
74

3.3 Discrete Hopfield Net

An iterative autoassociative net similar to the nets described in the

previous sections has been developed by Hopfield (1982, 1984).

- The net is a fully interconnected neural net, in the sense that each

unit is connected to every other unit.

- The net has symmetric weights with no self-connections, i.e.,

wij = wji

and wii = 0

The two small differences between this net and the iterative

autoassociative net can have a significant effect in terms of whether or

not the nets converge for a particular input pattern. The differences are

that in the Hopfield net presented here,

1. only one unit updates its activation at a time (based on the signal

it receives from each other unit).

2. each unit continues to receive an external signal in addition to

the signal from the other units in the net.

The asynchronous updating of the units allows a function, known as an

energy or Lyapunov function to be found for the net. The existence of

such a function enables the net to converge to a stable set of activations,

rather than oscillating.

Architecture

An expanded form of a common representation of the Hopfield net is

shown in the Figure

75

Figure illustrates the expanded form of the discrete Hopfield net

Algorithm

There are several versions of the discrete Hopfield net. Hopfield's first

description [1982] used binary input vectors.

To store a set of binary patterns s (p) , p = 1 , . . . , P, where,

S(P) = (s1(p),…, si(p), … ,sn(p))

the weight matrix W is given by

 
p

jiij pspsw]1)(2][1)(2[for i ≠ j

and

wii = 0

Other descriptions [Hopfield, 1984] allow for bipolar inputs. The weight

matrix is found as follows:

76


p

jiij pspsw)()(for i ≠ j

and

wii = 0

Application Algorithm for the Discrete Hopfield Net

1. Initialize weights to store patterns. (Use Hebb rule.)

2. For each input vector x, do Steps 3-7.

3. Set initial activations of net equal to the external input vector x:

yi = xi, (i = 1,2, … , n)

4. Do Steps 5-7 for each unit Yi (Units should be updated in

random order.)

5. Compute net input:

6. Determine activation (output signal):

7. Broadcast the value of yi to all other units. (This updates

the activation vector.)

8. Test for convergence.

The threshold θ, is usually taken to be zero. The order of update of the

units is random, but each unit must be updated at the same average rate.

There are a number of variations on the discrete Hopfield net presented

in this algorithm. Originally, Hopfield used binary activations, with no

external input after the first time step [Hopfield, 1982]. Later, the

external input was allowed to continue during processing [Hopfield,

1984].

Application

77

A binary Hopfield net can be used to determine whether an input vector is

a "known'' vector (i.e., one that was stored in the net) or an "unknown"

vector.

The net recognizes a "known" vector by producing a pattern of

activation on the units of the net that is the same as the vector stored in

the net.

Example 10 Testing a discrete Hopfield net: mistakes in the first and

second components of the stored vector

In this example consider the vector (1, 1, 1,0) (or its bipolar equivalent (1,

1, 1, - 1)) was stored in a net. The binary input vector corresponding to

the input vector used (with mistakes in the first and second components)

is (0, 0, 1, 0). Although the Hopfield net uses binary vectors, the weight

matrix is bipolar, the same as was used in Example 9. The units update

their activations in a random order. For this example the update order is

Y1, Y4, Y3, Y2

Sol:

Initialize weights to store patterns:

The input vector is x = (0, 0, 1, 0). For this vector,

 y = x = (0, 0, 1, 0).

Choose unit Y1 to update its activation:

y_in1 = x1 + y1*w11 + y2*w21+ y3*w31+ y4*w41

= 0 + 0*0 + 0*1 + 1*1 + 0*(-1) = 1

78

y_in1 > 0 y1 = 1

y = (1,0,1,0).

Choose unit Y4 to update its activation:

y_in4 = x4 + y1*w14 + y2*w24+ y3*w34+ y4*w44

= 0 + 1*(-1) + 0 * (-1) +1*(-1) + 0*0 = -2

y_in4 < 0 y4 = 0

y = (1,0,1,0).

Choose unit Y3 to update its activation:

y_in3 = x3 + y1*w13 + y2*w23+ y3*w33+ y4*w43

= 1 + 1*1 + 0 * 1 +1*0 + 0*(-1) = 2

y_in3 > 0 y3 = 1

y = (1,0,1,0).

Choose unit Y2 to update its activation:

y_in2 = x2 + y1*w12 + y2*w22+ y3*w32+ y4*w42

= 0 + 1*1 + 0 * 0 +1*1 + 0*(-1) = 2

y_in2 > 0 y2 = 1

y = (1,1,1,0).

Since some activations have changed during this update cycle, at least

one more pass through all of the input vectors should be made. The reader

can confirm that further iterations do not change the activation of any

unit. The net has converged to the stored vector.

