + 1;

}

The for loop

Saturday, December 20,
2014 Data Structure 12

The while loop is pretty general. Anything
that can be done using repetition can be
done with a while loop
Because counting is so common, there is
a specialized construct called a for loop.
A for loop makes it easy to set up a
counting loop

Software Techniques 12/20/2014

7

For Loop

Saturday, December 20,
2014

Software Techniques 13

Test at top
• May not execute
Any expression may be omitted
Expression 1 is the initialize
• Executed only once
Expression 2 is the loop test
• Loops while expression 2 is true
• Tested after expr 1
• Tested after expr 3
Expression 3 is the update
for (expr-1; expr-2; expr-3)

statement

Three parts

Three parts to a for loop (just like the
while):

� Set the initial value for the counter
� Set the condition for the counter
� Set how the counter changes each time

through the loop

Saturday, December 20,
2014 Data Structure 14

for(count=1;count<=5; count++)
statement;

Software Techniques 12/20/2014

8

for(count=1; count<=5; count++)

cout<<“count=%d\n”, count;

Saturday, December 20,
2014 Data Structure 15

count = 1

count <= 5

cout

count ++

true
false

Ascending for <=,++

Saturday, December 20,
2014 Data Structure 16

control_var = init_value

control_var

<= limit_value

statement

control_var ++

true false

for (control_var=init_value;

control_var <=limit_value;

control_var++) statement;

Software Techniques 12/20/2014

9

Descending for >=,--

Saturday, December 20,
2014 Data Structure 17

control_var = init_value

control_var

>= limit_value

statement

control_var --

true false

for (control_var=init_value;

control_var >=limit_value;

control_var--) statement;

Comments
It is dangerous to alter control_var or
limit_var within the body of the loop.

The components of the for statement can
be a arbitrary statements, e.g. the loop
condition may be a function call.

Saturday, December 20,
2014 Data Structure 18

Software Techniques 12/20/2014

10

for(count=1; count<=5; count++)
cout<<“count=%d\n”, count;

Saturday, December 20,
2014

Data Structure 19

count = 1

count <= 5

cout

count ++

true
false

for(i=1; i<=10; i++)

{

cout<<"%d\n", i;

}

for(t = 1.7; t < 3.5; t = t + 0.1)

{

cout<<"%f\n", t;

}

for(i=1; i<5; i++)

{

for(j=1; j<4; j++)

{

cout<<"%d * %d = %d\n", i, j, i * j;

}

}

Top-tested Equivalence

The following loop
for(x=init; x<=limit; x++)

statement_list

is equivalent to
x=init;

while (x<=limit){

statement_list;

x++;

}

Saturday, December 20,
2014 Data Structure 20

Software Techniques 12/20/2014

11

Some Magic Statements

Saturday, December 20,
2014 Data Structure 21

s += 12; /* Equivalent to s = s + 12; */

s -= 13; /* Equivalent to s = s – 13; */

These work fine for

integers or floating point

break;

Saturday, December 20,
2014 Data Structure 22

The break statement exits the containing
loop immediately!

while(true) /* Loop until value is valid */

{

cout<<"Enter l: “;

cin>>"%lf", &l;

/* Test to see if the user entered an invalid value */

if(l <= 0)

{

cout<<“you entered an invalid number!\n”;

}

else

{

cout<<"Okay, right\n”;

break;

}

}

Software Techniques 12/20/2014

12

do-while Loop

Saturday, December 20,
2014

Software Techniques 23

Test at the bottom
• Executed at least once
Loops while expression is true
• Opposite of Pascal’s repeat-

until
Useful when the test expression
is effected by a statement in the
loop body
do

{

statements;

} while (expression);

The do/while loop

do/while
– bottom-tested loop (posttest)

Saturday, December 20,
2014 Data Structure 24

do

{

angle += 2 * M_PI / 20;

sinVal = sin(angle);

cout<<“sin(%f) = %f\n”, angle, sinVal;

} while(sinVal < 0.5);

Often just called a “do loop”.

Software Techniques 12/20/2014

13

Bottom-tested Loop: do

Saturday, December 20,
2014 Data Structure 25

Bottom-tested (posttest)
One trip through loop is guaranteed, i.e.
statement is executed at least once

do
statement

while (loop_condition);

do
{

statement1;
statement2;

}
while (loop_condition);

Usually!

do { statement; } while(condition)

Saturday, December 20,
2014 Data Structure 26

condition

statement;

true false

Software Techniques 12/20/2014

14

angle = M_PI / 2;

do

{

angle -= 0.01;

cosVal = cos(angle);

cout<<"cos(%f)=%f\n", angle, cosVal;

} while(cosVal < 0.5);

do/while Examples

Saturday, December 20,
2014 Data Structure 27

i = 0;

do

{

i++;

cout<<"%d\n", i;

} while(i < 10);

do

{

cout<<"Enter a value > 0: “;

cin>>"%lf", &val;

} while(val <= 0);

Bottom-tested Equivalence

Saturday, December 20,
2014 Data Structure 28

Bottom-tested do loop (posttest)
do

{

statement;

}

while (condition);

Similar to bottom-tested forever loop
for (;;)

{

statement_list;

if (!condition) break;

}

Software Techniques 12/20/2014

15

The “one off” error
It is easy to get a for
loop to be “one off” of
the number you want.
Be careful of the
combination of
init_value and < vs.
<=
Counting from 0, with
<, is a good
combination and good
for invariants as well.

Saturday, December 20,
2014 Data Structure 29

for(i=1; i<10; i++)

{

}

for(i=1; i<=10; i++)

{

}

for(i=0; i<10; i++)

{

}

The “one off” error
It is easy to get a for
loop to be “one off” of
the number you want.
Be careful of the
combination of
init_value and < vs.
<=

Counting from 0, with
<, is a good
combination and good
for invariants as well.

Saturday, December 20,
2014 Data Structure 30

for(i=1; i<10; i++)

{

}

for(i=1; i<=10; i++)

{

}

for(i=0; i<10; i++)

{

}

9 values: 1 to 9

10 values: 1 to 10

10 values: 0 to 9

Software Techniques 12/20/2014

16

while, for, do/while

Saturday, December 20,
2014 Data Structure 31

while(!valid) /* Loop until value is valid */

{

cout<<"Enter the inductance in millihenrys: “;

cin>>"%lf", &l;

if(l > 0)

{

valid = true;

}

}

for(t = 1.7; t < 3.5; t = t + 0.1)

{

cout<<"%f\n", t;

}

angle = M_PI / 2;

do

{

angle -= 0.01;

cosVal = cos(angle);

cout<<"cos(%f)=%f\n", angle, cosVal;

} while(cosVal < 0.5);

i = 0;

do

{

i++;

cout<<"%d\n", i;

} while(i < 10);

for(i=1; i<5; i++)

{

for(j=1; j<4; j++)

{

cout<<"%d * %d = %d\n", i, j, i * j;

}

}

int i = 10;

while(i > 0)

{

cout<<"i=%d\n", i;

i = i - 1;

}

The null-statement

Saturday, December 20,
2014

Software Techniques 32

Uncommon but sometimes useful with for-loops
Not so useful with other control statements
if (expression) ;

for (ex1, ex2, ex3) ;

for (ex1, ex2, ex3);

Null Statement

More clear

Software Techniques 12/20/2014

17

The goto Statement

Saturday, December 20,
2014

Software Techniques 33

Unconditional Jump
Must be used carefully
• Use in rare, limited situations

� Interrupting nested loops
� Creating error handling

code
� Implementing state

machines
May not jump into (i.e., goto)
functions, loops, ifs, or switches

for (i = 0; i <
100; i++)
{ for (j = 0; j <
100; j++)
{
...
if (error)
goto done;
}
}
done: ...;

More library functions

Saturday, December 20,
2014

Software Techniques 34

exit(status)
• Terminates program
• Returns exit status (0 is okay, non-zero is error)
getch() and getche()
• Returns a character as soon as the key is pressed (do not

need to press the enter key)
• conio.h header file

Software Techniques 12/20/2014

18

Program

Saturday, December 20,
2014

Software Techniques 35

// counts characters and words typed in
#include <iostream>
int main()
{
int chcount=0;
int wdcount=1; // space between two words
char ch;
while((ch=getche()) != ‘\r’) // loop until Enter typed

{
if(ch==’ ‘) // if it’s a space
wdcount++; // count a word
else // otherwise,
chcount++; // count a character

} // display results
cout << “\nWords=” << wdcount << endl << “Letters=” << chcount << endl;
return 0;
}

Software Techniques 1/7/2015

1

Lecture Five
Arrays

Intro to Arrays

Wednesday, January 07,
2015 Data Structure 2

Storing List of Data

Software Techniques 1/7/2015

2

Why Arrays
Suppose we want to store the grade for
each student in a class

/* Need a variable for each? */
int bob, mary, tom, …;

Easier to have a
variable that stores the
grades for all students

Data StructureWednesday, January 07, 2015

Wednesday, January 07,
2015 Data Structure 4

An array is a “Chunk of
memory”

An array is a contiguous piece of memory
that can contain multiple values
The values within the contiguous chunk
can be addressed individually

grades

74 59 95 85 71 45 99 82 76

0xeffffa00 0xeffffa04 0xeffffa08 0xeffffa0c 0xeffffa10 0xeffffa14 0xeffffa18 0xeffffa1c 0xeffffa20

Address in

memory

Software Techniques 1/7/2015

3

Wednesday, January 07,
2015 Data Structure 5

Array: “Chunk of memory”

grades 74 59 95 85 71 45 99 82 76

0xeffffa00 0xeffffa04 0xeffffa08 0xeffffa0c 0xeffffa10 0xeffffa14 0xeffffa18 0xeffffa1c 0xeffffa20

Physical

address

index 0 1 2 3 4 5 6 7 8

Use an index to access individual elements of the array:
grades[0] is 74, grades[1] is 59, grades[2] is 95, and so
on.

Array Declaration

Syntax for declaring array variable:
type array_name[capacity];

• type can be any type (int, float, char, …)
• array_name is an identifier
• capacity is the number of values it can store (indexing

starts at 0)

Wednesday, January 07,
2015 Data Structure 6

Software Techniques 1/7/2015

4

Example
int x[3]; // an array of 3 integers
double y[7]; // an array of 7 doubles

Storage, e.g. 4-bytes per int

Wednesday, January 07,
2015 Data Structure 7

0 1 2

X

Notice: The first location is location 0 (zero)!

First Location

Operations with Arrays

• Assignment
– x[0] = 6; /* Assign 6 to element x[0] */

– y[2] = 3.1; /* Assign 3.1 to element y[2] */

• Access
– m = x[2];

– p = y[0];

• Input/Output:
– the elements are handled as their types, e.g.
Cin<<&x[2]<< &y[3];

Cout<<x[0]<< y[2]; /* output 6 and 3.1 */

Wednesday, January 07,
2015 Data Structure 8

Software Techniques 1/7/2015

5

Wednesday, January 07,
2015 Data Structure 9

Arithmetic Operations
int main()

{ double x[5];

x[0] = 1;

x[1] = 2;

x[2] = x[0] + x[1]; /* X[2] = 3 */

x[3] = x[2] / 3; /* X[3] = 1 */

x[4] = x[3] * x[2]; /* X[4] = 3 */

}

Variable Declaration

for the array

for loops
“for” loops are ideal for processing elements
in the array.

Wednesday, January 07,
2015 Data Structure 10

int main()
{

int i;
double values[4] = {3.14, 1.0, 2.61, 5.3};
double sumValues = 0.0;

for (i=0; i<4; i++)
{

sumValues = sumValues + values[i];
}

cout<<“Sum = %lf\n”<<sumValues;
}

Software Techniques 1/7/2015

6

int main()
{

int i;
double values[4] = {3.14, 1.0, 2.61, 5.3};
double sumValues = 0.0;

for (i=0; i<=4; i++)
{

sumValues = sumValues + values[i];
}

cout<<“Sum = %lf\n”<< sumValues;
}

for loops
“for” loops are ideal for processing elements
in the array.

Wednesday, January 07,
2015 Data Structure 11

ERROR!

Out of bound

Initialization

Syntax: int X[4] = {2, 4, 7, 9};

Behavior: initialize elements starting
with leftmost, i.e. element 0. Remaining
elements are initialized to zero.

Initialize all to 0: int X[4]={0};

Wednesday, January 07,
2015 Data Structure 12

2 4 7 9X

0 1 2 3

Software Techniques 1/7/2015

7

Example

Wednesday, January 07,
2015

Data Structure 13

int main()

{

double grades[5] = {90, 87, 65, 92, 100};

double sum;

int i;

cout<<"The first grade is: %.1f\n", grades[0];

sum = 0;

for(i=0; i<5; i++)

{

sum += grades[i];

}

cout<<"The average grade is: %.1f\n", sum / 5;

grades[2] = 70; /* Replaces 65 */

grades[3] = grades[4]; /* Replaces 92 with 100 */

}

Constants for capacity

Good programming practice:
use #define for constants in your program

For example:
#define MaxLimit 25

int grades[MaxLimit];
for(int i; i<MaxLimit; i++){ };

If size needs to be changed, only the
capacity “MaxLimit” needs to be changed.

Wednesday, January 07,
2015 Data Structure 14

Software Techniques 1/7/2015

8

2-D Arrays

Wednesday, January 07,
2015 Data Structure 15

int cave[ArraySize][ArraySize];

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

0

1

2

3

0 1 2 3

Row

Column

2D Arrays

int myMatrix[3][4] = { {1,2,3,4},{5,6,7,8},{9,10,11,12} };

Wednesday, January 07,
2015 Data Structure 16

1 2 3 4

5 6 7 8

9 10 11 12

myMatrix[0][1] → 2

myMatrix[2][3] → 12

myMatrix[row][col]

0 1 2 3

Column

0

1

2

Row

Software Techniques 1/7/2015

9

Physically, in one block of memory

Wednesday, January 07,
2015 Data Structure 17

int myMatrix[2][4] = { {1,2,3,4},{5,6,7,8} };

1 2 3 4 5 6 7 8

Array elements are stored in row major order. Row 1
first, followed by row2, row3, and so on

ffe2de0c ffe2de10 ffe2de14 ffe2de18 ffe2de1c ffe2de20 ffe2de24 ffe2de28

row 1 row 2

2D Array Name and Addresses

Wednesday, January 07,
2015 Data Structure 18

1 2 3 4 5 6 7 8

myMatrix: pointer to the first element of the 2D array
myMatrix[0]: pointer to the first row of the 2D array
myMatrix[1]: pointer to the second row of the 2D array

ffe2de0c ffe2de10 ffe2de14 ffe2de18 ffe2de1c ffe2de20 ffe2de24 ffe2de28

int myMatrix[2][4] = { {1,2,3,4},{5,6,7,8} };

Software Techniques 1/7/2015

10

Accessing 2D Array Elements

Wednesday, January 07,
2015 Data Structure 19

int myMatrix[2][4] = { {1,2,3,4} , {5,6,7,8} };

1 2 3 4 5 6 7 8

Indexing: myMatrix[i][j] is same as
(myMatrix[i] + j)

((myMatrix + i))[j]

(((myMatrix + i)) + j)

(&myMatrix[0][0] + 4*i + j)

Declaration
#define ROWS 3

#define COLS 5

int table[ROWS][COLS];

void display (table);

Wednesday, January 07,
2015 Data Structure 20

Software Techniques 1/7/2015

11

void display(int x[ROWS][COLS])

{

for (int i=0; i < ROWS; i++)

{

for (int j=0; j < COLS; j++)

{

cout<<" x[%d][%d]: %d", i, j, x[i][j];

}

cout<<"\n”;

}

cout<<"\n”;

}

2D Arrays often

require nested loops –

two variables

Wednesday, January 07,
2015 Data Structure 21

Table A = { {13, 22, 9, 23},

{17, 5, 24, 31, 55},

{4, 19, 29, 41, 61} };

Table B = {1, 2, 3, 4,

5, 6, 7, 8, 9,

10, 11, 12, 13, 14 };

13 22 9 23 ?

17 5 24 31 55

4 19 29 41 61

1 2 3 4 5

6 7 8 9 10

11 12 13 14 ?

Wednesday, January 07,
2015 Data Structure 22

Software Techniques 1/15/2015

1

Lecture Six
Functions

Triangle Area Computation

Thursday, January 15, 2015 Data Structure 2

p1=(x1,y1)

p2=(x2,y2)

p3=(x3,y3)

23

13

12

ppc

ppb

ppa

−=

−=

−=

a

c

b

22)12()12(yyxxa −+−=

2

))()((

cba
p

cpbpapparea

++=

−−−=

How would you write this program?

Software Techniques 1/15/2015

2

Variables

Thursday, January 15, 2015 Data Structure 3

int main()

{

double x1=0, y1=0;

double x2=17, y2=10.3;

double x3=-5.2, y3=5.1;

double a, b, c; /* Triangle side lengths */

double p; /* For Heron's formula */

double area;

23

13

12

ppc

ppb

ppa

−=

−=

−=

22)12()12(yyxxa −+−=

Lengths of Edges

Thursday, January 15, 2015 Data Structure 4

a = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));

b = sqrt((x1 - x3) * (x1 - x3) + (y1 - y3) * (y1 - y3));

c = sqrt((x2 - x3) * (x2 - x3) + (y2 - y3) * (y2 - y3));

23

13

12

ppc

ppb

ppa

−=

−=

−=

22)12()12(yyxxa −+−=

p1=(x1,y1)

p2=(x2,y2)

p3=(x3,y3)

a

c

b

2

))()((

cba
p

cpbpapparea

++=

−−−=

Software Techniques 1/15/2015

3

Area

Thursday, January 15, 2015 Data Structure 5

p = (a + b + c) / 2;

area = sqrt(p * (p - a) * (p - b) * (p - c));

cout<<"%f\n", area;

2

))()((

cba
p

cpbpapparea

++=

−−−=

2

))()((

cba
p

cpbpapparea

++=

−−−=

Whole Program

Thursday, January 15, 2015 Data Structure 6

int main()

{

double x1=0, y1=0;

double x2=17, y2=10.3;

double x3=-5.2, y3=5.1;

double a, b, c; /* Triangle side lengths */

double p; /* For Heron's formula */

double area;

a = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));

b = sqrt((x1 - x3) * (x1 - x3) + (y1 - y3) * (y1 - y3));

c = sqrt((x2 - x3) * (x2 - x3) + (y2 - y3) * (y2 - y3));

p = (a + b + c) / 2;

area = sqrt(p * (p - a) * (p - b) * (p - c));

cout<<"%f\n", area;

}

What if I made a mistake on

the edge length equation?

Software Techniques 1/15/2015

4

Thursday, January 15, 2015 Data Structure 7

Functions

Functions are subprograms that perform
some operation and return one value
They “encapsulate” some particular
operation, so it can be re-used by others
(for example, the abs() or sqrt() function)

Characteristics

Reusable code
� code in sqrt() is reused often

Encapsulated code
� implementation of sqrt() is hidden

Can be stored in libraries
� sqrt() is a built-in function found in the math

library

Thursday, January 15, 2015 Data Structure 8

Software Techniques 1/15/2015

5

Writing Your Own Functions

Consider a function that converts
temperatures in Celsius to temperatures in
Fahrenheit.
� Mathematical Formula:

F = C * 1.8 + 32.0

� We want to write a C++ function called CtoF

Thursday, January 15, 2015 Data Structure 9

Convert Function in C

double CtoF (double paramCel)

{

return paramCel*1.8 + 32.0;

}

This function takes an input parameter
called paramCel (temp in degree Celsius)
and returns a value that corresponds to
the temp in degree Fahrenheit

Thursday, January 15, 2015 Data Structure 10

Software Techniques 1/15/2015

6

How to use a function?

Thursday, January 15, 2015 Data Structure 11

#include <iostream.h>

double CtoF(double);

/**

* Purpose: to convert temperature from Celsius to Fahrenheit

*******/

int main()

{

double c, f;

cout<<“Enter the degree (in Celsius): “;

cin>>&c;

f = CtoF(c);

cout<<“Temperature (in Fahrenheit) is %lf\n”, f;

}

double CtoF (double paramCel)

{

return paramCel * 1.8 + 32.0;

}

Terminology
Declaration: double CtoF(double);

Invocation (Call): Fahr = CtoF(Cel);

Definition:
double CtoF(double paramCel)

{

return paramCel*1.8 + 32.0;

}

Thursday, January 15, 2015 Data Structure 12

Software Techniques 1/15/2015

7

Function Declaration

Also called function prototype:

Declarations describe the function:
� the return type and function name
� the type and number of parameters

Thursday, January 15, 2015 Data Structure 13

return_type function_name (parameter_list)

double CtoF(double)

Function Definition

Thursday, January 15, 2015 Data Structure 14

return_type function_name (parameter_list)

{

….

function body

….

}

double CtoF(double paramCel)

{

return paramCel*1.8 + 32.0;

}

Software Techniques 1/15/2015

8

Function Invocation

Thursday, January 15, 2015 Data Structure 15

double CtoF (double paramCel)
{

return paramCel*1.8 + 32.0;
}

int main()
{ …
f = CtoF(c);

}

� Call copies
argument c to
parameter
paramCel

� Control
transfers to
function
“CtoF”

double CtoF (double paramCel)
{

return paramCel*1.8 + 32.0;
}

int main()
{ …

f = CtoF(c);
}

� Expression in
“CtoF” is
evaluated

� Value of
expression is
returned to
“main”

Invocation (cont)

Thursday, January 15, 2015 Data Structure 16

Software Techniques 1/15/2015

9

Local Objects

The parameter “paramCel” is a local object
which is defined only while the function is
executing. Any attempt to use “paramCel”
outside the function is an error.

The name of the parameter need not be
the same as the name of the argument.
Types must agree.

Thursday, January 15, 2015 Data Structure 17

Can we do better than this?

Thursday, January 15, 2015 Data Structure 18

int main()

{

double x1=0, y1=0;

double x2=17, y2=10.3;

double x3=-5.2, y3=5.1;

double a, b, c; /* Triangle side lengths */

double p; /* For Heron's formula */

double area;

a = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));

b = sqrt((x1 - x3) * (x1 - x3) + (y1 - y3) * (y1 - y3));

c = sqrt((x2 - x3) * (x2 - x3) + (y2 - y3) * (y2 - y3));

p = (a + b + c) / 2;

area = sqrt(p * (p - a) * (p - b) * (p - c));

cout<<"%f\n", area;

}

Software Techniques 1/15/2015

10

What should we name our function?

Thursday, January 15, 2015 Data Structure 19

a = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));

“Length” sounds like a good idea.

??? Length(???)

{

}

What does our function need to know?

Thursday, January 15, 2015 Data Structure 20

a = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));

(x, y) for two different points:

??? Length(double x1, double

y1,

double x2, double

y2)

{

}

Software Techniques 1/15/2015

11

What does our function return?

Thursday, January 15, 2015 Data Structure 21

double Length(double x1, double y1,

double x2, double y2)

{

}

a = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));

A computed value which is of type double

How does it compute it?

Thursday, January 15, 2015 Data Structure 22

double Length(double x1, double y1,

double x2, double y2)

{

double len;

len = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));

return(len);

}

a = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));

A computed value which is of type double

Software Techniques 1/15/2015

12

Using This

Thursday, January 15, 2015 Data Structure 23

#include <iostream.h>

#include <math.h>

/* Declaration */

double Length(double x1, double y1, double x2, double y2);

/*

* Program to determine the area of a triangle

*/

int main()

{

double x1=0, y1=0;

double x2=17, y2=10.3;

double x3=-5.2, y3=5.1;

double a, b, c; /* Triangle side lengths */

double p; /* For Heron's formula */

double area;

a = Length(x1, y1, x2, y2);

b = Length(x1, y1, x3, y3);

c = Length(x2, y2, x3, y3);

p = (a + b + c) / 2;

area = sqrt(p * (p - a) * (p - b) * (p - c));

cout<<"%f\n", area;

}

/* Definition */

double Length(double x1, double y1, double x2, double y2)

{

double len;

len = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));

return(len);

}

Invocations

Declaration

Definition

Potential Errors

Thursday, January 15, 2015 Data Structure 24

#include <iostream.h>

double convert(double);

int main()

{ double c, f;

cout<<“Enter the degree (in Celsius): “;

cin>>“%lf”, &c;

f= convert(c);

cout<<“Temp (in Fahrenheit) for %lf Celsius is %lf”, paramCel, f;

}

double CtoF(double paramCel)

{

return c * 1.8 + 32.0;

}

Error! paramCel is not defined

Error! C is not defined

� Scope – Where a variable is known
to exist.

� No variable is known outside of the
curly braces that contain it, even if
the same name is used!

Software Techniques 1/15/2015

13

Another
Example

Thursday, January 15, 2015 Data Structure 25

#include <iostream.h>

double GetTemperature();

double CelsiusToFahrenheit(double);

void DisplayResult(double, double);

int main()

{

double

TempC, // Temperature in degrees Celsius

TempF; // Temperature in degrees Fahrenheit

TempC = GetTemperature();

TempF = CelsiusToFahrenheit(TempC);

DisplayResult(TempC, TempF);

return 0;

}

Declarations

Invocations

Function:
GetTemperature

Thursday, January 15, 2015 Data Structure 26

double GetTemperature()

{

double Temp;

cout<<"\nPlease enter a temperature in degrees

Celsius: “;

cin>>&Temp;

return Temp;

}

Software Techniques 1/15/2015

14

Function: CelsiusToFahrenheit

Thursday, January 15, 2015 Data Structure 27

double CelsiusToFahrenheit(double Temp)

{

return (Temp * 1.8 + 32.0);

}

Function: DisplayResult

Thursday, January 15, 2015 Data Structure 28

void DisplayResult(double CTemp, double FTemp)

{

cout<<"Original: %5.2f C\n", CTemp;

cout<<"Equivalent: %5.2f F\n", FTemp;

return;

}

Software Techniques 1/15/2015

15

Declarations (Prototypes)

double GetTemp();

double CelsiusToFahrenheit(double);

void Display(double, double);

void means “nothing”. If a function doesn’t
return a value, its return type is void

Thursday, January 15, 2015 Data Structure 29

Abstraction

Thursday, January 15, 2015 Data Structure 30

int main()

{

double

TempC, // Temperature in degrees Celsius

TempF; // Temperature in degrees Fahrenheit

TempC = GetTemperature();

TempF = CelsiusToFahrenheit(TempC);

DisplayResult(TempC, TempF);

return 0;

}

1. Get Temperature

2. Convert Temperature

3. Display Temperature

We are hiding details on how something

is done in the function implementation.

Software Techniques 1/15/2015

16

Another Way to Compute Factorial

Pseudo code for factorial(n)

Thursday, January 15, 2015 Data Structure 31

if n == 0 then

result = 1

else

result = n * factorial(n – 1)

After all, 5! = 5 * 4 * 3 * 2 * 1 = 5 * 4!

Factorial function contains an

invocation of itself.

We call this a: recursive call.

Recursive functions must

have a base case

(if n == 0): why?

int Factorial(int n)

{

if(n == 0)

return 1;

else

return n * Factorial(n-1);

}

Recursive Functions

Thursday, January 15, 2015 Data Structure 32

This works much like

proof by induction. if n == 0 then

result = 1

else

result = n * factorial(n – 1)

Software Techniques 1/15/2015

17

Infinite Recursion

Thursday, January 15, 2015 Data Structure 33

int Factorial(int n)

{

return n * Factorial(n-1);

}

What if I omit the “base case”?

This leads to infinite recursion!

Factorial(3)=

3 * Factorial(2) =

3 * 2 * Factorial(1) =

3 * 2 * 1 * Factorial(0) =

3 * 2 * 1 * 0 * Factorial(-1) =

…

Psuedocode and Function

Thursday, January 15, 2015 Data Structure 34

int Factorial(int n)

{

if(n == 0)

return 1;

else

return n * Factorial(n-1);

}

if n == 0 then

result = 1

else

result = n * factorial(n – 1)

Base Case

2

Declaration: int Factorial(int n);

Invocation: f = Factorial(7);

Definition:

int Factorial(int n)

{

if(n == 0)

return 1;

else

return n * Factorial(n-1);

}

Software Techniques 3/3/2015

1

Lecture Seven
Passing parameters of Functions

Pass By Value

Tuesday, March 03, 2015 Data Structure 2

void func(int i);

int main()

{

int a = 5;

func(a);

}

void func(int i)

{

i = i + 1;

}

Copy values from the call to the formal parameter

Software Techniques 3/3/2015

2

Pointers and References
Pointers and references are both addresses
Pointers are simple, primitive data types
• Addresses are exposed

• Addresses may be operated on (i.e., they allow address
arithmetic)

• Must be explicitly de-referenced

References wrap addresses
• Addresses are NOT exposed

• Addresses may NOT be operated on (address arithmetic
disallowed)

• Dereferencing is automatic

Tuesday, March 03, 2015 Data Structure 3

Address Operators

int i;

int *p = &i;

i = 10;

*p is now 10

Memory content versus memory address

Tuesday, March 03, 2015 Data Structure 4

Software Techniques 3/3/2015

3

Pass By Pointer

void func(int* i);

void main()

{

int b = 10;

func(&b);

}

void func(int* i)

{

*i = *i + 10;

}

Pass by address is used
• When a function must change its argument

• To increase efficiency when passing large data types

Tuesday, March 03, 2015 Data Structure 5

Pass By Reference
void func(int& i);

int main()

{

int c = 5;

func(c);

}

void func(int& i)

{

i = i + 1;

}

Tuesday, March 03, 2015 Data Structure 6

Software Techniques 3/3/2015

4

Pass By Reference Example
Pass the address of an object
• Provides efficiency (especially for large objects)

• Propagate parameter changes to the calling function

• Creates an alias (i.e., two names for the same memory location)

• Do not have the “safety” of a pass by value

One place to modify syntax
• Function definition (from value to reference variable)

Example: Swapping variables
void swap(int& v1, int&

v2)

{

int temp = v1;

v1 = v2;

v2 = temp;

}

int main()

{

int a = 10, b = 20;

swap(a, b);

}

Tuesday, March 03, 2015 Data Structure 7

Swapping Two Variables

void swap(int* v1,
int* v2)

{

int temp = *v1;

*v1 = *v2;

*v2 = temp;

}

The classic pass by address example

int main()

{

int a = 10, b = 20;

swap(&a, &b);

}

Tuesday, March 03, 2015 Data Structure 8

Software Techniques 3/3/2015

5

Arrays as parameters of functions

Suppose we want a function that

sums up values of the array

int main()
{

double values[4] = {3.14, 1.0, 2.61, 5.3};

cout<<“Sum = %lf\n”, SumValues(values, 4));
}

Tuesday, March 03, 2015 Data Structure 9

Arrays as parameters of functions

Tuesday, March 03, 2015 Data Structure 10

“[]” flags the parameter as an array.
– always passed by reference Array size is

passed separately (as numElements)

double SumValues(double x[], int numElements)

{

int i;

double result = 0;

for (i=0; i < numElements; i++)

result = result + x[i];

return result;

}

Software Techniques 3/3/2015

6

Sample output : The
array elements are
randomly generated

Array before sorting

Element 0 : 58.7000

Element 1 : 8.0100

Element 2 : 72.3700

Element 3 : 4.6500

Element 4 : 58.3000

Element 5 : 92.1700

Element 6 : 95.3100

Element 7 : 4.3100

Element 8 : 68.0200

Element 9 : 72.5400

Array after sorting

Element 0 : 4.3100

Element 1 : 4.6500

Element 2 : 8.0100

Element 3 : 58.3000

Element 4 : 58.7000

Element 5 : 68.0200

Element 6 : 72.3700

Element 7 : 72.5400

Element 8 : 92.1700

Element 9 : 95.3100

Tuesday, March 03, 2015 Data Structure 11

#include <stdio.h>

#include <stdlib.h>

void PrintArray(double [], int);

void SortArray(double [], int);

void Swap (double *, double *);

Functions are your friends!

Make them work and then

use them to do work!

Tuesday, March 03, 2015 Data Structure 12

Software Techniques 3/3/2015

7

#define NumElements 10

int main()

{

int i;

double values[NumElements]; /* The array of real numbers */

srand(time(NULL));

for (i=0; i < NumElements; i++)

{

values[i] = (double)(rand() % 10000) / 100.0;

}

cout<<"\nArray before sorting\n");

PrintArray(values, NumElements);

SortArray(values, NumElements);

cout<<"\nArray after sorting\n");

PrintArray(values, NumElements);

return 0;

}

Tuesday, March 03, 2015 Data Structure 13

#define NumElements 10

int main()

{

int i;

double values[NumElements]; /* The array of real numbers */

srand(time(NULL));

for (i=0; i < NumElements; i++)

{

values[i] = (double)(rand() % 10000) / 100.0;

}

cout<<"\nArray before sorting\n");

PrintArray(values, NumElements);

SortArray(values, NumElements);

cout<<"\nArray after sorting\n");

PrintArray(values, NumElements);

return 0;

}

Array declaration
Declare an array of 10 doubles
The indices range from 0 to 9,

i.e. Value[0] to Value[9]

Tuesday, March 03, 2015 Data Structure 14

Software Techniques 3/3/2015

8

#define NumElements 10

int main()

{

int i;

double values[NumElements]; /* The array of real numbers */

srand(time(NULL));

for (i=0; i < NumElements; i++)

{

values[i] = (double)(rand() % 10000) / 100.0;

}

cout<<"\nArray before sorting\n");

PrintArray(values, NumElements);

SortArray(values, NumElements);

cout<<"\nArray after sorting\n");

PrintArray(values, NumElements);

return 0;

}

Initialize the array with random values

rand() returns a pseudo random number between 0 and
RAND_MAX

rand()%10000 yields a four-digit integer remainder

/100.0 moves the decimal point left 2 places

So, Values is an array of randomly generated 2-decimal digit
numbers between 0.00 and 99.99

Tuesday, March 03, 2015 Data Structure 15

cout<<"\nArray before sorting\n");

PrintArray(values, NumElements);

SortArray(values, NumElements);

cout<<"\nArray after sorting\n");

PrintArray(values, NumElements);

PrintArray prints the

elements of the array in

the order they are given

to it

SortArray sorts the

elements into ascending

order

Tuesday, March 03, 2015 Data Structure 16

Software Techniques 3/3/2015

9

Parameter Passing

Tuesday, March 03, 2015 Data Structure 17

void PrintArray(double array[], int size)

{

}
array is an array of doubles

array is passed by reference,

i.e. any changes to parameter

array in the function would

change the argument values

The array size is passed as

“size”

array[i] is a double so the output needs to be “%f”

The range of the “for” statement walks through the
whole array from element 0 to element N-1.

Tuesday, March 03, 2015 Data Structure 18

void PrintArray(double array[], int size)

{

int i;

for (i=0; i<size; i++)

cout<<" Element %5d : %8.4lf\n",i, array[i]);

}

Software Techniques 3/3/2015

10

Sorting Array

Tuesday, March 03, 2015 Data Structure 19

void SortArray(double array[], int size)

{

}

array is an array of doubles.

array is passed by reference, i.e. changes to

parameter array change the argument values

There is no size restriction on array so the size

is passed as “size”.

Tuesday, March 03, 2015 Data Structure 20

Selection Sort
8 2 6 4array

0 1 2 3

Software Techniques 3/3/2015

11

Tuesday, March 03, 2015 Data Structure 21

Selection Sort
8 2 6 4array

0 1 2 3

Search from array[0] to array[3]

to find the smallest number

Tuesday, March 03, 2015 Data Structure 22

Selection Sort

8 2 6 4array

0 1 2 3

Search from array[0] to array[3]

to find the smallest number and

swap it with array[0]

2 8 6 4

0 1 2 3

Software Techniques 3/3/2015

12

Tuesday, March 03, 2015 Data Structure 23

Selection Sort
8 2 6 4array

0 1 2 3

2 8 6 4

0 1 2 3

Search from array[1] to array[3]

to find the smallest number

Tuesday, March 03, 2015 Data Structure 24

Selection Sort
8 2 6 4array

0 1 2 3

2 8 6 4

0 1 2 3

Search from array[1] to array[3]

to find the smallest number and

swap it with array[1]

2 4 6 8

0 1 2 3

Software Techniques 3/3/2015

13

Tuesday, March 03, 2015 Data Structure 25

Selection Sort
8 2 6 4array

0 1 2 3

2 8 6 4

0 1 2 3

Search from array[2] to array[3]

to find the smallest number and

swap it with array[2]

2 4 6 8

0 1 2 3

Tuesday, March 03, 2015 Data Structure 26

Selection Sort
8 2 6 4array

0 1 2 3

2 8 6 4

0 1 2 3

Search from array[2] to array[3]

to find the smallest number and

swap it with array[2]

2 4 6 8

0 1 2 3

2 4 6 8

0 1 2 3

And we are done!

Software Techniques 3/3/2015

14

Tuesday, March 03, 2015 Data Structure 27

Selection Sort
8 2 6 4array

0 1 2 3

2 8 6 4

0 1 2 3

2 4 6 8

0 1 2 3

2 4 6 8

0 1 2 3

How many iterations are there?

Answer: 3 (from i = 0 to i = 2)

More generally, if number of

elements in the array is size,

you need to iterate from

i = 0 to i = size - 2

Tuesday, March 03, 2015 Data Structure 28

Selection Sort
At every iteration i, you need to search

from array[i] to array[size – 1] to

find the smallest element

How to do this?

2 8 6 4

0 1 2 3

Software Techniques 3/3/2015

15

Tuesday, March 03, 2015 Data Structure 29

Selection Sort
2 8 6 4

0 1 2 3

At every iteration i, you need to search

from array[i] to array[size – 1] to

find the smallest element

How to do this?

Use a variable called min to locate

the index of the smallest element

min 3

Tuesday, March 03, 2015 Data Structure 30

Selection Sort
2 8 6 4

0 1 2 3

min 1

Assume current iteration i = 1

Initialize min = i

Software Techniques 3/3/2015

16

Tuesday, March 03, 2015 Data Structure 31

Selection Sort
2 8 6 4

0 1 2 3

min 1

Assume current iteration i = 1

Initialize min = I

Set j = i + 1

Compare array(min) to array(j)

ji

Tuesday, March 03, 2015 Data Structure 32

Selection Sort
2 8 6 4

0 1 2 3

min 2

j

Assume current iteration i = 1

Initialize min = i

Set j = i + 1

Compare array(min) to array(j)

If array(j) < array(min)

set min to j

Because 6 < 8,

min is now set to 2

i

Software Techniques 3/3/2015

17

Tuesday, March 03, 2015 Data Structure 33

Selection Sort
2 8 6 4

0 1 2 3

min 2

j

Increment j

Compare array(min) to array(j)

i

Tuesday, March 03, 2015 Data Structure 34

Selection Sort
2 8 6 4

0 1 2 3

min 3

j

Increment j

Compare array(min) to array(j)

If array(j) < array(min)

set min to j

Because 4 < 6,

min is now set to 3

i

Software Techniques 3/3/2015

18

Tuesday, March 03, 2015 Data Structure 35

Selection Sort
2 8 6 4

0 1 2 3

min 3

j

Swap array(i) with array(min)

i

Tuesday, March 03, 2015 Data Structure 36

SortArray
void SortArray(double array[], int size)

{

int i, j, min;

for (i=0; i < size-1; i++)

{

min = i;

for (j=i+1; j<size; j++)

{

if (array[j] < array[min])

{

min = j;

}

}

Swap(&array[i], &array[min]);

}

}

Software Techniques 3/3/2015

19

Tuesday, March 03, 2015 Data Structure 37

Swap

void Swap (double *a, double *b)

{

double temp = *a;

*a = *b;

*b = temp;

}

Tuesday, March 03, 2015 Data Structure 38

Swap
void Swap (double *a, double *b)

{

double temp = *a;

*a = *b;

*b = temp;

}

Note: We’re passing two elements of the

array; not passing the entire array

So, we CANNOT declare it as

void Swap(double a, double b)

void Swap(double a[], double b[])

Software Techniques 3/3/2015

20

passing 2d arrays

In passing a multi-dimensional array, the first

array size does not have to be specified. The

second (and any subsequent) dimensions must

be given!

int myFun(int list[][10]);

Tuesday, March 03, 2015 Data Structure 39

Tuesday, March 03, 2015 Data Structure 40

#define ROWS 3

#define COLS 5

int addMatrix(int [][COLS]);

int main()

{

int a[][COLS] = { {13, 22, 9, 23, 12}, {17, 5, 24, 31, 55}, {4, 19, 29, 41, 61} };

printf(“Sum = %d\n”, addMatrix(a));

}

int addMatrix(int t[][COLS])

{

int i, j, sum = 0;

for (i=0; i<ROWS; i++)

for (j=0; j<COLS; j++)

sum += t[i][j];

return sum;

}

Software Techniques 3/3/2015

21

Recursive Functions
Direct recursion: a function calls itself
Indirect recursion: A calls B, B calls C, ..., Y calls Z, Z calls A
Must have 3 features

• Branch (usually in an if) that makes the recursive call
• Branch (usually in an if) that does not recurse (i.e.,

terminates the recursion) --condition may be implicit
rather than explicit

• Input must change with each call
Theoretically, recursion may be written as a loop

• There is an existence proof of this – but it’s not a
constructive proof

Tuesday, March 03, 2015 Data Structure 41

Recursion Example 1
(Print the digits of an integer one at a time)

void forward(int number)

{

if (number != 0)

{

forward(number / 10);

cout << number % 10;

}

}

Tuesday, March 03, 2015 Data Structure 42

Software Techniques 3/3/2015

22

Recursion Example 2
(Print the digits of an integer in reverse order)

void reverse(int number)

{

if (number != 0)

{

cout << number % 10;

reverse(number / 10);

}

}

Tuesday, March 03, 2015 Data Structure 43

Graphical Representation
Activation records and statement sequencing

Tuesday, March 03, 2015 Data Structure 44

3/13/2015

1

Lecture Eight
Struct

structs
Aggregating associated data into a single
variable

Box
width
length
height

Circle
radius

int main()

{

Box mybox;

Circle c;

mybox.width = 10;

mybox.length = 30;

mybox.height = 10;

c.radius = 10;

}

Friday, March 13, 2015 Data Structure 2

3/13/2015

2

The idea

Box
width
length
height

I want to describe a box. I need variables for the
width, length, and height.
I can use three variables, but wouldn’t it be
better if I had a single variable to describe a
box?
That variable can have three parts, the width,
length, and height.

Friday, March 13, 2015 Data Structure 3

Structs
A struct (short for structure) in C is a grouping of
variables together into a single type.

struct nameOfStruct

{

type member;

type member;

…

}; Note the semicolon at the end.
To declare a variable:

struct nameOfStruct variable_name;

Friday, March 13, 2015 Data Structure 4

3/13/2015

3

Example

Box
width
length
height

Circle
radius

#include <stdio.h>

struct Box

{

int width;

int length;

int height;

};

struct Circle

{

double radius;

};

int main()

{

struct Box b;

struct Circle c;

}

You can

declare

variables

Data

structure

definition

Friday, March 13, 2015 Data Structure 5

Example

Box
width
length
height

int main() {

struct Box b;

b.width = 10;

b.length = 30;

b.height = 10;

}

You can

assign values

to each

member

#include <stdio.h>

struct Box

{

int width;

int length;

int height;

};

We use a period “.” to get to the

elements of a struct.

If x is a struct, x.width is an element

in a struct.

Friday, March 13, 2015 Data Structure 6

3/13/2015

4

Another Example
You can use mixed data
types within the struct
(int, float, char [])

struct bankRecordStruct

{

char name[50];

float balance;

};

struct bankRecordStruct billsAcc;

Friday, March 13, 2015 Data Structure 7

Accessing values

struct bankRecordStruct

{

char name[50];

float balance;

};

struct bankRecordStruct billsAcc;

cout<<<<“My balance is: %f\n”, billsAcc.balance;

float bal = billsAcc.balance;

Access values in a struct
using a period: “.”

Friday, March 13, 2015 Data Structure 8

3/13/2015

5

Assign Values using cin>>
struct BankRecord

{

char name[50];

float balance;

};

int main()

{

struct BankRecord newAcc; /* create new bank record */

cout<<“Enter account name: “;

cin>> “%50s”, newAcc.name;

cout<<“Enter account balance: “;

cin>>“%d”, &newAcc.balance;

}

Friday, March 13, 2015 Data Structure 9

Copy via =

You can set two struct type variables equal to
each other and each element will be copied

struct Box { int width, length, height; };

int main()

{

struct Box b, c;

b.width = 5; b.length=1; b.height = 2;

c = b; // copies all elements of b to c

cout<<“%d %d %d\n”, c.width, c.length, c.height;

}

Friday, March 13, 2015 Data Structure 10

3/13/2015

6

Passing Struct to a function

You can pass a struct to a function. All the
elements are copied
If an element is a pointer, the pointer is copied
but not what it points to!

int myFunction(struct Person p)

{

…

}

Friday, March 13, 2015 Data Structure 11

Using Structs in Functions

Write a program that
• Prompts the user to enter the dimensions of a 3D

box and a circle
• Prints the volume of the box and area of the circle

Sample run:

Friday, March 13, 2015 Data Structure 12

3/13/2015

7

#include <iostream.h>

#include <math.h>

struct Box { int width, height , length; };

int GetVolume(struct Box b)

{

return b.width * b.height * b.length;

}

int main()

{

struct Box b;

cout<<"Enter the box dimensions (width length height): “;

cin>>"%d %d %d", &b.width, &b.length, &b.height;

cout<<"Box volume = %d\n", GetVolume(b);

}

Friday, March 13, 2015 Data Structure 13

Note: == Comparison doesn’t
work

struct Box { int width, length, height; };

int main()

{

struct Box b, c;

b.width = 5; b.length=1; b.height = 2;

c = b;

if (c == b) /* Error when you compile! */

cout<<“c and b are identical\n”;

else

cout<<“c and b are different\n”;

}

Error message: invalid operands to binary == (have 'Box' and 'Box')

Friday, March 13, 2015 Data Structure 14

3/13/2015

8

Create your own equality test
#include <iostream.h>

#include <math.h>

struct Box { int width, height , length; };

int IsEqual(struct Box b, struct Box c)

{

if (b.width==c.width &&

b.length==c.length &&

b.height==c.height)

return 1;

else

return 0;

}

struct Box b, c;

b.width = 5; b.length=1; b.height

= 2;

c = b;

if (IsEqual(b,c))

cout<<"c and b are

identical\n”;

else

cout<<"c and b are

different\n”;

Friday, March 13, 2015 Data Structure 15

typedef
typedef is a way in C to give a name to a
custom type.

typedef type newname;

typedef int dollars;

typedef unsigned char Byte;

I can declare variables like:

dollars d;

Byte b, c;

It’s as if the type already existed.

Friday, March 13, 2015 Data Structure 16

3/13/2015

9

typedef for Arrays
There is a special syntax for arrays:

typedef char Names[40];

typedef double Vector[4];

typedef double Mat4x4[4][4];

Now, instead of:

double mat[4][4];

I can do:

Mat4x4 mat;

Friday, March 13, 2015 Data Structure 17

Using Structs with Typedef

typedef struct [nameOfStruct]

{

type member;

type member;

…

} TypeName;

To declare a variable: TypeName
variable_name;

optional

Friday, March 13, 2015 Data Structure 18

3/13/2015

10

Example
Box
width
length
height

Circle
radius

#include <stdio.h>

typedef struct

{

int width;

int length;

int height;

} Box;

typedef struct { double radius; } Circle;

int main()

{

Box b; /* instead of struct Box */

Circle c; /* instead of struct Circle */

b.width = 10;

b.length = 30;

b.height = 10;

c.radius = 10;

}

Friday, March 13, 2015 Data Structure 19

Arrays of structs
You can declare an array of a structure and
manipulate each one

typedef struct

{

double radius;

int x;

int y;

char name[10];

} Circle;

Circle circles[5];

Friday, March 13, 2015 Data Structure 20

3/13/2015

11

Size of a Struct: sizeof
typedef struct

{

double radius; /* 8 bytes */

int x; /* 4 bytes */

int y; /* 4 bytes */

char name[10]; /* 10 bytes */

} Circle;

cout<<“Size of Circle struct is %d\n”,

sizeof(Circle);

Friday, March 13, 2015 Data Structure 21

Size of a Struct
8 + 4 + 4 + 10 = 26

• But sizeof() reports 28 bytes!!!

Most machines require alignment on 4-byte
boundary (a word)

• last word is not filled by the char (2 bytes used,
2 left over)

D D D D D D D D I I I I I I I I C C C C C C C C C C X X

8 byte, 2 word double 4 byte,

1 word

integer

4 byte,

1 word

integer

10 byte char array, 2 bytes

of the last word unused

Friday, March 13, 2015 Data Structure 22

3/13/2015

12

Pointers to structs
typedef struct

{

int width;

int length;

int height;

} Box;

Box b; /* A variable of type Box */

Box *c; /* A pointer to a Box */

double w;

b.width = 5; b.height = 7; b.length = 3;

c = &b; /* Same as before */

w = c->width;

To access the members of a struct,
we use: . for a variable of the struct’s
type, -> for a pointer to a struct

Friday, March 13, 2015 Data Structure 23

struct Concepts

struct Box

{

double wid, hit;

};

typedef struct

{

double radius;

int x;

int y;

char name[10];

} Circle;

struct Box b; /* No typedef */

Circle c; /* typedef */

struct Box *pBox; /* Pointer to Box */

Circle *pCirc; /* Pointer to Circle */

pBox = &b; /* Get pointer to a Box */

b.wid = 3;

pBox->wid = 7;

pCirc = &c;

(*pCirc).radius = 9;

Friday, March 13, 2015 Data Structure 24

3/12/2015

1

Lecture Eight
Stacks

Stack

A stack is a data structure that stores and
retrieves items in a last-in-first-out (LIFO)
manner.

Thursday, March 12, 2015 Data Structure 2

3/12/2015

2

Applications of Stacks

Computer systems use stacks during a
program’s execution to store function return
addresses, local variables, etc.
Some calculators use stacks for performing
mathematical operations.

Thursday, March 12, 2015 Data Structure 3

Static and Dynamic Stacks

Static Stacks
• Fixed size
• Can be implemented with an array

Dynamic Stacks
• Grow in size as needed
• Can be implemented with a linked list

Thursday, March 12, 2015 Data Structure 4

3/12/2015

3

Stack Operations

Push
• causes a value to be stored in (pushed onto) the

stack
Pop

• retrieves and removes a value from the stack

Thursday, March 12, 2015 Data Structure 5

The Push Operation

Thursday, March 12, 2015 Data Structure 6

Suppose we have an empty integer stack that is
capable of holding a maximum of three values.
With that stack we execute the following push
operations.

• push(5);
• push(10);
• push(15);

3/12/2015

4

The Push Operation

The state of the stack after each of the push
operations:

Thursday, March 12, 2015 Data Structure 7

The Pop Operation

Now, suppose we execute three consecutive
pop operations on the same stack:

Thursday, March 12, 2015 Data Structure 8

3/12/2015

5

Other Stack Operations

isFull: A Boolean operation needed for static
stacks. Returns true if the stack is full.
Otherwise, returns false.
isEmpty: A Boolean operation needed for all
stacks. Returns true if the stack is empty.
Otherwise, returns false.

Thursday, March 12, 2015 Data Structure 9

Stacks

Problem:
• What happens if we try to pop an item off the

stack when the stack is empty?
�This is called a stack underflow. The pop

method needs some way of telling us that
this has happened. In java we use the
java.util.EmptyStackException

Thursday, March 12, 2015 Data Structure 10

3/12/2015

6

Implementing a Stack

There are two ways we can implement a stack:
• Using an array
• Using a linked list

Thursday, March 12, 2015 Data Structure 11

Implementing a Stack

Implementing a stack using an array is fairly
easy.

• The bottom of the stack is at data[0]
• The top of the stack is at data[numItems-1]
• push onto the stack at data[numItems]
• pop off of the stack at data[numItems-1]

Thursday, March 12, 2015 Data Structure 12

3/12/2015

7

Implementing a Stack

Implementing a stack using a linked list isn’t that
bad either…

• Store the items in the stack in a linked list
• The top of the stack is the head node, the bottom

of the stack is the end of the list
• push by adding to the front of the list
• pop by removing from the front of the list

Thursday, March 12, 2015 Data Structure 13

C program to implement Stack
[using Array]

Stack is maintained in (LIFO) Last In First Out manner.
Push and pop are done at the front end so we require a
variable top which will give Status of current position.
Initially value of top is -1 which indicates Stack is empty.

Thursday, March 12, 2015 Data Structure 14

3/12/2015

8

C++ program to implement
Stack [using Array] #include“iostream.h"

#define max 5 // size of the Stack

int top,a[max];

void push(void)

{

int x;

if(top==max-1) // Condition for checking If Stack is Full

{

cout<<"stack overflow\n”;

return;

}

cout<<"enter a no\n”;

cin>>"%d",&x;

a[++top]=x; //increment the top and inserting element

cout<<"%d succ. pushed\n",x;

return;

}
Thursday, March 12, 2015 Data Structure 15

C++ program to implement
Stack [using Array] void pop(void)

{

int y;

if(top==-1) // Condition for checking If Stack is Empty

{

cout<<"stack underflow\n”;

return;

}

y=a[top];

a[top--]=0;

//insert 0 at place of removing element and decrement the top

cout<<"%d succ.poped\n",y;

return;

}

Thursday, March 12, 2015 Data Structure 16

3/12/2015

9

C++ program to implement
Stack [using Array] void display(void)

{

int i;

if(top==-1)

{

cout<<"stack is empty\n”;

return;

}

cout<<"elements of Stack are :\n”;

for(i=0;i<=top;i++)

{

cout<<"%d\n",a[i];

}

return;

}

Thursday, March 12, 2015 Data Structure 17

C++ program to implement
Stack [using Array]

void main(void)

{

int c; top=-1;

do

{

cout<<"1:push\n2:pop\n3:display\n4:exit\nchoice:”;

cin>>"%d",&c;

switch(c)

{

case 1:push();

break;

case 2:pop();

break;

case 3:display();

break;

case 4:cout<<"program ends\n”;

break;

default :cout<<"wrong choice\n”;

break;

}

}while(c!=4);

}

Thursday, March 12, 2015 Data Structure 18

3/12/2015

10

Reversing a Word

We can use a stack to reverse the letters in a
word.
How?

Thursday, March 12, 2015 Data Structure 19

Reversing a Word

Read each letter in the word and push it onto the
stack
When you reach the end of the word, pop the
letters off the stack and print them out.

Thursday, March 12, 2015 Data Structure 20

3/12/2015

1

Lecture Eight
Queues

Queue
A queue is a linear list in which data can only be
inserted at one end, called the rear, and deleted
from the other end, called the front.
These restrictions ensure that the data is
processed through the queue in the order in
which it is received.
In other words, a queue is a first in, first out
(FIFO) structure.

Thursday, March 12, 2015 Data Structure 2

3/12/2015

2

Operations on queues
Although we can define many operations for a
queue, four are the basic: queue, enqueue,
dequeue and empty.
The queue operation creates an empty queue.
The following shows the format.

Thursday, March 12, 2015 Data Structure 3

The enqueue operation
The enqueue operation inserts an item at the rear
of the queue. The following shows the format.

Thursday, March 12, 2015 Data Structure 4

3/12/2015

3

The dequeue operation
The dequeue operation deletes the item at the
front of the queue. The following shows the
format.

Thursday, March 12, 2015 Data Structure 5

The empty operation
The empty operation checks the status of the
queue. The following shows the format.
This operation returns true if the queue is empty
and false if the queue is not empty.

Thursday, March 12, 2015 Data Structure 6

3/12/2015

4

The following shows a segment of an algorithm
that applies the previously defined operations on
a queue Q.

Example

Thursday, March 12, 2015 Data Structure 7

Queue applications
Queues are one of the most common of all data
processing structures.
They are found in virtually every operating
system and network and in countless other areas
For example, queues are used in online business
applications such as processing customer
requests, jobs and orders.
In a computer system, a queue is needed to
process jobs and for system services such as
print spools.

Thursday, March 12, 2015 Data Structure 8

3/12/2015

5

Queue applications
Another common application of a queue is to adjust and
create a balance between a fast producer of data and a
slow consumer of data.
For example, assume that a CPU is connected to a printer.
The speed of a printer is not comparable with the speed of
a CPU. If the CPU waits for the printer to print some data
created by the CPU, the CPU would be idle for a long time.
The solution is a queue. The CPU creates as many chunks
of data as the queue can hold and sends them to the
queue. The CPU is now free to do other jobs.
The chunks are dequeued slowly and printed by the printer.
The queue used for this purpose is normally referred to as
a spool queue.

Thursday, March 12, 2015 Data Structure 9

Queue implementation

A queue ADT can be implemented using either an
array or a linked list.
In the array implementation we have a record
with three fields. The first field can be used to
store information about the queue.
The linked list implementation is similar: we have
an extra node that has the name of the queue.
This node also has three fields: a count, a pointer
that points to the front element and a pointer that
points to the rear element.

Thursday, March 12, 2015 Data Structure 10

3/12/2015

6

Queue implementation

Thursday, March 12, 2015 Data Structure 11

C++ program to implement
Queue[using Array]

#include <iostream.h>

#define MAX 50

int queue_array[MAX];

int rear = - 1;

int front = - 1;

main()

{

int choice;

while (1)

{

cout<<"1.Insert element to queue \n”;

cout<<"2.Delete element from queue \n”;

cout<<"3.Display all elements of queue \n”;

cout<<"4.Quit \n”;

cout<<"Enter your choice : “;

cin>>"%d", &choice;

Thursday, March 12, 2015 Data Structure 12

3/12/2015

7

C++ program to implement
Queue[using Array]

switch (choice)

{

case 1: insert();

break;

case 2: delete();

break;

case 3: display();

break;

case 4: exit(1);

default: cout<<"Wrong choice \n”;

} /*End of switch*/

} /*End of while*/

} /*End of main()*/

Thursday, March 12, 2015 Data Structure 13

C++ program to implement
Queue[using Array]

insert()

{

int add_item;

if (rear == MAX - 1)

cout<<"Queue Overflow \n”;

else

{

if (front == - 1) /*If queue is initially empty */

front = 0;

cout<<"Inset the element in queue : “;

cin>>"%d", &add_item;

rear = rear + 1;

queue_array[rear] = add_item;

}

} /*End of insert()*/

Thursday, March 12, 2015 Data Structure 14

3/12/2015

8

C++ program to implement
Queue[using Array] delete()

{

if (front == - 1 || front > rear)

{

cou<<"Queue Underflow \n";

return ;

}

else

{

cout<<"Element deleted from queue is : %d\n", queue_array[front];

front = front + 1;

}

} /*End of delete() */

Thursday, March 12, 2015 Data Structure 15

C++ program to implement
Queue[using Array] display()

{

int i;

if (front == - 1)

cout<<"Queue is empty \n”;

else

{

cout<<"Queue is : \n”;

for (i = front; i <= rear; i++)

cout<<"%d ", queue_array[i];

cout<<"\n";

}

} /*End of display() */

Thursday, March 12, 2015 Data Structure 16

4/7/2015

1

Lecture Eleven
Linked List

Introduction to the Linked List ADT

A linked list is a series of connected nodes,
where each node is a data structure.
A linked list can grow or shrink in size as the
program runs.

Tuesday, April 07, 2015 Data Structure 2

4/7/2015

2

Advantages of Linked Lists over
Arrays

A linked list can easily grow or shrink in size.
Insertion and deletion of nodes is quicker with
linked lists than with vectors.

Tuesday, April 07, 2015 Data Structure 3

The composition of a Linked List

Each node in a linked list contains one or more
members that represent data.
In addition to the data, each node contains a
pointer, which can point to another node.

Tuesday, April 07, 2015 Data Structure 4

4/7/2015

3

The composition of a Linked List

A linked list is called "linked" because each
node in the series has a pointer that points to
the next node in the list.

Tuesday, April 07, 2015 Data Structure 5

Declarations

First you must declare a data structure that will be
used for the nodes. For example, the following
struct could be used to create a list where each
node holds a float:

Tuesday, April 07, 2015 Data Structure 6

struct ListNode

{

float value;

struct ListNode *next;

};

4/7/2015

4

Declarations

The next step is to declare a pointer to serve
as the list head, as shown below.

Tuesday, April 07, 2015 Data Structure 7

ListNode *head;

Once you have declared a node data
structure and have created a NULL head
pointer, you have an empty linked list.
The next step is to implement operations with
the list.

7

Linked List Operations

Typical operations:
• Creation
• Insert / remove an element
• Test for emptiness
• Find an item/element
• Current element / next / previous
• Find k-th element
• Print the entire list

Tuesday, April 07, 2015 Data Structure 8

4/7/2015

5

Array-Based List
Implementation

One simple implementation is to use arrays
• A sequence of n-elements

Maximum size is anticipated a priori.
Internal variables:
• Maximum size maxSize (m)
• Current size curSize (n)
• Current index cur
• Array of elements listArray

Tuesday, April 07, 2015 Data Structure 9

n

curSize

a1 a2 a3 an

listArray

unused

0 1 2 n-1 m

cur

Inserting Into an Array
While retrieval is very fast, insertion and
deletion are very slow
• Insert has to shift upwards to create gap

Tuesday, April 07, 2015 Data Structure 10

a1 a2 a7 a8a4 a5 a6a3

Step 1 : Shift upwards

8

Size arr

8 a1 a2 a3 a7 a8

Size arr

a4 a5 a6

Example : insert(2, it, arr)

Step 2 : Write into gap

it

Step 3 : Update Size

9

4/7/2015

6

Coding
typedef struct {

int arr[MAX];
int max;
int size;

} LIST

void insert(int j, int it, LIST *pl)
{

int i;

for (i=pl->size; i>=j; i=i-1)
// Step 1: Create gap

{ pl->arr[i+1]= pl->arr[i]; };

pl->arr[j]= it; // Step 2: Write to gap

pl->size = pl->size + 1; // Step 3: Update size
}

Tuesday, April 07, 2015 Data Structure 11

Deleting from an Array
Delete has to shift downwards to close gap of
deleted item

Tuesday, April 07, 2015 Data Structure 12

Step 1 : Close Gap

9 a1 a2 it a7
a8

size

a5 a6a3
a8

arr

9 a1 a2 it a7 a8

size

a4 a5 a6a3

arr

Example: deleteItem(4, arr)

Step 2 : Update Size

8

Not part of list

4/7/2015

7

Coding

Tuesday, April 07, 2015 Data Structure 13

void delete(int j, LIST *pl)
{

for (i=j+1; i<=pl->size; i=i+1)
// Step1: Close gap

{ pl->arr[i-i]=pl->arr[i]; };
// Step 2: Update

size
pl->size = pl->size - 1;

}

Linked List Approach

Tuesday, April 07, 2015 Data Structure 14

Main problem of array is the slow
deletion/insertion since it has to shift items in its
contiguous memory
Solution: linked list where items need not be
contiguous with nodes of the form

Sequence (list) of four items < a1,a2 ,a3 ,a4 > can
be represented by:

item next

ai

a1 a2 a3 a4

head represents
null

4/7/2015

8

Pointer-Based Linked Lists

Tuesday, April 07, 2015 Data Structure 15

A node in a linked list is usually a struct
struct Node
{ int item

Node *next;
}; //end struct

A node is dynamically allocated
Node *p;
p = malloc(sizeof(Node));

Pointer-Based Linked Lists

The head pointer points to the first node in a
linked list
If head is NULL, the linked list is empty

head=NULL
head=malloc(sizeof(Node))

Tuesday, April 07, 2015 Data Structure 16

4/7/2015

9

A Sample Linked List

Tuesday, April 07, 2015 Data Structure 17

Traverse a Linked List

Reference a node member with the -> operator
p->item;

A traverse operation visits each node in the
linked list

• A pointer variable cur keeps track of the current
node

for (Node *cur = head;
cur != NULL; cur = cur->next)
x = cur->item;

Tuesday, April 07, 2015 Data Structure 18

4/7/2015

10

Traverse a Linked List

Tuesday, April 07, 2015 Data Structure 19

The effect of the assignment cur = cur->next

Delete a Node from a Linked List
Deleting an interior/last node

prev->next=cur->next;
Deleting the first node

head=head->next;
Return deleted node to system

cur->next = NULL;
free(cur);
cur=NULL;

Tuesday, April 07, 2015 Data Structure 20

4/7/2015

11

Delete a Node from a Linked List

Tuesday, April 07, 2015 Data Structure 21

Deleting a node from a linked list

Deleting the first node

Insert a Node into a Linked List

To insert a node between two nodes
newPtr->next = cur;

prev->next = newPtr;

Data Structure

Inserting a new node into a
linked list

Tuesday, April 07, 2015 22

4/7/2015

12

Insert a Node into a Linked List

To insert a node at the beginning of a linked list
newPtr->next = head;

head = newPtr;

Data Structure

Inserting at the beginning of a

linked list

Tuesday, April 07, 2015 23

Insert a Node into a Linked List

Inserting at the end of a linked list is not a
special case if cur is NULL

newPtr->next = cur;

prev->next = newPtr;

Data Structure

Inserting at the end of a linked list

Tuesday, April 07, 2015 24

4/7/2015

13

Look up

BOOLEAN lookup (int x, Node *L)
{ if (L == NULL)

return FALSE
else if (x == L->item)

return TRUE
else

return lookup(x, L-next);
}

Tuesday, April 07, 2015 Data Structure 25

struct test_struct
{

int val;
struct test_struct *next;

};
struct test_struct *head = NULL;
struct test_struct *curr = NULL;

A Practical C Linked List
Example

Tuesday, April 07, 2015 Data Structure 26

4/7/2015

14

struct test_struct* create_list(int val)
{

cout<<"\n creating list with headnode as
[%d]\n",val;

struct test_struct *ptr = (struct
test_struct*)malloc(sizeof(struct test_struct));

if(NULL == ptr)
{

cout<<"\n Node creation failed \n”;
return NULL;

}
ptr->val = val;
ptr->next = NULL;
head = curr = ptr;
return ptr;

}

Tuesday, April 07, 2015 Data Structure 27

struct test_struct* add_to_list(int val, bool add_to_e nd)

{ if(NULL == head)
{ return (create_list(val)); }

if(add_to_end)
cout<<"\n Adding node to end of list with value

[%d]\n“<<val;
else

cout<<"\n Adding node to beginning of list with val ue
[%d]\n“<<val;

struct test_struct *ptr = (struct
test_struct*)malloc(sizeof(struct test_struct));

if(NULL == ptr)
{ cout<<"\n Node creation failed \n”;

return NULL; }
ptr->val = val;

ptr->next = NULL;
if(add_to_end)

{ curr->next = ptr;
curr = ptr; }

else { ptr->next = head;
head = ptr; }

return ptr; }

Tuesday, April 07, 2015 Data Structure 28

4/7/2015

15

struct test_struct* search_in_list(int val, struct tes t_struct
**prev)

{ struct test_struct *ptr = head;

struct test_struct *tmp = NULL;
bool found = false;

cout<<"\n Searching the list for value [%d] \n“<<va l;
while(ptr != NULL)

{ if(ptr->val == val)
{ found = true;

break; }
else

{ tmp = ptr;
ptr = ptr->next;}

}
if(true == found)

{ if(prev)
*prev = tmp;

return ptr; }
else

{ return NULL; }
}

Tuesday, April 07, 2015 Data Structure 29

int delete_from_list(int val)

{ struct test_struct *prev = NULL;

struct test_struct *del = NULL;

cout<<"\n Deleting value [%d] from list\n“<<val;

del = search_in_list(val,&prev);

if(del == NULL)

return -1;

else

{ if(prev != NULL)

prev->next = del->next;

if(del == curr)

curr = prev;

else if(del == head)

head = del->next;

}

free(del);

del = NULL;

return 0;

}
Tuesday, April 07, 2015 Data Structure 30

4/7/2015

16

void print_list(void)
{

struct test_struct *ptr = head;
cout<<“\n -------Printing list

Start------- \n”;
while(ptr != NULL)
{

cout<<"\n [%d] \n“<<ptr->val;
ptr = ptr->next;

}
cout<<"\n -------Printing list End-

------ \n”;
return;

}
Tuesday, April 07, 2015 Data Structure 31

int main(void)

{ int i = 0, ret = 0;

struct test_struct *ptr = NULL;

print_list();

for(i = 5; i<10; i++)

add_to_list(i,true);

print_list();

for(i = 4; i>0; i--)

add_to_list(i,false);

print_list();

for(i = 1; i<10; i += 4)

{ ptr = search_in_list(i, NULL);

if(NULL == ptr)

cout<<"\n Search [val = %d] failed, no such element found\n“<<i;

else

cout<<"\n Search passed [val = %d]\n“<<ptr->val;

print_list();

ret = delete_from_list(i);

if(ret != 0)

cout<<"\n delete [val = %d] failed, no such element found\n“<<i;

else

cout<<"\n delete [val = %d] passed \n“<<i;

print_list();

return 0;

}

Tuesday, April 07, 2015 Data Structure 32

4/7/2015

17

Doubly Liked Lists
Frequently, we need to traverse a sequence
in BOTH directions efficiently
Solution : Use doubly-linked list where each
node has two pointers

Tuesday, April 07, 2015 Data Structure 33

next

forward traversal

Doubly Linked List.

x1 x4x2
head

x3

backward traversal

prev

Circular Linked Lists
May need to cycle through a list repeatedly,
e.g. round robin system for a shared resource
Solution : Have the last node point to the first
node

Tuesday, April 07, 2015 Data Structure 34

x1 x2 xn. . .

Circular Linked List.

head

4/14/2015

1

Lecture Thirteen
Queue Implementation by Linked

List

Implementation of Queue (Linked
List)

Can use LinkedListItr as underlying
implementation of Queues

a
1 a

2 a
3 a

4

head tail

Queue

lst
LinkedList

addTail

4/14/2015

2

Implementation by Linked Lists

Tuesday, April 14, 2015 Data Structure 3

/* C Program to Implement Queue Data Structure usin g
Linked List */
#include <iostream.h>
#include <stdlib.h>
struct node
{ int info;

struct node *ptr;
}*front,*rear,*temp,*front1;
int frontelement();
void enq(int data);
void deq();
void empty();
void display();
void create();
void queuesize();
int count = 0;

void main()
{

int no, ch, e;

cout<<"\n 1 – Enque”;
cout<<"\n 2 – Deque”;
cout<<"\n 3 - Front element”;
cout<<"\n 4 – Empty”;
cout<<"\n 5 – Exit”;
cout<<"\n 6 – Display”;
cout<<"\n 7 - Queue size”;
create();

while (1)

{

cout<<"\n Enter choice : “;

cin>>"%d", &ch;

switch (ch)

{

case 1:

cout<<"Enter data : “;

cin>>no;

enq(no);

break;

Tuesday, April 14, 2015 Data Structure 4

4/14/2015

3

case 2: deq();
break;

case 3: e = frontelement();
if (e != 0)

cout<<"Front element : %d“<< e;
else

cout<<"\n No front element in Queue as
queue is empty”;

break;
case 4: empty();

break;
case 5: exit(0);
case 6: display();

break;
case 7: queuesize();

break;
Default: cout<<"Wrong choice, Please enter corre ct
choice “;

break; }
} }

Tuesday, April 14, 2015 Data Structure 5

/* Create an empty queue */
void create()
{

front = rear = NULL;
}

/* Returns queue size */
void queuesize()
{

cout<<"\n Queue size : %d“<< count;
}

Tuesday, April 14, 2015 Data Structure 6

4/14/2015

4

/* Enqueing the queue */
void enq(int data)
{ if (rear == NULL)

{ rear = (struct node
*)malloc(1*sizeof(struct node));

rear->ptr = NULL;
rear->info = data;
front = rear; }

else
{ temp=(struct node

*)malloc(1*sizeof(struct node));
rear->ptr = temp;
temp->info = data;
temp->ptr = NULL;
rear = temp; }

count++;
}

Tuesday, April 14, 2015 Data Structure 7

/* Displaying the queue elements */
void display()
{

front1 = front;
if ((front1 == NULL) && (rear == NULL))
{

cout<<"Queue is empty”;
return;

}
while (front1 != rear)
{

cout<<"%d ", front1->info;
front1 = front1->ptr;

}
if (front1 == rear)

cout<<"%d“<< front1->info;
}

Tuesday, April 14, 2015 Data Structure 8

4/14/2015

5

/* Dequeing the queue */
void deq()
{ front1 = front;

if (front1 == NULL)
{ cout<<"\n Error: Trying to display elements from

empty queue”;
return; }

else
if (front1->ptr != NULL)
{ front1 = front1->ptr;

cout<<"\n Dequed value : %d“<< front->info;
free(front);
front = front1; }

else
{ cout<<"\n Dequed value : %d“<< front->info;

free(front);
front = NULL;
rear = NULL; }

count--;
}

Tuesday, April 14, 2015 Data Structure 9

/* Returns the front element of queue */
int frontelement()
{

if ((front != NULL) && (rear != NULL))
return(front->info);

else
return 0;

}

/* Display if queue is empty or not */
void empty()
{

if ((front == NULL) && (rear == NULL))
cout<<"\n Queue empty”;

else
cout<<"Queue not empty”;

}

Tuesday, April 14, 2015 Data Structure 10

4/7/2015

1

Lecture Twelve
Stack Implementation by Linked

List

Implementation by Linked Lists
Can use a Linked List as implementation of
stack

Tuesday, April 07, 2015 Data Structure 2

Top of Stack = Front of Linked-List

StackLL

lst

a1 a2 a3 a4

head

LinkedListItr

4/7/2015

2

Implementation by Linked Lists

Tuesday, April 07, 2015 Data Structure 3

#include<iostream.h>
#include<conio.h>
#include<process.h>
#include<stdlib.h>
#include<alloc.h>

void Push(int, node **);
void Display(node **);
int Pop(node **);
int Sempty(node *);

typedef struct stack {
int data;
struct stack *next;

} node;

void main() {
node *top;
int data, item, choice;
char ans, ch;
clrscr();
top = NULL;
cout<<"\nStack Using Linked List : nn”;
do {

cout<<"\n\n The main menu”;
cout<<"\n1.Push \n2.Pop \n3.Display \n4.Exit”;
cout<<"\n Enter Your Choice”;
cin>>"%d", &choice;

switch (choice) {
case 1: cout<<"\nEnter the data”;

cin>>"%d", &data;
Push(data, &top);
break;

case 2: if (Sempty(top))
cout<<"\nStack underflow!”;

else {
item = Pop(&top);
cout<<"\nThe popped node is%d", item;}

break;

Tuesday, April 07, 2015 Data Structure 4

4/7/2015

3

case 3: Display(&top);
break;

case 4: cout<<"\nDo You want To Quit?(y/n)”;
ch = getche();
if (ch == 'y')

exit(0);
else

break;
cout<<"\nDo you want to continue?”;
ans = getche();
getch();
clrscr();

} while (ans == 'Y' || ans == 'y');
getch();

}

Tuesday, April 07, 2015 Data Structure 5

void Push(int Item, node **top) {
node *New;
node * get_node(int);
New = get_node(Item);
New->next = *top;
*top = New;

}

node * get_node(int item) {
node * temp;
temp = (node *) malloc(sizeof(node));
if (temp == NULL)

cout<<"\nMemory Cannot be allocated”;
temp->data = item;
temp->next = NULL;
return (temp);

}
Tuesday, April 07, 2015 Data Structure 6

4/7/2015

4

int Sempty(node *temp) {
if (temp == NULL)

return 1;
else

return 0;
}

int Pop(node **top) {
int item;
node *temp;
item = (*top)->data;
temp = *top;
*top = (*top)->next;
free(temp);
return (item);

}

Tuesday, April 07, 2015 Data Structure 7

void Display(node **head) {
node *temp;
temp = *head;
if (Sempty(temp))

cout<<"\nThe stack is empty!”;
else {

while (temp != NULL) {
cout<<"%d\n", temp->data;
temp = temp->next;

}
}
getch();

}

Tuesday, April 07, 2015 Data Structure 8

4/7/2015

5

Effects

Tuesday, April 07, 2015 Data Structure 9

Applications
• Many application areas use stacks:

– line editing

– bracket matching

– postfix calculation

– function call stack

Tuesday, April 07, 2015 Data Structure 10

4/7/2015

6

Line Editing
• A line editor would place characters read into a

buffer but may use a backspace symbol (denoted by
←) to do error correction

• Refined Task
– read in a line
– correct the errors via backspace
– print the corrected line in reverse

Tuesday, April 07, 2015 Data Structure 11

Input :

Corrected Input :

Reversed Output :

abc_defgh ←2klpqr ←←wxyz

abc_defg2klpwxyz

zyxwplk2gfed_cba

The Procedure
• Initialize a new stack

• For each character read:

– if it is a backspace, pop out last char

entered

– if not a backspace, push the char into

stack

• To print in reverse, pop out each char for

output

Tuesday, April 07, 2015 Data Structure 12

Input : fgh ←r ←←yz

Corrected Input :

Reversed Output :

fyz

zyf Stack

f

g

hr

y

z

4/7/2015

7

Bracket Matching Problem
• Ensures that pairs of brackets are properly matched

Tuesday, April 07, 2015 Data Structure 13

• An Example: {a,(b+f[4])*3,d+f[5]}

• Bad Examples:

(..)..) // too many closing brackets

(..(..) // too many open brackets

[..(..]..) // mismatched brackets

Informal Procedure
Initialize the stack to empty
For every char read

if open bracket then push onto stack
if close bracket, then

return & remove most recent item

from the stack
if doesn’t match then flag error

if non-bracket, skip the char read

Tuesday, April 07, 2015 Data Structure 14

Example

{a,(b+f[4])*3,d+f[5]}

Stack

{

(

[

)

}

]

[]

4/7/2015

8

Postfix Calculator
• Computation of arithmetic expressions can be efficiently

carried out in Postfix notation with the help of a stack.

Infix - arg1 op arg2

Prefix - op arg1 arg2

Postfix - arg1 arg2 op

Tuesday, April 07, 2015 Data Structure 15

(2*3)+4

2*(3+4) 2 3 4 + *

2*3+4

infix
2 3 * 4 +

postfix

Informal Procedure
Initialise stack S

For each item read.

If it is an operand,

push on the stack

If it is an operator,

pop arguments from stack;

perform operation;

push result onto the stack

Tuesday, April 07, 2015 Data Structure 16

2

3

4

Stack

Expr

2

3
4

+

*

push(S, 2)
push(S, 3)
push(S, 4)

arg2=topAndPop(S)
arg1=topAndPop(S)
push(S, arg1+arg2)
arg2=topAndPop(S)
arg1=topAndPop(S)
push(S, arg1*arg2)

3+4=7

2*7=14

4/18/2015

1

Lecture Fourteen
Infix, Prefix and Postfix

Expressions

Algebraic Expression
An algebraic expression is a legal combination of
operands and the operators.
Operand is the quantity (unit of data) on which a
mathematical operation is performed.
Operand may be a variable like x, y, z or a
constant like 5, 4,0,9,1 etc.
Operator is a symbol which signifies a
mathematical or logical operation between the
operands. Example of familiar operators include
+,-,*, /, ^
An example of expression as x+y*z.

Saturday, April 18, 2015 Data Structure 2

4/18/2015

2

Infix, Postfix and Prefix Expressions

INFIX: the expressions in which operands surround the
operator, e.g. x+y, 6*3 etc this way of writing the
Expressions is called infix notation.

POSTFIX: Postfix notation are also Known as Reverse
Polish Notation (RPN). They are different from the infix
and prefix notations in the sense that in the postfix
notation, operator comes after the operands, e.g. xy+,
xyz+* etc.

PREFIX: Prefix notation also Known as Polish notation.
In the prefix notation, operator comes before the
operands, e.g. +xy, *+xyz etc.

Saturday, April 18, 2015 Data Structure 3

Operator Priorities

Saturday, April 18, 2015 Data Structure 4

How do you figure out the operands of an
operator?

• a + b * c
• a * b + c / d

This is done by assigning operator priorities.
• priority(*) = priority(/) > priority(+) = priority(-)

When an operand lies between two operators,
the operand associates with the operator that has
higher priority.

4/18/2015

3

Tie Breaker

Saturday, April 18, 2015 Data Structure 5

When an operand lies between two
operators that have the same priority, the
operand associates with the operator on the
left.
• a + b - c
• a * b / c / d

Delimiters

Saturday, April 18, 2015 Data Structure 6

Sub expression within delimiters is treated as a
single operand, independent from the remainder of
the expression.
• (a + b) * (c – d) / (e – f)

4/18/2015

4

WHY??

Why to use PREFIX and POSTFIX notations when we
have simple INFIX notation?

INFIX notations are not as simple as they seem specially
while evaluating them. To evaluate an infix expression
we need to consider Operators’ Priority and Associative
property
• E.g. expression 3+5*4 evaluate to 32 i.e. (3+5)*4 or

to 23 i.e. 3+(5*4).

To solve this problem Precedence or Priority of the
operators were defined. Operator precedence governs
evaluation order. An operator with higher precedence is
applied before an operator with lower precedence.

Saturday, April 18, 2015 Data Structure 7

Infix Expression is Hard To Parse

Saturday, April 18, 2015 Data Structure 8

Need operator priorities, tie breaker, and delimiters.
This makes computer evaluation more difficult than is
necessary.
Postfix and prefix expression forms do not rely on operator
priorities, a tie breaker, or delimiters.
Both prefix and postfix notations have an advantage over
infix that while evaluating an expression in prefix or postfix
form we need not consider the Priority and Associative
property (order of brackets).
• E.g. x/y*z becomes */xyz in prefix and xy/z* in postfix.

Both prefix and postfix notations make Expression
Evaluation a lot easier.

So it is easier to evaluate expressions that are in these
forms.

4/18/2015

5

Examples of infix to prefix and post fix

Saturday, April 18, 2015 Data Structure 9

Infix Postfix Prefix

A+B AB+ +AB

(A+B) * (C + D) AB+CD+* *+AB+CD

A-B/(C*D^E) ABCDE^*/- -A/B*C^DE

Example: postfix expressions

Postfix notation is another way of writing arithmetic
expressions.

In postfix notation, the operator is written after the
two operands.

• infix: 2+5 postfix: 2 5 +

Expressions are evaluated from left to right.

Precedence rules and parentheses are never
needed!!

Saturday, April 18, 2015 Data Structure 10

4/18/2015

6

Suppose that we would like to rewrite
A+B*C in postfix

Applying the rules of precedence, we obtained

A+B*C

A+(B*C) Parentheses for emphasis

A+(BC*) Convert the multiplication,Let D=BC*

A+D Convert the addition

A(D)+

ABC*+ Postfix Form

Saturday, April 18, 2015 Data Structure 11

Postfix Examples

Saturday, April 18, 2015 Data Structure 12

InfixInfix PostfixPostfix EvaluationEvaluation

2 2 -- 3 * 4 + 53 * 4 + 5 2 3 4 * 2 3 4 * -- 5 +5 + --55

(2 (2 -- 3) * (4 + 5)3) * (4 + 5) 2 3 2 3 -- 4 5 + *4 5 + * --99

22-- (3 * 4 +5)(3 * 4 +5) 2 3 4 * 5 + 2 3 4 * 5 + -- --1515

Why ? No brackets necessary !

4/18/2015

7

Algorithm for Infix to Postfix
Examine the next element in the input.
If it is operand, output it.
If it is opening parenthesis, push it on stack.
If it is an operator, then

i) If stack is empty, push operator on stack.
ii) If the top of stack is opening parenthesis, push operator on

stack
iii) If it has higher priority than the top of stack, push operator on

stack.
iv) Else pop the operator from the stack and output it, repeat

step 4
If it is a closing parenthesis, pop operators from stack and output
them until an opening parenthesis is encountered. pop and discard
the opening parenthesis.
If there is more input go to step 1
If there is no more input, pop the remaining operators to output.

Saturday, April 18, 2015 Data Structure 13

Suppose we want to convert 2*3/(2-1)+5*3 into Postfix form,

22 EmptyEmpty 22

** ** 22

33 ** 2323

// // 23*23*

((/(/(23*23*

22 /(/(23*223*2

-- /(/(-- 23*223*2

11 /(/(-- 23*2123*21

)) // 23*2123*21--

++ ++ 23*2123*21--//

55 ++ 23*2123*21--/5/5

33 +*+* 23*2123*21--/53/53

ExpressionExpression StackStack OutputOutput

** +*+* 23*2123*21--/53/53

EmptyEmpty 23*2123*21--/53*+/53*+

Saturday, April 18, 2015 Data Structure 14

4/18/2015

8

Example

(5 + 6) * 9 +10
will be

5 6 + 9 * 10 +

Saturday, April 18, 2015 Data Structure 15

Evaluation a postfix expression

Each operator in a postfix string refers to the
previous two operands in the string.
Suppose that each time we read an operand
we push it into a stack. When we reach an
operator, its operands will then be top two
elements on the stack
We can then pop these two elements, perform
the indicated operation on them, and push the
result on the stack.
So that it will be available for use as an
operand of the next operator.

Saturday, April 18, 2015 Data Structure 16

4/18/2015

9

Evaluating Postfix Notation

Use a stack to evaluate an expression in postfix
notation.
The postfix expression to be evaluated is
scanned from left to right.
Variables or constants are pushed onto the stack.
When an operator is encountered, the indicated
action is performed using the top elements of the
stack, and the result replaces the operands on
the stack.

Saturday, April 18, 2015 Data Structure 17

Evaluating a postfix expression

Initialise an empty stack
While token remain in the input stream

• Read next token
• If token is a number, push it into the stack
• Else, if token is an operator, pop top two tokens off the

stack, apply the operator, and push the answer back
into the stack

Pop the answer off the stack.

Saturday, April 18, 2015 Data Structure 18

4/18/2015

10

Example: Postfix Expressions

Saturday, April 18, 2015 Data Structure 19

Postfix expressions:
Algorithm using stacks (cont.)

Saturday, April 18, 2015 Data Structure 20

4/18/2015

11

Algorithm for evaluating a postfix
expression (Cond.)

WHILE more input items exist
{

If symb is an operand

then push (opndstk,symb)

else //symbol is an operator

{

Opnd1=pop(opndstk);

Opnd2=pop(opndnstk);

Value = result of applying symb to opnd1 & opnd2

Push(opndstk,value);

} //End of else

} // end while

Result = pop (opndstk);

Saturday, April 18, 2015 Data Structure 21

Question : Evaluate the following
expression in postfix :

623+-382/+*2^3+

Final answer is
• 49
• 51
• 52
• 7
• None of these

Saturday, April 18, 2015 Data Structure 22

4/18/2015

12

Evaluate- 623+-382/+*2^3+

Symbol opnd1 opnd2 value opndstk
6 6
2 6,2
3 6,2,3
+ 2 3 5 6,5
- 6 5 1 1
3 6 5 1 1,3

Saturday, April 18, 2015 Data Structure 23

Evaluate- 623+-382/+*2^3+

Symbol opnd1 opnd2 value opndstk
8 6 5 1 1,3,8
2 6 5 1 1,3,8,2
/ 8 2 4 1,3,4
+ 3 4 7

1,7
* 1 7 7 7
2 1 7 7 7,2
^ 7 2 49 49
3 7 2 49 49,3
+ 49 3 52 52

Saturday, April 18, 2015 Data Structure 24

4/18/2015

13

Evaluating a Postfix Expression in
C++

#include "stackd.h"
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#define MAX_SIZE_EXPRESSION 100
int main(void);
int evaluate_postfix(char *expression,
double *result);
int evaluate_operator(int operator_symbol,
double first_operand, double second_operand,
double *result);

Saturday, April 18, 2015 Data Structure 25

Evaluating a Postfix Expression in
C++

#include "stackd.h"
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#define MAX_SIZE_EXPRESSION 100
int main(void);
int evaluate_postfix(char *expression,
double *result);
int evaluate_operator(int operator_symbol,
double first_operand, double second_operand,
double *result);

Saturday, April 18, 2015 Data Structure 26

4/18/2015

14

Evaluating a Postfix Expression in
C++

int main(void)
{
char expression[MAX_SIZE_EXPRESSION];
int position = 0;
double value;
do
{
expression[position] = getchar();
position++;
} while (expression[position - 1] != '\n'
&& position < MAX_SIZE_EXPRESSION);

Saturday, April 18, 2015 Data Structure 27

Evaluating a Postfix Expression in
C++

expression[position - 1] = '\0';
if (!evaluate_postfix(expresssion, &value))
{
return 1;
}
printf("Expression \"%s\" evaluates to %g.\n",
expresssion, value);
return 0;
}

Saturday, April 18, 2015 Data Structure 28

4/18/2015

15

Evaluating a Postfix Expression in
C++

int evaluate_postfix(char *expression,
double *result)
{
int position;
stackd operand_stack;
static char *digits = "0123456789";
assert(NULL != result && NULL != expression);
if (!stackd_init(&operand_stack, 0))
return FALSE;

Saturday, April 18, 2015 Data Structure 29

Evaluating a Postfix Expression in
C++

for (position = 0;
'\0' != expression[position]; position++)
{
if (NULL !=
strchr(digits, expression[position]))
{
if (!stackd_push(&operand_stack,
(double)(strchr(digits,
expression[position]) - &digits[0])))
break;
}

Saturday, April 18, 2015 Data Structure 30

4/18/2015

16

Evaluating a Postfix Expression in
C++

else
{
double first_operand, second_operand;
double value;
if (stackd_empty(&operand_stack))
break;
second_operand =
stackd_pop(&operand_stack);
if (stackd_empty(&operand_stack))
break;
first_operand =
stackd_pop(&operand_stack);

Saturday, April 18, 2015 Data Structure 31

Evaluating a Postfix Expression in
C++

if (!evaluate_operator(
expression[position], first_operand,
second_operand, &value))
break;
if (!stackd_push(&operand_stack, value))
break;
} /* end else */
} /* end for */

Saturday, April 18, 2015 Data Structure 32

4/18/2015

17

Evaluating a Postfix Expression
in C++

if ('\0' != expression[position]
|| stackd_empty(&operand_stack))
{
printf("syntax error.\n");
stackd_deinit(&operand_stack);
return FALSE;
}
*result = stackd_pop(&operand_stack);

Saturday, April 18, 2015 Data Structure 33

Evaluating a Postfix Expression
in C++

int evaluate_operator(int operator_symbol,
double first_operand, double second_operand,
double *result)
{
assert(NULL != result);
switch (operator_symbol)
{
case '+':
*result = first_operand + second_operand;
return TRUE;

Saturday, April 18, 2015 Data Structure 34

4/18/2015

18

Evaluating
a Postfix

Expression in C++

case '-':

*result = first_operand - second_operand;

return TRUE;

case '*':

*result = first_operand * second_operand;

return TRUE;

case '/':

if (0.0 == second_operand)

{

return FALSE;

}

else

{

*result = first_operand

/ second_operand;

return TRUE;

}
Saturday, April 18, 2015 Data Structure 35

Evaluating a Postfix Expression
in C++

case ' '̂:
if (first_operand <= 0.0)
{
return FALSE;
}
else
{
*result = pow(first_operand,
second_operand);
return TRUE;
}

Saturday, April 18, 2015 Data Structure 36

4/18/2015

19

Evaluating a Postfix Expression
in C++

default:
return FALSE;
} /* end switch */
return FALSE; /* unreachable code */
}

Saturday, April 18, 2015 Data Structure 37

4/20/2015

1

Lecture Fifteen
Tree and Binary Search Tree

Definition of Tree

A tree is a finite set of one or more nodes
such that:
• There is a specially designated node called

the root.
• The remaining nodes are partitioned into

n>=0 disjoint sets T1, ..., Tn, where each of
these sets is a tree.

• We call T1, ..., Tn the subtrees of the root.

Monday, April 20, 2015 Data Structure 2

4/20/2015

2

Level and Depth

K L

E F

B

G

C

M

H I J

D

A

Level

1

2

3

4

node (13)
degree of a node
leaf (terminal)
Non terminal
parent
children
sibling
degree of a tree (3)
ancestor
level of a node
height of a tree (4)

3

2 1 3

2 0 0 1 0 0

0 0 0

1

2 2 2

3 3 3 3 3 3

4 4 4

Monday, April 20, 2015 Data Structure 3

Terminology
The degree of a node is the number of subtrees
of the node
• The degree of A is 3; the degree of C is 1.

The node with degree 0 is a leaf or terminal
node.
A node that has subtrees is the parent of the
roots of the subtrees.
The roots of these subtrees are the children of
the node.
Children of the same parent are siblings.
The ancestors of a node are all the nodes
along the path from the root to the node.

Monday, April 20, 2015 Data Structure 4

4/20/2015

3

Representation of Trees

Monday, April 20, 2015 Data Structure 5

List Representation
• (A (B (E (K, L), F), C (G), D (H (M), I, J)))
• The root comes first, followed by a list of sub-trees

data link 1 link 2 ... link n

How many link fields are

needed in such a representation?

Left Child - Right Sibling

Monday, April 20, 2015 Data Structure 6

A

B C D

E F G H I J

K L M

data

left child right sibling

4/20/2015

4

Binary Trees
A binary tree is a finite set of nodes that is
either empty or consists of a root and two
disjoint binary trees called the left subtree
and the right subtree.
Any tree can be transformed into binary tree.

• by left child-right sibling representation

The left subtree and the right subtree are
distinguished.

Monday, April 20, 2015 Data Structure 7

J

IM

H
L

A

B

C

D

E

F GK

Left child-right child tree representation of a tree

Monday, April 20, 2015 Data Structure 8

4/20/2015

5

Binary Search Trees
Examples

Monday, April 20, 2015 Data Structure 9

Binary search

trees

Not a binary

search tree

5

10

30

2 25 45

5

10

45

2 25 30

5

10

30

2

25

45

Example Binary Searches
Find (root, 2)

Monday, April 20, 2015 Data Structure 10

5

10

30

2 25 45

5

10

30

2

25

4510 > 2, left

5 > 2, left

2 = 2, found

5 > 2, left

2 = 2, found

root

4/20/2015

6

Example Binary Searches
Find (root, 25)

Monday, April 20, 2015 Data Structure 11

5

10

30

2 25 45

5

10

30

2

25

45

10 < 25, right

30 > 25, left

25 = 25, found

5 < 25, right

45 > 25, left

30 > 25, left

10 < 25, right

25 = 25, found

Example Insertion
Insert (20)

Monday, April 20, 2015 Data Structure 12

5

10

30

2 25 45

10 < 20, right

30 > 20, left

25 > 20, left

Insert 20 on left

20

4/20/2015

7

Example Deletion (Leaf)

Delete (25)

Monday, April 20, 2015 Data Structure 13

5

10

30

2 25 45

10 < 25, right

30 > 25, left

25 = 25, delete

5

10

30

2 45

Example Deletion (Internal
Node)

Delete (10)

Monday, April 20, 2015 Data Structure 14

5

10

30

2 25 45

5

5

30

2 25 45

2

5

30

2 25 45

Replacing 10

with largest

value in left

subtree

Replacing 5 with

largest value in

left subtree

Deleting leaf

4/20/2015

8

Example Deletion (Internal
Node)

Delete (10)

Monday, April 20, 2015 Data Structure 15

5

10

30

2 25 45

5

25

30

2 25 45

5

25

30

2 45

Replacing 10

with smallest

value in right

subtree

Deleting leaf Resulting tree

Linked Representation
typedef struct node *tree_pointer;

typedef struct node {

int data;

tree_pointer left_child, right_child;

};

dataleft_child right_child

data

left_child right_child

Monday, April 20, 2015 Data Structure 16

4/20/2015

9

Binary Tree Traversals
Let L, V, and R stand for moving left, visiting
the node, and moving right.
There are six possible combinations of traversal
• LVR, LRV, VLR, VRL, RVL, RLV

Adopt convention that we traverse left before
right, only 3 traversals remain
• LVR, LRV, VLR
• inorder, postorder, preorder

Monday, April 20, 2015 Data Structure 17

Parse Trees
Expressions, programs, etc can be represented
by tree structures
• E.g. Arithmetic Expression Tree
• A-(C/5 * 2) + (D*5 % 4)

Monday, April 20, 2015 Data Structure 18

+

- %

A * * 4

/ 2 D 5

C 5

Output preorder: + - A * / C 5 2 % * D 5 4

Output postorder: A C 5 / 2 * - D 5 * 4 % +

4/20/2015

10

Arithmetic Expression Using BT

+

*

A

*

/

E

D

C

B

inorder traversal

A / B * C * D + E

infix expression

preorder traversal

+ * * / A B C D E

prefix expression

postorder traversal

A B / C * D * E +

postfix expression

level order traversal

+ * E * D / C A B

Monday, April 20, 2015 Data Structure 19

Inorder Traversal

void inorder(tree_pointer ptr)

/* inorder tree traversal */

{

if (ptr) {

inorder(ptr->left_child);

cout<<ptr->data;

indorder(ptr-
>right_child);

}

}

A / B * C * D + E

Monday, April 20, 2015 Data Structure 20

4/20/2015

11

Preorder Traversal
void preorder(tree_pointer ptr)

/* preorder tree traversal */

{

if (ptr) {

cout<<ptr->data;

preorder(ptr->left_child);

predorder(ptr->right_child);

}

}

+ * * / A B C D E

Monday, April 20, 2015 Data Structure 21

Postorder Traversal

void postorder(tree_pointer ptr)

/* postorder tree traversal */

{

if (ptr) {

postorder(ptr->left_child);

postdorder(ptr->right_child);

cout<<ptr->data;

}

}

A B / C * D * E +

Monday, April 20, 2015 Data Structure 22

4/20/2015

12

Trace Operations of Inorder Traversal
Call of inorder Value in root Action Call of inorder Value in root Action
1 + 11 C
2 * 12 NULL
3 * 11 C cout
4 / 13 NULL
5 A 2 * cout
6 NULL 14 D
5 A cout 15 NULL
7 NULL 14 D cout
4 / cout 16 NULL
8 B 1 + cout
9 NULL 17 E
8 B cout 18 NULL
10 NULL 17 E cout
3 * cout 19 NULL

Monday, April 20, 2015 Data Structure 23

Insert Node in Binary Search
Tree

30

5 40

2

30

5 40

2 35 80

30

5 40

2 80

Insert 80 Insert 35

Monday, April 20, 2015 Data Structure 24

4/20/2015

13

Deletion for A Binary Search
Tree

40

20 60

10 30 50 70

45 55

52

40

20 55

10 30 50 70

45 52

Before deleting 60 After deleting 60

non-leaf

node

Monday, April 20, 2015 Data Structure 25

typedef struct BST {

int data;

struct BST *lchild, *rchild;

} node;

void insert(node *, node *);

void inorder(node *);

void preorder(node *);

void postorder(node *);

node *search(node *, int, node **);

void main() {

int choice;

char ans = 'N';

int key;

node *new_node, *root, *tmp, *parent;

node *get_node();

root = NULL;

clrscr(); cout<<"\nProgram For Binary Search Tree “;

Monday, April 20, 2015 Data Structure 26

Inorder, Preorder
and Postorder

Program in C++

4/20/2015

14

do {

cout<<"\n1.Create”;

cout<<"\n2.Search”;

cout<<"\n3.Recursive Traversals”;

cout<<"\n4.Exit”;

cout<<"\nEnter your choice :;

cin>>"%d", &choice;

switch (choice) {

case 1: do {

new_node = get_node();

cout<<"\nEnter The Element “;

cin>>"%d", &new_node->data;

if (root == NULL) /* Tree is not Created */

root = new_node;

else

insert(root, new_node);

cout<<"\nWant To enter More Elements?(y/n)”;

ans = getch();

} while (ans == 'y'); break;

Monday, April 20, 2015 Data Structure 27

case 2:

cout<<"\nEnter Element to be searched :”;

cin>>"%d", &key;

tmp = search(root, key, &parent);

cout<<"\nParent of node %d is %d", tmp->data, parent->data;

break;

case 3:

if (root == NULL)

cout<<"Tree Is Not Created”;

else {

cout<<"\nThe Inorder display : “;

inorder(root);

cout<<"\nThe Preorder display : “;

preorder(root);

cout<<"\nThe Postorder display : “;

postorder(root);

}

break; }

} while (choice != 4); }

Monday, April 20, 2015 Data Structure 28

4/20/2015

15

/* Get new Node*/

node *get_node() {

node *temp;

temp = (node *) malloc(sizeof(node));

temp->lchild = NULL;

temp->rchild = NULL;

return temp;

}
Monday, April 20, 2015 Data Structure 29

/* This function is for creating a binary search tree */

void insert(node *root, node *new_node) {

if (new_node->data < root->data) {

if (root->lchild == NULL)

root->lchild = new_node;

else

insert(root->lchild, new_node);

}

if (new_node->data > root->data) {

if (root->rchild == NULL)

root->rchild = new_node;

else

insert(root->rchild, new_node);

} }
Monday, April 20, 2015 Data Structure 30

4/20/2015

16

/* This function is for searching the node from binary Search Tree */

node *search(node *root, int key, node **parent) {

node *temp;

temp = root;

while (temp != NULL) {

if (temp->data == key) {

cout<<"\nThe %d Element is Present", temp->data;

return temp; }

*parent = temp;

if (temp->data > key)

temp = temp->lchild;

else

temp = temp->rchild; }

return NULL;

}
Monday, April 20, 2015 Data Structure 31

/* This function displays the tree in inorder

fashion */

void inorder(node *temp) {

if (temp != NULL) {

inorder(temp->lchild);

cout<<"%d", temp->data;

inorder(temp->rchild);

} }

Monday, April 20, 2015 Data Structure 32

4/20/2015

17

/*This function displays the tree in

preorder fashion */

void preorder(node *temp) {

if (temp != NULL) {

cout<<temp->data;

preorder(temp->lchild);

preorder(temp->rchild);

} }
Monday, April 20, 2015 Data Structure 33

/* This function displays the tree in

postorder fashion */

void postorder(node *temp) {

if (temp != NULL) {

postorder(temp->lchild);

postorder(temp->rchild);

cout<<temp->data;

} }
Monday, April 20, 2015 Data Structure 34

	Lecture 1-Introduction to Computer Architecture
	Lecture 2-Declaration and Variables
	Lecture 3-Flow Control and Booleans
	Lecture 4-Loops and Repetition
	Lecture 5-Arrays
	Lecture 5-Functions
	Lecture 6-Functions
	Lecture 8-Struct
	Lecture 8-Stacks
	Lecture 9-Queues
	Lecture 11-Linked List
	Lecture 13-Queue Implmentation by Linked List
	Lecture 12-Stack Implmentation by Linked List
	Lecture 14-Infix, Postfix and Prefix Expressions
	Lecture 15-Trees

