
Operating-System Structures

 Operating System Services

 User Operating System Interface

 System Calls

 Types of System Calls

 System Programs

 Operating System Design and Implementation

 Operating System Structure

 Operating System Debugging

 System Boot

Objectives

 To describe the services an operating system provides to users, processes, and other

systems

 To discuss the various ways of structuring an operating system

 To explain how operating systems are installed and customized and how they boot

2.1 Operating System Services

Operating systems provide an environment for execution of programs and

services to programs and users.

Figure 2.1 A view of operating system services.

One set of operating-system services provides functions that are helpful to the user:

 User interface - Almost all operating systems have a user interface (UI).

 Varies between Command-Line (CLI), Graphics User Interface

(GUI), Batch interface.

 Program execution - The system must be able to load a program into

memory and to run that program, end execution, either normally or

abnormally (indicating an error)

 I/O operations - A running program may require I/O, which may involve

a file or an I/O device. For specific devices, special functions may be

desired (such as recording to a CD or DVD drive or blanking a display

screen).

 File-system manipulation - The file system is of particular interest.

Programs need to read and write files and directories, create and delete

them, search them, list file Information, permission management.

 Communications – Processes may exchange information, on the same

computer or between computers over a network

 Communications may be via shared memory or through message

passing (packets moved by the OS)

 Error detection – The operating system needs to be detecting and

correcting errors constantly (باسحمرار)

 May occur in the CPU and memory hardware, in I/O devices, in user

program

 For each type of error, OS should take the appropriate action to ensure

correct and consistent computing

 Debugging facilities can greatly enhance the user’s and programmer’s

abilities to efficiently use the system.

Another set of operating system functions exists not for helping the user, but rather for

ensuring the efficient operation of the system itself. Systems with multiple users can gain

efficiency by sharing the computer resources among the users

 Resource allocation - When there are multiple users or multiple jobs

running concurrently (واحد وقت في), resources must be allocated to each of

them

 Many types of resources - CPU cycles, main memory, file storage,

I/O devices.

For instance, in determining how best to use the CPU, operating systems have

CPU-scheduling routines that take into account the speed of the CPU, the jobs

that must be executed, the number of registers available, and other factors.

 Accounting - To keep track of which users use how much and what kinds

of computer resources

 Protection and security - The owners of information stored in a multiuser

or networked computer system may want to control the use of that

information. When several separate processes execute concurrently, it

should not be possible for one process to interfere with the others or with

the operating system.

 Protection involves ensuring that all access to system resources is

controlled.

 Security of the system from outsiders is also important. Such security

starts with requiring each user to authenticate himself or herself to the

system, usually by means of a password, to gain access to system

resources.

2.2 User Operating System Interface

We mentioned earlier that there are several ways for users to interface with the

operating system. Here, we discuss two fundamental approaches. One provides a

command-line interface, or command interpreter, that allows users to directly enter

commands to be performed by the operating system. The other allows users to

interface with the operating system via a graphical user interface, or GUI.

2.2.1 CLI or command interpreter

Some operating systems include the command interpreter in the kernel. Others,

such as Windows and UNIX, treat the command interpreter as a special program that

is running when a job is initiated or when a user first logs on (on interactive systems).

For example, on UNIX and Linux systems, a user may choose among several

different ways.

The main function of the command interpreter is to get and execute the next

user-specified command. Many of the commands given at this level manipulate files:

create, delete, list, print, copy, execute, and so on. The MS-DOS and UNIX shells

operate in this way.

2.2.2 Graphical User Interfaces GUI

A second strategy for interfacing with the operating system is through a user-friendly

graphical user interface, or GUI. Here, rather than entering commands directly via a

command-line interface

 User-friendly desktop metaphor (اسحعاره)interface

 Usually mouse, keyboard, and monitor

 Icons represent files, programs, actions, etc.

 Various mouse buttons over objects in the interface cause various actions

(provide information, options, execute function, open directory (known as a

folder).

Touchscreen Interfaces

Because a mouse is impractical for most mobile systems, smartphones and

handheld tablet computers typically use a touchscreen interface. Here, users interact

by making gestures(ايماءات) on the touchscreen—for example, pressing and swiping

fingers across the screen. Figure 2.2 illustrates the touchscreen of the Apple iPad.

Whereas earlier smartphones included a physical keyboard, most smartphones now

simulate a keyboard on the touchscreen.

Figure 2.2 The iPad touchscreen.

2.2.3 Choice of Interface

The choice of whether to use a command-line or GUI interface is mostly one of

personal preference. System administrators who manage computers and power users who

have deep knowledge of a system frequently use the command-line interface. For them, it is

more efficient, giving them faster access to the activities they need to perform

 Many systems now include both CLI and GUI interfaces

 Microsoft Windows is GUI with CLI ―command‖ shell

 Apple Mac OS X is ―Aqua‖ GUI interface with UNIX kernel underneath

 and shells available(جحث)

 Unix and Linux have CLI with optional GUI interfaces (CDE, KDE, GNOME).

Figure 2.3 The Mac OS X GUI.

2.3 System Call

System calls provide an interface to the services made available by an operating

system. These calls are generally available as routines written in C and C++, although

certain low-level tasks (for example, tasks where hardware must be accessed directly) may

have to be written using assembly-language instructions.

Example to illustrate how system calls are used:

―Writing a simple program to read data from one file and copy them to another

file‖.

 The first input that the program will need is the names of the two files: the input file

and the output file. These names can be specified in many ways, depending on the

operating-system design. One approach is for the program to ask the user for the

names. In an interactive system, this approach will require a sequence of system

calls, first to write a prompting message on the screen and then to read from the

keyboard the characters that define the two files. On mouse-based and icon-based

systems, a menu of file names is usually displayed in a window. The user can then

use the mouse to select the source name, and a window can be opened for the

destination name to be specified. This sequence requires many I/O system calls.

 Once the two file names have been obtained, the program must open the input file

and create the output file.

 Each of these operations requires another system call. Possible error conditions for

each operation can require additional system calls. When the program tries to open the

input file, for example, it may find that there is no file of that name or that the file is

protected against access. In these cases, the program should print a message on the console

(another sequence of system calls) and then terminate abnormally (another system call).

If the input file exists, then we must create a new output file. We may find that there is

already an output file with the same name. This situation may cause the program to abort (a

system call), or we may delete the existing file (another system call) and create a new one

(yet another system call).

Another option, in an interactive system, is to ask the user (via a sequence of system

calls to output the prompting message and to read the response from the terminal) whether

to replace the existing file or to abort the program.

 When both files are set up, we enter a loop that reads from the input file (a system

call) and writes to the output file (another system call). Each read and write must

return status information regarding various possible error conditions. On input, the

program may find that the end of the file has been reached or that there was a

hardware failure in the read (such as a parity error). The write operation may

encounter various errors, depending on the output device (for example, no more

disk space). Finally, after the entire file is copied, the program may close both files

(another system call), write a message to the console or window (more system

calls), and finally terminate normally (the final system call). This system-call

sequence is shown in Figure 2.4.

Figure 2.4 Example of how system calls are used.

From the example you can see:

 Even simple programs may make heavy use of the operating system.

 Systems execute thousands of system calls per second.

Most programmers never see this level of detail. Typically, application developers,

design programs according to an application programming interface (API). The API

specifies a set of functions that are available to an application programmer, including the

parameters that are passed to each function and the return values the programmer can

expect.

Three of the most common APIs available to application programmers are:

 The Windows API for Windows systems.

 The POSIX API for POSIX-based systems (which include virtually all versions of

UNIX, Linux, and Mac OSX), and

 The Java API for programs that run on the Java virtual machine.

2.4 Types of System Calls

System calls can be grouped roughly into six major categories:

1. Process control, A running program need to be able to:

 Create a process, terminate process

 End, abort

 Load, execute

 Get process attributes, set process attributes

 Wait for a time

 Wait event, signal event

 Allocate and free memory

2. File management, We can identify several common system calls dealing with files.

 Create a file, delete file

 Open, close file

 Read, write, reposition

 Get and set file attributes

3. Device management, A process may need several resources to execute—main

memory, disk drives, access to files, and so on. If the resources are available, they

can be granted, and control can be returned to the user process. Otherwise, the

process will have to wait until sufficient resources are available.

4. Information maintenance, Many system calls exist simply for the purpose of

transferring information between the user program and the operating system.

 Get time or date, set time or date

 Get system data, set system data

 Get and set process, file, or device attributes

5. Communications

There are two common models of interprocess communication: the messagepassing

 model and the shared-memory model.

 Create, delete communication connection

 Send, receive messages

 Transfer status information

 Attach and detach remote devices

6. Protection

The protection provides a mechanism for controlling access to the resources provided

by a computer system. Historically, protection was a concern only on multiprogrammed

computer systems with several users. However, with the advent(مجيء) of networking

and the Internet, all computer systems, from servers to mobile handheld devices, must

be concerned with the protection.

 Control access to resources

 Get and set permissions

 Allow and deny user access

2.5 System Programs

Another aspect of a modern system is the collection of system programs. System

programs, also known as system utilities, provide a convenient environment for program

development and execution. Some of them are simply user interfaces to system calls. Others

are considerably more complex. They can be divided into these categories:

 File management: These programs create, delete, copy, rename, print, dump, list, and

generally manipulate files and directories.

 Status information: Some programs simply ask the system for the date, time, amount

of available memory or disk space, number of users, or similar status information.

 File modification: Several text editors may be available to create and modify the

content of files stored on disk or other storage devices.

 Programming-language support: Compilers, assemblers, debuggers and interpreters

for common programming languages (such as C, C++, Java, Visual Basic, and PERL)

are often provided to the user with the operating system.

 Program loading and execution: Once a program is assembled or compiled, it must be

loaded into memory to be executed. The system may provide absolute loaders,

re-locatable loaders, linkage editors, and overlay loaders.

 Communications: These programs provide the mechanism for creating virtual

connections among processes, users, and computer systems. They allow users to send

messages to one another's screens, to browse web pages, to send electronic-mail

messages, to log in remotely, or to transfer files from one machine to another.

Along with system programs, most operating systems are supplied with programs that are

useful in solving common problems or performing common operations. Such application

programs include Web browsers, word processors and text formatters, spreadsheets, database

systems, compilers, plotting and statistical-analysis packages, and games.

2.6 Operating-System Design and Implementation

In this section, we discuss problems we face in designing and implementing an

operating system. There are, of course, no complete solutions to such problems, but there are

approaches that have proved successful.

2.6.1 Design Goals

Specifying and designing an operating system is a highly creative(ابداعي)task.The first

problem in designing a system is to define goals and specifications. At the highest level, the

design of the system will be affected(جحأثر) by the choice of hardware and the type of system:

batch, time sharing, single user, multiuser, distributed, real time, or general purpose. Beyond

this highest design level, the requirements may be much harder to specify. The requirements

can, however, be divided into two basic groups:

 User goals: operating system should be convenient to use, easy to learn, reliable, safe,

and fast

 System goals: operating system should be easy to design, implement, and maintain, as

well as flexible, reliable, error-free, and efficient.

2.6.2 Implementation

Operating systems are collections of many programs, written by many people over a

long period of time, because of this, it is difficult to make general statements about how they

are implemented.

 Early operating systems were written in assembly language.

 Then system programming languages like, Algol, PL/1.

 Now, although some operating systems are still written in assembly language, most are

written in a higher-level language such as C or C++.

Actually, an operating system can be written in more than one language.

 The lowest levels of the kernel might be assembly language.

 Main body in assembly.

 System programs in high level languages like, C, C++, Scripting languages like, PERL,

Python.

The Linux and Windows operating system kernels are written mostly in C, although

there are some small sections of assembly code for device drivers and for saving and

restoring the state of registers.

The advantages of using a higher-level language for implementing operating systems

are the same as those gained when the language is used for application programs: the code

can be written faster, is more compact, and is easier to understand and debug.

The only possible disadvantages of implementing an operating system in a

higher-level language are reduced speed and increased storage requirements.

2.7 Operating-System Structure

A system as large and complex, a modern operating system must be engineered

carefully to function properly(بشكل صحيح) and be modified easily. A common approach is to

partition the task into small components, or modules, rather than have one monolithic

system.

2.7.1 Simple Structure

Many operating systems do not have well-defined structures, such systems started as

small, simple, and limited systems and then grew beyond their original scope.

MS-DOS is an example of such a system. Figure 2.5 shows its structure.

 It was written to provide the most functionality in the least space.

 Not divided into modules.

 Although MS-DOS has some structure, its interfaces and levels of functionality are not

well separated

Figure 2.5 MS-DOS layer structure.

Another example of limited structuring is the original UNIX operating system. As

shown in Figure 2.6.

 UNIX is limited by hardware functionality.

 The UNIX OS had limited structuring It consists of two separable parts:

 The system programs.

 The kernel.

- Consists of everything below the system-call interface and above the physical

hardware.

- Provides the file system, CPU scheduling, memory management, and other

operating-system functions.

Figure 2.6 UNIX system structure.

2.7.2 Layered Approach

Operating systems can be broken into pieces that are smaller and more appropriate

than those allowed by the original MS-DOS and UNIX systems. The operating system can

then retain much greater control over the computer and over the applications that make use of

that computer. Implementers have more freedom in changing the inner workings of the

system and in creating modular operating systems.

A system can be made modular in many ways. One method is the layered approach,

in which the operating system is broken into a number of layers (levels). Figure 2.7.

 The bottom layer (layer 0) is the hardware;

 The highest (layer N) is the user interface.

 With modularity, layers are selected so that each uses functions (operations) and

services of only lower-level layers.

The main advantage of the layered approach is simplicity of construction and

debugging.

Figure 2.7 A layered operating system.

2.7.3 Microkernels

 This method structures the operating system by removing all nonessential components

from the kernel and implementing them as system and user-level programs. The result is

a smaller kernel.

 Microkernels provide minimal process and memory management, in addition to a

communication facility. Figure 2.8 illustrates the architecture of a typical microkernel.

 The main function of the microkernel is to provide communication between the client

program and the various services that are also running in user space.

 Communication takes place between user modules using message passing.

 Benefits:

- Easier to extend a microkernel.

- Easier to put the operating system to new architectures.

- More reliable (less code is running in kernel mode)

- More secure

Figure 2.8 Architecture of a typical Microkernel.

2.7.4 Modules

 Many modern operating systems implement loadable kernel modules. Figure 2.9.

 Uses the object oriented programming techniques to create a modular kernel.

 Each core component is separate Here, the kernel has a set of core components and

dynamically links in additional services either during boot time or during run time.

 Overall, similar to layers, but with more flexible.

 An example of such OS, Linux, Solaris, etc.

Figure 2.9 Solaris loadable modules

2.7.5 Hybrid Systems

Most modern operating systems are actually not one pure model

 Hybrid combines multiple approaches to address performance, security, usability

needs.

 Windows mostly monolithic(محراصة), plus microkernel for different subsystem

personalities.

 An examples of Hybird systems:

 Apple Mac OS X, and two prominent mobile operating system

 iOS

 Android

2.8 Operating-System Debugging

Debugging is the activity of finding and fixing errors or bugs in a system, both in

hardware and in software

2.8.1 Failure Analysis

 If a process fails, OS generate a log file containing error information to alert system

operators or users that the problem occurred.

 The operating system can also take a core dump(نفاية) - a capture of the memory of

the process - and store it in a file for later analysis. (Memory was referred to as the

―core‖ in the early days of computing.)

 A failure in the kernel is called a crash. When a crash occurs, the error information

is saved to a log file, and the memory state is saved to a crash dump.

 Operating-system debugging and process debugging frequently use different tools

and techniques due to the very different nature of these two tasks.

2.8.2 Performance Tuning

 The performance tuning (ضبط الاداء) seeks to improve performance by removing

processing bottlenecks. To identify bottlenecks, we must be able to monitor system

performance.

 The operating system must have some means of computing and displaying measures

of system behavior. In a number of systems, the operating system does this by

producing trace listings of system behavior.

 Another approach to performance tuning uses single-purpose interactive tools that

allow users and administrators to question the state of various system components to

look for bottlenecks.

- The Windows Task Manager is a similar tool for Windows systems. The task

manager includes information for current applications as well as processes,

CPU and memory usage, and networking statistics. A screen shot of the task

manager appears in Figure 2.10.

Figure 2.10 The Windows task manager

2.9 System boot

When power initialized on system, the OS must be made available for use by the

hardware. But how does the hardware know where the kernel is or how to load that kernel?

 The procedure of starting a computer by loading the kernel is known as booting the

system.

 The operating system must be made available to hardware, so hardware can start it

 On most computer systems, a small piece of code known as the bootstrap program or

bootstrap loader stored in ROM or EEPROM locates the kernel, loads it into main

memory, and starts its execution.

 This program is in the form of read-only memory (ROM), because the RAM is in an

unknown state at system startup. ROM is convenient(مناسب) because it needs no

initialization and cannot be infected by a computer virus.

 Some computer systems, such as PCs, use a two-step process in which a simple

bootstrap loader fetches a more complex boot program from disk, which in turn loads

the kernel.

 Some systems—such as cellular phones, PDAs, and game consoles—store the entire

operating system in ROM. Storing the operating system in ROM is suitable for small

operating systems, simple supporting hardware.

