
1

Introduction to Genetic Algorithms

1.1 Introduction

Evolutionary computing was introduced in the 1960s by I. Rechenberg,

then was developed by other researches. The theory of evolution was

introduced by Charles Darwin (1859) to explain his observations of plants

and animals in the natural ecosystem. He observed that as every new

generation was associated with some changes, the less-fit individuals

tended to lose the battle for survival in the competition for food.

Genetic Algorithms (GAs) mimics the theory of evolution and natural

selection. Genetic Algorithms was invented and developed by John

Holland in 1975. Holland proposed GA as a heuristic method based on

“Survival of the fittest”. GA was discovered as a useful tool for search

and optimization problems.

It is also important to mention in this introduction GA limits. Like most

stochastic methods, GAs are not guaranteed to find the global optimum

solution to a problem, they are satisfied with finding “acceptably good”

solutions to the problem.

GAs are extensively used in many applications across a large and

growing number of disciplines. Although a GA is able to find very good

solutions for a variety of applications, the amount of time consumed for

large computations and iterations is enormous. Hence, software

implementation of GAs for increasingly complex applications can cause

unacceptable delays. Also, GAs lend themselves easily to pipelining and

parallelization. These factors make GAs good candidates for hardware

implementation.

From the optimization point of view, the main advantage of evolutionary

computation techniques is that they do not have much mathematical

requirements about the optimization problems. All they need is an

2

evaluation of the objective function. As a result, they are applied to non-

linear problems, defined on discrete, continuous or mixed search spaces.

1.2 Search Space

Most often one is looking for the best solution in a specific set of

solutions. The space of all feasible solutions (the set of solutions among

which the desired solution resides) is called search space (also state

space). Each and every point in the search space represents one possible

solution. Therefore each possible solution can be “marked” by its fitness

value, depending on the problem definition. With Genetic Algorithm one

looks for the best solution among a number of possible solutions

represented by one point in the search space i.e.; GAs are used to search

the search space for the best solution e.g., minimum. The difficulties in

this ease are the local minima and the starting point of the search (see Fig.

1.1).

Fig. 1.1 An Example of search space

1.3 What is Genetic Algorithm

3

The science that deals with the mechanisms responsible for similarities

and differences in a species is called Genetics. The word “genetics” is

derived from the Greek word “genesis” meaning “to grow” or “to

become”.

Genetic Algorithms are a class of evolutionary algorithms that use

biologically-derived techniques such as inheritance, natural selection,

crossover (or recombination) and mutation. They work on the principle

of “survival of the fittest”, where the less fit members of a particular

generation are replaced by new members formed by combining parts of

highly fit members. Traditionally, solutions to GAs are represented in

binary as strings of 0s and 1s, but different encoding schemes are also

possible.

GAs differ from other conventional optimization processes in:

1. GAs work with a coding of the parameter set, not the parameters

themselves.

2. GAs search from a population of points, not a single point.

3. GAs use objective function information, not derivatives or other

auxiliary knowledge.

4. GAs use probabilistic transition rules, not deterministic rules.

1.4 A Simple Genetic Algorithm

A genetic algorithm is a problem solving method that uses genetics as its

model of problem solving. It’s a search technique to find approximate

solutions to optimization and search problems.

GA handles a population of possible solutions. Each solution is

represented through a chromosome, which is just an abstract

representation.

- Coding all the possible solutions into a chromosome is the first part

in Genetic Algorithm.

4

- A set of reproduction operators has to be determined, too.

Reproduction operators are applied directly on the chromosomes,

and are used to perform mutations and recombinations over solutions

of the problem.

- Selection is supposed to be able to compare each individual in the

population. Selection is done by using a fitness function. Each

chromosome has an associated value corresponding to the fitness of

the solution it represents. The fitness should correspond to an

evaluation of how good the candidate solution is.

- The optimal solution is the one, which maximizes the fitness

function. Genetic Algorithms deal with the problems that maximize

the fitness function. But, if the problem consists in minimizing a cost

function, the adaptation is quite easy. Either the cost function can be

transformed into a fitness function, for example by inverting it; or the

selection can be adapted in such way that they consider individuals

with low evaluation functions as better.

- Once the reproduction and the fitness function have been properly

defined, a Genetic Algorithm starts by generating an initial

population of chromosomes. This first population must offer a wide

diversity of genetic materials. The gene pool should be as large as

possible so that any solution of the search space can be engendered.

Generally, the initial population is generated randomly. Then, the

genetic algorithm loops over an iteration process to make the population

evolve. Each iteration consists of the following steps:

• SELECTION: The first step consists in selecting individuals for

reproduction. This selection is done randomly with a probability

depending on the relative fitness of the individuals so that best ones

are often chosen for reproduction than poor ones.

5

• REPRODUCTION: In the second step, offspring are bred by the

selected individuals. For generating new chromosomes, the algorithm

can use both recombination and mutation.

• EVALUATION: Then the fitness of the new chromosomes is

evaluated.

• REPLACEMENT: During the last step, individuals from the old

population are killed and replaced by the new ones.

The algorithmis stopped when the population converges toward the

optimal solution.

The basic genetic algorithm is as follows:

• [start] Genetic random population of n chromosomes (suitable solutions

for the problem)

• [Fitness] Evaluate the fitness f(x) of each chromosome x in the

population

• [New population] Create a new population by repeating following steps

until the New population is complete

- [selection] select two parent chromosomes from a population according

to their fitness (the better fitness, the bigger chance to get

selected).

- [crossover] With a crossover probability, cross over the parents to form

new offspring (children). If no crossover was performed,

offspring is the exact copy of parents.

- [Mutation] With a mutation probability, mutate new offspring at each

locus (position in chromosome)

- [Accepting] Place new offspring in the new population.

- [Replace] Use new generated population for a further sum of the

algorithm.

• [Test] If the end condition is satisfied, stop, and return the best solution
in current population.

6

• [Loop] Go to step2 for fitness evaluation.

The flowchart showing the process of GA is as shown in Fig. 1.2, while

Fig. 1.3 shows the various processes of a GA system.

Fig. 1.2 Genetic Algorithm Flow Chart

Fig. 1.3 The various processes of a GA system

In short, the basic four steps used in simple Genetic Algorithm to solve a

problem are,

7

1. The representation of the problem

2. The fitness calculation

3. Various variables and parameters involved in controlling the algorithm

4. The representation of result and the way of terminating the algorithm

WHY GA WORK?
1. In each generation we check several solutions at once. Thus GA
2. is a kind of a parallel search.
3. Fitness and selection filter out bad solutions from good ones.
4. Offspring inherit properties of mostly good solutions.

1.5 Advantages and Limitations of Genetic Algorithm

The advantages of genetic algorithm includes,

1. Parallelism

2. Solution space is wider

3. Easy to discover global optimum

4. The problem has multi objective function

5. Easily modified for different problems.

6. Handles noisy functions well.

7. Handles large, poorly understood search spaces easily

8. Good for multi-modal problems Returns a suite of solutions.

9. Very robust to difficulties in the evaluation of the objective function.

10.They are resistant to becoming trapped in local optima

11.They perform very well for large-scale optimization problems

12.Can be employed for a wide variety of optimization problems

The limitation of genetic algorithm includes,

1. The problem of identifying fitness function

2. Definition of representation for the problem

3. Premature convergence occurs

8

4. The problem of choosing the various parameters like the size of the

population, mutation rate, cross over rate, the selection method and its

strength.

5. Cannot easily incorporate problem specific information

6. Not good at identifying local optima

7. No effective terminator.

8. Have trouble finding the exact global optimum

9. Require large number of response (fitness) function evaluations

1.6 Applications of Genetic Algorithm

Genetic algorithms have been used in many applications such as:

1. Nonlinear dynamical systems–predicting, data analysis

2. Robot trajectory planning

3. Strategy planning

4. Finding shape of protein molecules

5. Functions for creating images

6. Control–gas pipeline, pole balancing, missile evasion, pursuit

7. Design–semiconductor layout, aircraft design, keyboard

configuration, communication networks

8. Scheduling–manufacturing, facility scheduling, resource allocation

9. Machine Learning–Designing neural networks, both architecture and

weights, improving classification algorithms, classifier systems

10. Signal Processing–filter design

11. Combinatorial Optimization–set covering, traveling salesman (TSP),

Sequence scheduling, routing, bin packing, graph coloring and

partitioning

