3- ADALINE (adaptive linear Neuron) [Widrow & Hoff, 1960]
Typicaly, Adaline uses bipolar ( -1, +1) activation for its input
signals and its target outputs (although it is not restricted to such
value).
- The weights from the input units to the Adaline are adjustable.
- In general the Adaline can be trained using the deltarule (also

known as the least mean square (LM S) or Widrow-Hoff rule.
- In Addlinethereis only one output unit.

O\

The structure of Adaine

net = b+2x,-w;

After training, if the net is being used for pattern classification in which
the desired output is either +1 or -1, athreshold function is applied to the
net input to obtain the activation.

1 if net=06
=f(net) =

-1 if net<®

b (new) = b (old) + a(t - net)
w; (new) = w; (old) + a(t- net)x;
- For a single neuron, the suitable value of the learning rate a is to be:
0.1 <n*a < 1, where n is the total number of the input units.
- The learning rule minimizes the mean squared error between the
activation and the target value.

E= Z(tp _Z(Xi,pw :
p=1 i=0

E= Zm:(tp —net,)’
p=1

Where t,is the associated target for the input pattern p. As an example, if

the neural net represents logic gate with two input, then the total squared
error is

E= Z(tp — (X W + X W+ Wy ))?
p=1
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For AND function gate, if w; =w,=1and b =-1.5, then,
Pattern binary bipolar

P P

1 1 1 1 0.5 0.25

2 1 O -1 -5 0.25

3 0 1 -1 -5 0.25

4 0O O -1 -5 025 E=

SE=1
Thep separating lineis: X, =-x; + 1.5 (i.e,, the weights that minimize
this error are: wl=w2=1, b=-1.5)
4- Deltalearning rule:

4.1- deltarulefor single output unit:

The delta rule change the weights of the neural connections so asto

minimize the difference between the net input “net” and the target value
apr

Aw, =a (t - net) Xi e (1)
n
net=>xw (2)
1=1
the squared error for a particular training pattern is:
E=(t-net)> ... (3)
e E isafunction of al of theweights, w;, i=1,2, ...., n

e Thegradient of E isthe vector consisting of the partia derivatives

of E with respect to each of the weights

oE
VE=—
ow (4)
e The gradient gives the direction of most rapid increase in E, the
opposite direction gives the most rapid decrease in the error, i. €.,

the error can be reduced by adjusting the weight w; in the direction

of
-0E/ow.
Since, net=Yxw ;  and E = (t— net)®
Thus,
oE onet
VE =—=-2(t — net) —
o ( ) oW (5)
=2(t-Nne)Xi e, (6)

Thus the local error will be reduced most rapidly by adjusting the weight
to the deltarule:
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Aw; = a (t— net) Xj
4.2- Deltarulefor several output units:
Deltarule can be extended to more than single output unit, then

for the output unit y; we have:

Aw;;=a (tJ - netJ) X
The squared error for a particular training patternis

E=> (t, —net;)?
J=1

Again,
ve=E _ ¢ D (t; —net;)?
aVvi.] aVvi\] j=1
0
:G\N—(tJ _netJ)Z

iJ
The weight W, ; influence the error only on output unit y; and:

n

net; =,_21XiWiJ
vE=""E _ o, - net,) N
i3 i3
=-2 (tJ - netJ) X|

Adjusting the weights according to deltarule for agiven learning rate:

Aw;;=a (tJ - netJ) X

5- MADALINE

Adalines can be combined so that the output from some of them becomes
input for others of them, then the net becomes multilayer. Such a
multilayer net, known asa MADALINE.

In this section we will discuss a MADALINE with one hidden layer
(composed of two hidden Adaline units) and one output Adaline unit.
Generalizations to more hidden units, more output units, and more hidden

layers, are straightforward.
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Architecture

A simple MADALINE net isillustrated in the following figure. The use
of the hidden units, Z, and Z, give the net computational capabilities not
found in single layer nets, but also complicate the training process.

o el

Wit

L¢]
w12
W21

V2
w22

by

of

Figure Madaline with two hidden Adaline and one output Adaline.

Algorithm
In the MRI algorithm (Madaine Rule |: the origina form of
MADALINE training) [Widrow and Hoff, 1960]:

1- only the weights for the hidden Adalines are adjusted; the weights
for the output unit are fixed. (MRII, alows training for weightsin
al layers of the net).

2- the weights v; and v, and the bias bs that feed into the output unit
Y are determined so that the response of unit Y is 1 if the signal it
receives from either Z, or Z, (or both) is 1, and is-1 if both Z, and

Z, send asignal of -1. In other words, the unit Y performs the logic
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function OR on the signals it receives from Z, and Z, The weights
intoY are:

vi =05 v,=0.5, b;=0.5

the weights on the first hidden Adaline wy,, W,;, and the bias b, and
the weights on the second hidden Adaline wy,, Wy, and b, are
adjusted according to the algorithm.

the activation function for units Z;and Z, and Y is:

1 if x=0
f(x) =
-1 if x<O0

Set the learning rate a as in the Adaline training algorithm (a small
value between 0.1 and 1).
Compute net input to each Adaline unit:
Z-ing = by + X3Wiq + XoWoy
Z-iny = by + XgWip + XoWa
Determine output of each hidden unit:
Z, =f(Z-iny)
Z, = f(Z-iny)
Determine output of net:
y-in =bg +Zvy + Zy\v,
y = f(y-in)
Determine error and update weights according to the following:
9.1 if t=y, noweight updates are performed.
9.2 if tzy, then:
If t=1, then: update weights on Z; the unit whose net
input is closest to O
b;(new) = by(old) + a(1- Z-in,)
wij(new) = wi;(old) + a(l- Z-in;)x;
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if t=-1, then: update weights on all units Z, that
have positive net input (Z-iny > 0):
bc(new) = by(old) + a(-1- Z-iny)

Wik(ne\N) = Wik(Old) + G(-l— Z-ink)Xi

10- If weight changes have stopped (or reached an acceptable level), ,
then stop; otherwise continue.

Step 9 is motivated by the desire to (1) update the weights only if an error
occurred and (2) update the weights in such a way that it is more likely
for the net to produce the desired response.
If t = 1 and error has occurred, it means that all Z units had value - 1 and
at least one Z unit needs to have avalue of +1. Therefore, we take Z; to
be the
Z unit whose net input is closest to O and adjust its weights (using
Adaline training with atarget of + 1)
b;(new) = by(old) + a(l- Z-iny)
wis(new) = wiy(old) + a(l- Z-iny)x;
If t =-1 and error has occurred, it means that at |east one Z unit had value
+1 and all Z units must have value -1. Therefore, we adjust the weights
on al of the Z units with positive net input,(using Adaline training with a
target of -1)
b(new) = by(old) + a(-1- Z-iny)
wi(new) = wic(old) + a(-1- Z-iny)x;
Example: illustrate the use of the MRI algorithm to train a
MADALLNE to solve the XOR problem, having the following:
Weightsinto Z;, WeightsintoZ, WeightsintoY
Wi Wo by Wi Wy b Vi V2 b3
05 2 3 A 2 A5 5 D D

52



Sol:

Only the computations for the first weight updates are shown. The

training patterns are:
X1 X2 {

1 1 -1
1 -1 1
-1 1 1
-1 -1 -1

1- For thefirst training pair x; =1, X, = 1,t=-1
Z-inp=.3 +.05 +.2=55
Z-inp=.15+.1 +.2=.45
Z]_:l
22:1
y-in=5+ 5+ 5=15
y=1

t—-y =-1-1=-2, %0, then an error occurred

sincet = -1, and both Z units have positive net inputs,
update the weights on unit Z; asfollows:
b,(new) = by(old) + a(-1- Z-in,)

= 0.3+ (0.5) (-1-0.55) =-0.475
wy(new) = wyy(old) + a(-1- Z-iny)x,
=0.05+ (0.5) (-1-0.55) =-0.725
W1 (New) = wyy(old) + a(-1- Z-ing)xo
=0.2+(0.5) (-1-0.55) =-0.575

update the weights on unit Z, as follows:
b,(new) = by(old) + a(-1- Z-iny)

= 0.15+(0.5) (-1- 0.45) =-0.575
wi(new) = wy,(old) + a(-1- Z-iny)x;
=0.1+(0.5) (-1-0.45) =-0.625
Wor(New) = wx(old) + a(-1- Z-iny)X,
=0.2+(0.5) (-1-0.45) = -0.525
After four epochs of training , the final weights found to be:

W11 Wo, by W12 W)

-0.73 1.53 -0.99 1.27 -1.33

b,

-1.09
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Geometric interpretation of weights:

The positive response region for the Madaline trained is the union of the
regions where each of the hidden units has a positive response. The
decision boundary for each hidden unit can be cal cul ated:

For hidden unit Z,, the boundary lineis:

X = — — s

= 0.48x, T 0.65

And for hidden unit Z,, the boundary lineis:

g =By PE
Wi Wa2

_ 1'271 _Lo9
1.7 1,33

= 0.96 x, — 0.82

The response diagram for the MADALINE isillustrated in the shown
figure
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