
Chapter Three – Operators and functions

73

Chapter Three

Operators and Functions
3.1. Introduction

In the end of this chapter, we will able to program formulas that contain:

1. Arithmetic operators.

2. Relational and Logical operators.

3. Bitwise operators.

4. Ternary operators.

5. Cast operators.

6. Functions.

3.2. Operators

Once we know of the existence of variables and constants, we can begin to

operate with them. For that purpose, C++ integrates operators. Unlike other languages

whose operators are mainly keywords, operators in C++ are mostly made of signs that

are not part of the alphabet but are available in all keyboards. This makes C++ code

shorter and more international, since it relies less on English words, but requires a little

of learning effort in the beginning.

You do not have to memorize all the content of this page. Most details are only

provided to serve as a later reference in case you need it.

3.2.1. Assignment Operator (=)

 The assignment operator assigns a value to a variable.

 a = 5;

This statement assigns the integer value 5 to the variable a. The part at the left of

the assignment operator (=) is known as the l-value (left value) and the right one as the

r-value (right value). The l-value has to be a variable whereas the r-value can be either

a constant, a variable or the result of an operation or any combination of these. The

most important rule when assigning is the right-to-left rule: The assignment operation

always takes place from right to left, and never the other way:

a = b;

Chapter Three – Operators and functions

73

This statement assigns to variable a (the l-value) the value contained in variable

b (the r-value). The value that was stored until this moment in (a) is not considered at

all in this operation, and in fact that value is lost.

Consider also that we are only assigning the value of (b) to (a) at the moment of

the assignment operation. Therefore a later change of b will not affect the new value of

a.

Ex: Let us have a look at the following code. The evolution of the content stored

in the variables as comments have been included:

// assignment operator

#include <iostream>

using namespace std;

int main ()

{

int a, b; // a:?, b:?

a = 10; // a:10, b:?

b = 4; // a:10, b:4

a = b; // a:4, b:4

b = 7; // a:4, b:7

cout << "a:";

cout << a <<'\n';

cout << " b:";

cout << b;

return 0;

}

O/P

a:4

b:7

This code will give us as result that the value contained in a is 4 and the one

contained in b is 7. Notice how a was not affected by the final modification of b, even

though we declared a = b earlier (that is because of the right-to- left rule).

Chapter Three – Operators and functions

73

A property that C++ has over other programming languages is that the

assignment operation can be used as the r value (or part of an r value) for another

assignment operation.

Ex:

a = 2 + (b = 5);

is equivalent to:

b = 5;

a = 2 + b;

That means: first assign 5 to variable b and then assign to a the value 2 plus the

result of the previous assignment of b (i.e. 5), leaving a with a final value of 7.

The following expression is also valid in C++:

a = b = c = 5;

It assigns 5 to the all the three variables: a, b and c.

3.2.2. Arithmetic operators:

Arithmetic operators divided to two parts:

1. Simple arithmetic operators.

2. Compound arithmetic operators.

1. Simple arithmetic operators.

The five arithmetical operations supported by the C++ language are:

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo

 Operations of addition, subtraction, multiplication and division literally

correspond with their respective mathematical operators. The only one that you might

not be so used to see is modulo; whose operator is the percentage sign (%). Modulo is

the operation that gives the remainder of a division of two values. For example, if we

write:

a = 11 % 3;

Chapter Three – Operators and functions

04

The variable a will contain the value 2, since 2 is the remainder from dividing 11

between 3.

2. Compound arithmetic operators.

The compound operators illustrated in table below:

Expression Means

+= Plus equal

-= Minus equal

*= Multiplication equal

/= Division equal

%= Modula equal

>>= Shift right equal

<<= Shift left equal

&= And equal

^= Ex-or equal

|= Or equal

++ Increase by one

-- Decrease by one

When we want to modify the value of a variable by performing an operation on the

value currently stored in that variable, we can use compound operators:

Expression Equivalent to

value += increase; value = value + increase;

a -= 5; a = a - 5;

a /= b; a = a / b;

price *= units + 1; price = price * (units + 1);

Ex:

// compound assignment operators

#include <iostream>

using namespace std;

int main ()

{

int a, b=3;

a = b;

Chapter Three – Operators and functions

04

a+=2; // equivalent to a=a+2

cout << a;

return 0;

}

o/p : 5

The increase operator (++) and the decrease operator (--) increase or reduce by

one the value stored in a variable. They are equivalent to +=1 and to -=1, respectively.

Thus:

c++; equivalent to c+=1; and equivalent to c=c+1;

The three of them increase by one the value of c. In the early C compilers, the

three previous expressions probably produced different executable code depending on

which one was used. Nowadays, the compiler generally does this type of code

optimization automatically, thus the three expressions should produce exactly the same

executable code.

A characteristic of these operators are that it can be used both as a prefix and as

a suffix. That means that it can be written either before the variable identifier (++a) or

after it (a++). They may have an important difference in their meaning.

In the case that the increase operator is used as a prefix (++a) the value is

increased before the result of the expression is evaluated, and therefore the increased

value is considered in the outer expression.

 In case that it is used as a suffix (a++) the value stored in (a) is increased after

being evaluated, and therefore the value stored before the increase operation is

evaluated in the outer expression. Notice the difference:

Example 1 Example 2

B=3; B=3;

A=++B; A=B++;

// A contains 4, B contains 4 // A contains 3, B contains 4

In Example 1, B is increased before its value is copied to A. While in Example

2, the value of B is copied to A and then B is increased.

Chapter Three – Operators and functions

04

3.2.3. Relational and equality operators (==, !=, >, <, >=, <=)

In order to evaluate a comparison between two expressions we can use the

relational and equality operators. The result of a relational operation is a Boolean value

that can only be true or false, according to its Boolean result.

A list of the relational and equality operators that can be used in C++:

Expression Means

== Equal to

!= Not Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

We may want to compare two expressions, for example, to know if they are equal

or if one is greater than the other is.

Ex:

(7 == 5) // evaluates to false.

(5 > 4) // evaluates to true.

(3 != 2) // evaluates to true.

(6 >= 6) // evaluates to true.

(5 < 5) // evaluates to false.

Instead of using only numeric constants, we can use any valid expression,

including variables. Suppose that a=2, b=3 and c=6,

(a == 5) // evaluates to false since a is not equal to 5.

(a*b >= c) // evaluates to true since (2*3 >= 6) is true.

(b+4 > a*c) // evaluates to false since (3+4 > 2*6) is false.

((b=2) == a) // evaluates to true.

* Note that The operator = (one equal sign) is not the same as the operator ==

(two equal signs), the first one is an assignment operator (assigns the value at its right

to the variable at its left) and the other one (==) is the equality operator that compares

whether both expressions in the two sides of it are equal to each other.

 * In the last expression ((b=2) == a), we first assigned the value 2 to b and then

we compared it to a, that also stores the value 2, so the result of the operation is true.

Chapter Three – Operators and functions

07

3.2.4. Logical operators (!, &&, ||)

The (!) Operator is to perform the Boolean operation NOT, it has only one

operand, located at its right, and the only thing that it does is to inverse the value of it,

producing false if its operand is true and true if its operand is false. Basically, it returns

the opposite Boolean value of evaluating its operand. For example:

Ex:

!(5 == 5) // evaluates to false because the expression at its right (5 == 5) is true.

!(6 <= 4) // evaluates to true because (6 <= 4) would be false.

!true // evaluates to false

!false // evaluates to true.

The logical operators (&&) and (||) are used when evaluating two expressions to

obtain a single relational result. The operator && corresponds with Boolean logical

operation AND. This operation results true if both its two operands are true, and false

otherwise. The following panel shows the result of operator (&&) evaluating the

expression a && b:

A B A && B

True true True

False true False

True false False

False false False

The operator || corresponds with Boolean logical operation OR. This operation

results true if either one of its two operands is true, thus being false only when both

operands are false themselves. Here are the possible results of a || b:

A B A || B

true true true

false true true

true false true

false false false

Ex:

((5 == 5) && (3 > 6)) // evaluates to false (true && false).

((5 == 5) || (3 > 6)) // evaluates to true (true || false).

Chapter Three – Operators and functions

00

3.2.5. Conditional operator.

The conditional operator evaluates an expression returning a value if that

expression is true and a different one if the expression is evaluated as false. Its format

is:

Condition? result1: result2

If condition is true, the expression will return result1, if it is not it will return

result2.

7==5 ? 4 : 3 // returns 3, since 7 is not equal to 5.

7==5+2 ? 4 : 3 // returns 4, since 7 is equal to 5+2.

5>3 ? a : b // returns the value of a, since 5 is greater than 3.

a>b ? a : b // returns whichever is greater, a or b.

Ex:

// conditional operator

#include <iostream>

using namespace std;

int main ()

{

int a,b,c;

a=2;

b=7;

c = (a>b) ? a : b;

cout << c;

return 0;

}

In this example a was 2 and b was 7, so the expression being evaluated (a>b) was

not true, thus the first value specified after the question mark was discarded in favor of

the second value (the one after the colon) which was b, with a value of 7.

Chapter Three – Operators and functions

04

3.2.6. Bitwise Operators.

Bitwise operators modify variables considering the bit patterns that represent the

values they store.

symbol description Operator equivalent

& AND Bitwise AND

| Bitwise Inclusive OR OR

^ Bitwise Exclusive OR XOR

~ Unary complement (bit inversion) NOT

<< Shift Left SHL

>> Shift Right SHR

*We will not discuss these operators because you will not read logic gets.

3.2.7. Explicit type casting operator

Type casting operators allow you to convert a datum of a given type to another.

There are several ways to do this in C++. The simplest one, which has been inherited

from the C language, is to precede the expression to be converted by the new type

enclosed between parentheses (()):

int i;

float f = 3.14;

i = (int) f;

The previous code converts the float number 3.14 to an integer value (3), where

the remainder is lost.

3.2.8. sizeof() operator.

This operator accepts one parameter, which can be either a type or a variable

itself and returns the size in bytes of that type or object.

a = sizeof (char);

This will assign the value 1 to (a) because char is a one-byte long type. The value

returned by sizeof () is a constant, so it is always determined before program execution.

3.2.9. Comma operator (,)

The comma operator (,) is used to separate two or more expressions that are

included where only one expression is expected. When the set of expressions has to be

evaluated for a value, only the rightmost expression is considered.

Chapter Three – Operators and functions

04

Ex:

a = (b=3, b+2);

Would first assign the value 3 to b, and then assign b+2 to variable a. So, at the end,

variable (a) would contain the value 5 while variable b would contain value 3.

3.3. Precedence of operators

When writing complex expressions with several operands, we may have some

doubts about which operand is evaluated first and which later. For example, in this

expression:

a = 5 + 7 % 2

we may doubt if it really means:

a = 5 + (7 % 2) // with a result of 6, or

a = (5 + 7) % 2// with a result of 0

The correct answer is the first of the two expressions, with a result of 6. There is

an established order with the priority of each operator, and not only the arithmetic ones

(those whose preference come from mathematics) but for all the operators which can

appear in C++. From greatest to lowest priority, the priority order is as follows:

level Operator Description

1. :: scope

2. () postfix

3. sizeof unary (prefix)

4. (type) indirection and reference

5. .* ->* (pointers)

6. * / % multiplicative

7. + - additive

8. << >> shift

9. < > <= >= relational

10. == != equality

11. & bitwise AND

12. ^ bitwise XOR

13. | bitwise OR

14. && logical AND

15. || logical OR

16. ?: conditional

17. = *= /= %= += -= >>= <<= &= ^= |= Compound assignment

18. , comma

Chapter Three – Operators and functions

03

All these precedence levels for operators can be manipulated or become more

legible by removing possible ambiguities using parentheses signs (and).

Ex:

a = 5 + 7 % 2;

Might be written either as:

a = 5 + (7 % 2);

or

a = (5 + 7) % 2;

Depending on the operation that we want to perform. So if you want to write

complicated expressions and you are not completely sure of the precedence levels,

always include parentheses. It will also become a code easier to read.

3.4. Functions of C++

The table below summarize some of important mathematical functions available

in C++.

Function Porous

ceil (x) Return value larger than or equal to x, where x is float

floor (x) Return value of integer x, where x is float (neglect floating points)

abs (x) Return absolute value of x, where x is integer value.

fabs (x) Return absolute value of x, where x is float value.

sin (x) Return sine value of x, where x is radian value

cos (x) Return cosine value of x, where x is radian value

tan (x) Return tangent value of x, where x is radian value

asin (x) Return arc sine value of x, where x is between (-1 ,1)

acos(x) Return arc cosine value of x, where x is between (-1 ,1)

atan (x) Return arc tangent value of x, where x is between (-1 ,1)

log (x) Return the natural logarithm of x, where x > 0

log10 (x) Return the base 10 logarithm of x, where x > 0

exp (x) Return the exponential of x with based e.

sqrt (x) Return the square root of x, where x >= 0

pow (x,y) Return x raised to the y power.

Chapter Three – Operators and functions

03

 Ex:

Write a C++ program to compute and display the distance between two points

(x1,y1) and (x2,y2) in Cartesian coordinates. Where :

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)22

Sol:

#include <iostream>

using namespace std;

int main ()

{

double x1=5.2, y1=3.4, x2=1.32, y2=4.45, distance;

distance=sqrt(pow((x1-x2),2)+(pow((y1-y2),2)));

cout << "distance=" << distance <<'\n';

return 0;

}

Chapter Three – Operators and functions

03

Questions of chapter three

Q1: Write a C++ program to implement the equation: y = 5 16 .

Q2: If you know that the radius of the circle inscribed in triangle with sides a, b, c is:

)(
2

1))()((
cbaswhere

s

csbsas
r 




Input the triangle sides, and then find and display the radius (r).

Q3: Write C++ program to enter any three numbers, then find and print maximum

number between them using conditional operator.

Q4: Suppose we have the following variable declarations in our program:

int x=10 , y=3 , z=5; and double u=-3.7 , v=10.25 , w=12.37;

What will be the values computed for each of the following arithmetic

expressions or arithmetic assignment expression statements?

a) 𝑥%𝑦 ∗ 𝑧

b) 𝑥 + +% − −𝑦 + 7/𝑧

c) ((𝑥 − 6) ∗ (𝑥 − 6) + 𝑦 ∗ 𝑦)/(𝑧 ∗ 𝑧)

d) 𝑥+= 𝑦 + 𝑧

e) (𝑖𝑛𝑡)𝑣%(𝑖𝑛𝑡)𝑤 − 𝑣

f) 𝑐𝑒𝑖𝑙(𝑢) + 𝑓𝑙𝑜𝑜𝑟(𝑣 − 2)

g) 𝑠𝑞𝑟𝑡 (𝑝𝑜𝑤 (𝑤, 2))

Q5: Write a C++ program to enter any two numbers (x and y), then find and print the

values of Z and W from the following equations:

a))
3

()(32 y
TanxSinZ 

b)
224)(yx

y

x
LnW 

Q6: Write a C++ program to evaluate the following:



























))
2

(cosh2cos(

)
2

3
(cosh2)

2

1
(sinh

)
2

(cosh)
2

(sinh3

1

11

3
11

x

x

x
x

x

y

Chapter Three – Operators and functions

44

Find y for each entered value for the three equations at the same time.

Hint:)1log()(cosh)1log()(sinh 2121   uuuanduuu

Q7: Write a VB program to find and print the area and the perimeter (circumference)

for the shape below from the following equations:

Enter the unknown variables, and then print the results.

Q8: Write a VB program to find and print Y from the following equation:

6(x)coshsinh(x)2x4

sinh(x)cosh(x).4(x)sinhcosh(x)
Y

22

2






Using the relations:

Sinh(x)=
2

ee xx 
 and Cosh(x)=

2

ee xx 

θ ø

