
1

4- MACHINE LANGUAGE CODING

4-1THE INSTRUCTION SET:

The microprocessor's instruction set defines the basic operations that a programmer

can specify to the device to perform. Table 4-1 contains list basic instructions for

the 8086. For the purpose of discussion, these instructions are organized into

groups of functionally related instructions. In Table 4-1, we see that these groups

consist of the data transfer instructions, arithmetic instructions, logic instructions,

string manipulation instructions, control transfer instructions, and processor control

instructions.
4-2 CONVERTING ASSEMBLY LANGUAGE INSTRUCTIONS TO MACHINE CODE

To convert an assembly language program to machine code, we must convert each

assembly language instruction to its equivalent machine code instruction. The

machine code instructions of the 8086 vary in the number of bytes used to encode

them. Some instructions can be encoded with just 1 byte, others can be done in 2

bytes, and many require even more. The maximum number of bytes of an

instruction is 6. Single-byte instructions generally specify a simpler operation with

a register or a flag bit.

The machine code for instructions can be obtained by following the formats used

in encoding the instructions of the 8086 microprocessor. Most multi-byte

instructions use the general instruction format shown in Fig. 4-1.

Fig 4-1 General instruction format.

Looking at Fig. 4-1, we see that byte 1 contains three kinds of information:

1. Opcode field (6-bit): Specifies the operation, such as add, subtract, or move, that

is to be performed.

2

2. Register direction bit (D bit): Tells whether the register operand specified by

register in byte 2 is the source or destination operand. Logic 1 in this bit position

indicates that the register operand is a destination operand, and logic 0 indicates

that it is a source operand.

3. Data size bit (W bit): Specifies whether the operation will be performed on 8-bit

or 16-bit data. Logic 0 selects 8 bits and 1 selects 16 bits as the data size.

The second byte in Fig. 4-1 has three fields:

The register filed (reg.) is 3-bit. It is used to identify the register for the first

operand, which is the one that was defined as the source or destination by the D bit

in byte 1. Table-2 shows the encoding for each of the registers in 8086 µp. Here we

find that the 16-bit register AX and the 8-bit register AL are specified by the same

binary code. Note that (W) bit in byte 1 determined whether AX or AL is used.

The 2-bit mod field and 3-bit r/m field together specify the second operand.

Encoding for these two fields is shown in tables 4-3(a) and (b), respectively. Mod

indicates whether the operand is in a register or memory. Note that in the case of a

second operand in a register, the mod field is always 11. The r/m field, along with

the W bit from byte1, selects the register.

Table of REG. Coding for W=0 and W=1:

3

Table of R/m field encoding

Note: when r/m = 110 and MOD = 00 direct addressing occurred

Segment override prefix as shown use alternative segment once rather than

the default segment.

Example: ES: MOV AX, [DI]200H

 Physical address of data = ES*10H + (DI) + 200H

Rather than using the default segment DS.

4

Example 4-1: Encode the following instruction using the information in figure 4-

1, tables 2, 3 and the op code for MOV is 100010.

MOV BL, AL

Solution:-

For byte 1:

The six most significant bits of first byte is 100010.

D =0 to specify that a register AL is the source operand.

W=0 to specify an 8-bit data operation.

∴ 𝑏𝑦𝑡𝑒 1 = (10001000)2 = (88)16

For byte 2: (11000011)2 = (𝐶3)16

Thus, the hexadecimal machine code for instruction MOV BL,AL=88C3H

Example 4-2: Encode the following instruction using the information in figure 4-

1, tables 2,3 and the op code for ADD is 000000.

ADD [BX][DI]+1234H, AX

Solution:-

For byte 1:

The six most significant bits of first byte is 000000.

D =0 to specify that a register AX is the source operand.

W=1 to specify a 16-bit data operation.

∴ 𝐵𝑦𝑡𝑒1 = (00000001)2 = (01)16

For byte 2:

Mod = 10 (Memory mode with 16-bit displacement)
reg = 000 (from table 4-2 code of AX=000)

r/m = 011 (from table 4-2 (b))

∴ 𝐵𝑦𝑡𝑒2 = (10000011)2
= (81)16

The displacement 1234

16
is encoded in the next two bytes, with the Least

Significant Byte (LSB) first. Therefore, the machine code is:
ADD [BX][DI]+1234H, AX=01813412

NOTES: The general form of figure (4-1) cannot be used to encode all instructions

of 8086. We can note the following:

1- In some instructions, one or more additional single bit fields need to be added.

Table-4 shows these 1-bit fields and there functions.

2- Instructions that involve a segment register need a 2-bit field to encode which

register is to be affected. This field is called seg field. Table-5 shows the

encoded code of segment register.

Example 4-3: Encode the following instruction:

MOV [BP][DI]+1234H, DS

Solution: Table -1 shows that this instruction is encoded as:

10001100 mod 0 seg r/m disp

5

∴ 𝐵𝑦𝑡𝑒1 = (10001100)2 = (8𝐶)16

For byte 2:

Mod = 10 (Memory mode with 16-bit displacement)

seg = 11 (from table-5)
r/m = 011 (from table-1 (b))

∴ 𝐵𝑦𝑡𝑒2 = (10011011)2 = (9𝐵)
The machine code of MOV [BP][DI]+1234H, DS=8C9B3421

DATA TRANSFER AND STRING MANIPULATION GROUPS

5-1 Data transfer group:

THE STACK: The stack is implemented in the memory of 8086, and it is used for

temporary storage.

Starting address of stack memory (top of the stack) obtained from the contents of

the stack pointer (SP) and the stack segment (SS) (SS:SP). Figure 5-1 shows the

stack region for SS=0400H and SP=A000H. Data transferred to and from the stack

are word-wide, not byte-wide. Whenever a word of data is pushed onto the top of

the stack, the high-order 8 bits are placed in the location addressed by SP-1. The

low-order 8 bits are placed in the location addressed by SP-2. The SP is then

decremented by 2.

Whenever data are popped from the stack, the low-order 8 bits are removed from

the location addressed by SP. The high-order 8 bits are removed from the location

addressed by SP+2. The SP is then incremented by 2.

Figure 5-1 The stack region

6

The MOV instruction
:
The function of MOV instruction is to transfer a byte or

word of data from a source location to a destination location. The general form of

MOV instruction is as shown below:

Mnemonic Meaning Format Operation Flags affected

MOV move MOV D,S (D)  (S) None

From table T1-a, we see that data can be moved between general purpose-registers,

between a general purpose-register and a segment register, between a general

purpose-register or segment register and memory, or between a memory location

and the accumulator. Note that memory-to-memory transfers are note allowed.

• PUSH/POP: The PUSH and POP instructions are important instructions that

store and retrieve data from the LIFO (Last In First Out) stack memory. The

general forms of PUSH and POP instructions are as shown below:

Mnem. meaning Format Operation Flags affected

PUSH Push word into

stack

PUSH S (SP)  (SP) -2

((SP))  (S)

None

POP Pop word from

stack

POP D (D)  ((SP))

(SP)  (SP) +2

None

 LEA, LDS, and LES (load-effective address) INSTRUCTIONS:

These instructions load a segment and general purpose registers with an address

directly from memory. The general forms of these instructions are as shown below:

Mnem. meaning Format Operation Flags

LEA Load effective

address

LEA reg16,EA

(reg16)  EA None

LDS Load register

and DS

LDS reg16,EA

(reg16)[PA]

(DS) [PA+2]

None

LES Load register

and ES

LES reg16,EA

(reg16)[PA]

(ES) [PA+2]

None

The LEA instruction is used to load a specified register with a 16-bit effective

address (EA).

The LDA instruction is used to load a specified register with the contents of PA

and PA+1 memory locations, and load DS with the contents of PA+2 and PA+3

memory locations.

The LES instruction is used to load a specified register with the contents of PA and

PA+1 memory locations, and load ES with the contents of PA+2 and PA+3

memory locations.

EXAMPLE 5-1: Assuming that (BX) = 20H, DI = 1000H, DS = 1200H, and the

following memory contents:

7

Memory 12200 12201 12202 12203 12204

Contents 11 AA EE FF 22

What result is produced in the destination operand by execution the following

instructions?

a- LEA SI, [DI+BX+5] b-LDS SI, [200].

SOLUTION:
a- EA=1000+20+5=1025→(SI)=1025

b- PA=DS:EA=DS*10+EA=1200*10+200=12200

∴ (𝑆𝐼) = 𝐴𝐴11𝐻 𝑎𝑛𝑑 (𝐷𝑆) = 𝐹𝐹𝐸𝐸𝐻

• MISCELLANEOUS DATA TRANSFER INSTRUCTIONS:

XCHG: The XCHG (exchange) instruction exchanges the contents of a register

with the contents of any other register or memory. The general form of this

instruction is as shown below:

Destinatio

n

source

Accumulat

or

Memory

Register

Register

Reg16

Register

Register

Memory

Allowed operand

Mnem. Meaning Format operation Flags

XCHG exchange XCHG D,S (S)↔(D) None

XLAT: This instruction used to simplify implementation of the lookup table

operation. The general form of this instruction is as shown below:

Mnem. Meaning Format operation Flags
XTAL Translate XTAL (AL) ((AL)+(BX)+(DS)*10 None

8

LAHF and SAHF: The LAHF and SAHF instructions are seldom used because

they were designed as bridge instructions. These instructions allowed 8085

microprocessor software to be translated into 8086 software by a translation

program.

IN and OUT: There are two different forms of IN and OUT instructions: the direct

I/O instructions and variable I/O instructions. Either of these two types of

instructions can be used to transfer a byte or a word of data. All data transfers take

place between an I/O device and the MPU’s accumulator register. The general

form of this instruction is as shown below:

Mnem. Meaning Format operation Flags

IN Input direct

Input variable

IN Acc, port

IN Acc, DX

(Acc) ← (port)

(Acc) ← ((DX))

None

OUT output direct

Variable

OUT port, Acc

OUT DX, Acc

(Acc) → (port)

(Acc) → ((DX))

None

