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VECTOR ALGEBRA

One thing I have learned in a long life: that all our science, measured against
reality, is primitive and childlike—and yet is the most precious thing we have.

—ALBERT EINSTEIN

1.1 INTRODUCTION

Electromagnetics (EM) may be regarded as the study of the interactions between electric
charges at rest and in motion. It entails the analysis, synthesis, physical interpretation, and
application of electric and magnetic fields.

Kkctioniiiniutics (k.Yli is a branch of physics or electrical engineering in which
electric and magnetic phenomena are studied.

EM principles find applications in various allied disciplines such as microwaves, an-
tennas, electric machines, satellite communications, bioelectromagnetics, plasmas, nuclear
research, fiber optics, electromagnetic interference and compatibility, electromechanical
energy conversion, radar meteorology," and remote sensing.1'2 In physical medicine, for
example, EM power, either in the form of shortwaves or microwaves, is used to heat deep
tissues and to stimulate certain physiological responses in order to relieve certain patho-
logical conditions. EM fields are used in induction heaters for melting, forging, annealing,
surface hardening, and soldering operations. Dielectric heating equipment uses shortwaves
to join or seal thin sheets of plastic materials. EM energy offers many new and exciting
possibilities in agriculture. It is used, for example, to change vegetable taste by reducing
acidity.

EM devices include transformers, electric relays, radio/TV, telephone, electric motors,
transmission lines, waveguides, antennas, optical fibers, radars, and lasers. The design of
these devices requires thorough knowledge of the laws and principles of EM.

For numerous applications of electrostatics, see J. M. Crowley, Fundamentals of Applied Electro-
statics. New York: John Wiley & Sons, 1986.
2For other areas of applications of EM, see, for example, D. Teplitz, ed., Electromagnetism: Paths to
Research. New York: Plenum Press, 1982.
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+1.2 A PREVIEW OF THE BOOK

The subject of electromagnetic phenomena in this book can be summarized in Maxwell's
equations:

V-D = pv (1.1)

V • B = 0 (1.2)

• • * • • • *•- V X E = - — ( 1 . 3 )
dt

V X H = J + — (1.4)
dt

where V = the vector differential operator
D = the electric flux density
B = the magnetic flux density
E = the electric field intensity
H = the magnetic field intensity
pv = the volume charge density

and J = the current density.

Maxwell based these equations on previously known results, both experimental and theo-
retical. A quick look at these equations shows that we shall be dealing with vector quanti-
ties. It is consequently logical that we spend some time in Part I examining the mathemat-
ical tools required for this course. The derivation of eqs. (1.1) to (1.4) for time-invariant
conditions and the physical significance of the quantities D, B, E, H, J and pv will be our
aim in Parts II and III. In Part IV, we shall reexamine the equations for time-varying situa-
tions and apply them in our study of practical EM devices.

1.3 SCALARS AND VECTORS

Vector analysis is a mathematical tool with which electromagnetic (EM) concepts are most
conveniently expressed and best comprehended. We must first learn its rules and tech-
niques before we can confidently apply it. Since most students taking this course have little
exposure to vector analysis, considerable attention is given to it in this and the next two
chapters.3 This chapter introduces the basic concepts of vector algebra in Cartesian coordi-
nates only. The next chapter builds on this and extends to other coordinate systems.

A quantity can be either a scalar or a vector.

Indicates sections that may be skipped, explained briefly, or assigned as homework if the text is
covered in one semester.

3The reader who feels no need for review of vector algebra can skip to the next chapter.

I



1.4 UNIT VECTOR

A scalar is a quantity that has only magnitude.

Quantities such as time, mass, distance, temperature, entropy, electric potential, and popu-
lation are scalars.

A vector is a quantity that has both magnitude and direction.

Vector quantities include velocity, force, displacement, and electric field intensity. Another
class of physical quantities is called tensors, of which scalars and vectors are special cases.
For most of the time, we shall be concerned with scalars and vectors.4

To distinguish between a scalar and a vector it is customary to represent a vector by a
letter with an arrow on top of it, such as A and B, or by a letter in boldface type such as A
and B. A scalar is represented simply by a letter—e.g., A, B, U, and V.

EM theory is essentially a study of some particular fields.

A field is a function that specifies a particular quantity everywhere in a region.

If the quantity is scalar (or vector), the field is said to be a scalar (or vector) field. Exam-
ples of scalar fields are temperature distribution in a building, sound intensity in a theater,
electric potential in a region, and refractive index of a stratified medium. The gravitational
force on a body in space and the velocity of raindrops in the atmosphere are examples of
vector fields.

1.4 UNIT VECTOR

A vector A has both magnitude and direction. The magnitude of A is a scalar written as A
or |A|. A unit vector aA along A is defined as a vector whose magnitude is unity (i.e., 1) and
its direction is along A, that is,

(1-5)

(1.6)

(1.7)

Note that |aA| = 1. Thus we may write A as

A = AaA

which completely specifies A in terms of its magnitude A and its direction aA.
A vector A in Cartesian (or rectangular) coordinates may be represented as

(Ax, Ay, Az) or Ayay + Azaz

4For an elementary treatment of tensors, see, for example, A. I. Borisenko and I. E. Tarapor, Vector
and Tensor Analysis with Application. Englewood Cliffs, NJ: Prentice-Hall, 1968.
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(a) (b)

Figure 1.1 (a) Unit vectors ax, ay, and az, (b) components of A along
ax, â ,, and az.

where Ax, A r and Az are called the components of A in the x, y, and z directions respec-
tively; ax, aT and az are unit vectors in the x, y, and z directions, respectively. For example,
ax is a dimensionless vector of magnitude one in the direction of the increase of the x-axis.
The unit vectors ax, a,,, and az are illustrated in Figure 1.1 (a), and the components of A along
the coordinate axes are shown in Figure 1.1 (b). The magnitude of vector A is given by

A = VA2
X + Al + A\

and the unit vector along A is given by

Axax Azaz

VAT+AT+AI

(1-8)

(1.9)

1.5 VECTOR ADDITION AND SUBTRACTION

Two vectors A and B can be added together to give another vector C; that is,

C = A + B (1.10)

The vector addition is carried out component by component. Thus, if A = (Ax, Ay, Az) and
B = (Bx,By,Bz).

C = (Ax + Bx)ax + {Ay + By)ay + (Az + Bz)az

Vector subtraction is similarly carried out as

D = A - B = A + (-B)
= (Ax - Bx)ax + (Ay - By)ay + (Az - Bz)az

(l.H)

(1.12)
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(a)

1.6 POSITION AND DISTANCE VECTORS

(b)

Figure 1.2 Vector addition C = A + B: (a) parallelogram rule,
(b) head-to-tail rule.

Figure 1.3 Vector subtraction D = A -
B: (a) parallelogram rule, (b) head-to-tail

fA rule.

(a) (b)

Graphically, vector addition and subtraction are obtained by either the parallelogram rule
or the head-to-tail rule as portrayed in Figures 1.2 and 1.3, respectively.

The three basic laws of algebra obeyed by any giveny vectors A, B, and C, are sum-
marized as follows:

Law Addition Multiplication

Commutative A + B = B + A kA = Ak

Associative A + (B + C) = (A + B) + C k(( A) = (k()A

Distributive k(A + B) = kA + ZfcB

where k and € are scalars. Multiplication of a vector with another vector will be discussed
in Section 1.7.

1.6 POSITION AND DISTANCE VECTORS

A point P in Cartesian coordinates may be represented by (x, y, z).

The position vector r,. (or radius vector) of point P is as (he directed silancc from
the origin () lo P: i.e..

r P = OP = xax + yay (1.13)
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Figure 1.4 Illustration of position vector rP

3a, + 4a., + 5az.

Figure 1.5 Distance vector rPG.

The position vector of point P is useful in defining its position in space. Point (3, 4, 5), for
example, and its position vector 3ax + 4a>( + 5az are shown in Figure 1.4.

The distance vector is ihc displacement from one point to another.

If two points P and Q are given by (xP, yP, zp) and (xe, yQ, ZQ), the distance vector (or
separation vector) is the displacement from P to Q as shown in Figure 1.5; that is,

rPQ ~ rQ rP

= (xQ - xP)ax + (yQ - yP)&y + (zQ - zP)az
(1.14)

The difference between a point P and a vector A should be noted. Though both P and
A may be represented in the same manner as (x, y, z) and (Ax, Ay, Az), respectively, the point
P is not a vector; only its position vector i> is a vector. Vector A may depend on point P,
however. For example, if A = 2xya,t + y2ay - xz2az and P is (2, -1 ,4 ) , then A at P
would be — 4a^ + ay — 32a;,. A vector field is said to be constant or uniform if it does not
depend on space variables x, y, and z. For example, vector B = 3a^ — 2â , + 10az is a
uniform vector while vector A = 2xyax + y2ay — xz2az is not uniform because B is the
same everywhere whereas A varies from point to point.

EXAMPLE 1.1
If A = 10ax - 4ay + 6azandB = 2&x + av, find: (a) the component of A along ay, (b) the
magnitude of 3A - B, (c) a unit vector along A + 2B.
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Solution:

(a) The component of A along ay is Ay = -4 .

(b) 3A - B = 3(10, -4 , 6) - (2, 1, 0)
= (30,-12,18) - (2, 1,0)
= (28,-13,18)

Hence

|3A - B| = V282 + (-13)2 + (18)2 = VT277
= 35.74

(c) Let C = A + 2B = (10, -4 , 6) + (4, 2, 0) = (14, - 2 , 6).

A unit vector along C is

(14,-2,6)

or

Vl4 2 + (-2)2 + 62

ac = 0.91 \3ax - 0.1302a,, + 0.3906az

Note that |ac| = 1 as expected.

PRACTICE EXERCISE 1.1

Given vectors A = ax + 3a. and B = 5ax + 2av - 6a,, determine

(a) |A + B

(b) 5A - B

(c) The component of A along av

(d) A unit vector parallel to 3A 4- B

Answer: (a) 7, (b) (0, - 2 , 21), (c) 0, (d) ± (0.9117, 0.2279, 0.3419).

Points P and Q are located at (0, 2, 4) and ( - 3 , 1, 5). Calculate

(a) The position vector P

(b) The distance vector from P to Q

(c) The distance between P and Q

(d) A vector parallel to PQ with magntude of 10
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Solution:

(a) i> = 0ax + 2av + 4az = 2a, + 4az

(b) rPQ = rQ - i> = ( - 3 , 1, 5) - (0, 2, 4) = ( - 3 , - 1 , 1)

or = - 3 a x - ay + az

(c) Since rPQ is the distance vector from P to Q, the distance between P and Q is the mag-
nitude of this vector; that is,

Alternatively:

d = |i>e| = V 9 + 1 + 1 = 3.317

d= V(xQ - xPf + (yQ- yPf + (zQ - zPf
= V 9 + T + T = 3.317

(d) Let the required vector be A, then

A = AaA

where A = 10 is the magnitude of A. Since A is parallel to PQ, it must have the same unit
vector as rPQ or rQP. Hence,

rPQ

and

( -3 , -1 ,1)
3.317

A = ± I 0 ( 3 ' * ' — - = ±(-9.045a^ - 3.015a, + 3.015az)

PRACTICE EXERCISE 1.2

Given points P(l, - 3 , 5), Q(2, 4, 6), and R(0, 3, 8), find: (a) the position vectors of
P and R, (b) the distance vector rQR, (c) the distance between Q and R,

Answer: (a) ax — 3ay + 5az, 3a* + 33,, (b) —2a* - ay + 2az.

EXAMPLE 1.3
A river flows southeast at 10 km/hr and a boat flows upon it with its bow pointed in the di-
rection of travel. A man walks upon the deck at 2 km/hr in a direction to the right and per-
pendicular to the direction of the boat's movement. Find the velocity of the man with
respect to the earth.

Solution:

Consider Figure 1.6 as illustrating the problem. The velocity of the boat is

ub = 10(cos 45° ax - sin 45° a,)
= 7.071a^ - 7.071a, km/hr
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Figure 1.6 For Example 1.3.

The velocity of the man with respect to the boat (relative velocity) is

um = 2(-cos 45° ax - sin 45° a,,)
= -1.414a, - 1.414a,, km/hr

Thus the absolute velocity of the man is

uab = um + uh = 5.657a., - 8.485ay

| u j = 10.2/-56.3"

that is, 10.2 km/hr at 56.3° south of east.

PRACTICE EXERCISE 1.3

An airplane has a ground speed of 350 km/hr in the direction due west. If there is a
wind blowing northwest at 40 km/hr, calculate the true air speed and heading of the
airplane.

Answer: 379.3 km/hr, 4.275° north of west.

1.7 VECTOR MULTIPLICATION

When two vectors A and B are multiplied, the result is either a scalar or a vector depend-
ing on how they are multiplied. Thus there are two types of vector multiplication:

1. Scalar (or dot) product: A • B
2. Vector (or cross) product: A X B



12 HI Vector Algebra

Multiplication of three vectors A, B, and C can result in either:

3. Scalar triple product: A • (B X C)

or

4. Vector triple product: A X (B X C)

A. Dot Product

The dot product of two vectors A and B, wrilten as A • B. is defined geometrically
as the product of the magnitudes of A and B and the cosine of the angle between
them.

Thus:

A • B = AB cos I (1.15)

where 6AB is the smaller angle between A and B. The result of A • B is called either the
scalar product because it is scalar, or the dot product due to the dot sign. If A =
(Ax, Ay, Az) and B = (Bx, By, Bz), then

A • B = AXBX + AyBy + AZBZ (1.16)

which is obtained by multiplying A and B component by component. Two vectors A and B
are said to be orthogonal (or perpendicular) with each other if A • B = 0.

Note that dot product obeys the following:

(i) Commutative law:

A - B = B - A (1.17)

(ii) Distributive law:

A (B + C) = A B + A C (1.18)

A - A = |A|2 = A2 (1.19)

(iii)
Also note that

ax • ay = ay • az = az • ax = 0 (1.20a)

ax • ax = ay • ay = a z • a z = 1 (1.20b)

It is easy to prove the identities in eqs. (1.17) to (1.20) by applying eq. (1.15) or (1.16).
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B. Cross Product

The cross product of two vectors A ;ind B. written as A X B. is a vector quantity
whose magnitude is ihe area of the parallclopiped formed by A and It (see Figure
1.7) and is in the direction of advance of a right-handed screw as A is turned into B.

Thus

A X B = AB sin 6ABan (1.21)

where an is a unit vector normal to the plane containing A and B. The direction of an is
taken as the direction of the right thumb when the fingers of the right hand rotate from A to
B as shown in Figure 1.8(a). Alternatively, the direction of an is taken as that of the
advance of a right-handed screw as A is turned into B as shown in Figure 1.8(b).

The vector multiplication of eq. (1.21) is called cross product due to the cross sign; it
is also called vector product because the result is a vector. If A = (Ax

B = (Bx, By, Bz) then

A X B =
ax

Ax

Bx

av

Ay

By

az

K
Bz

- AzBy)ax + (AZBX - AxBz)ay + (AxBy - AyBx)az

Ay, Az) and

(1.22a)

(1.22b)

which is obtained by "crossing" terms in cyclic permutation, hence the name cross
product.

Figure 1.7 The cross product of A and B is a vector with magnitude equal to the
area of the parallelogram and direction as indicated.
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A X B AX B

* - A

(a) (b)

Figure 1.8 Direction of A X B and an using (a) right-hand rule, (b) right-handed
screw rule.

Note that the cross product has the following basic properties:

(i) It is not commutative:

It is anticommutative:

A X B ^ B X A

A X B = - B X A

(ii) It is not associative:

A X (B X C) =h (A X B) X C

(iii) It is distributive:

(iv)

A X ( B + C) = A X B + A X C

A X A = 0

Also note that

ax X ay = az

a, X az = ax

az X ax = ay

(1.23a)

(1.23b)

(1.24)

(1.25)

(1.26)

(1.27)

which are obtained in cyclic permutation and illustrated in Figure 1.9. The identities in eqs.
(1.25) to (1.27) are easily verified using eq. (1.21) or (1.22). It should be noted that in ob-
taining an, we have used the right-hand or right-handed screw rule because we want to be
consistent with our coordinate system illustrated in Figure 1.1, which is right-handed. A
right-handed coordinate system is one in which the right-hand rule is satisfied: that is,
ax X ay = az is obeyed. In a left-handed system, we follow the left-hand or left-handed
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(a) (b)

Figure 1.9 Cross product using cyclic permutation: (a) moving
clockwise leads to positive results: (b) moving counterclockwise
leads to negative results.

screw rule and ax X ay = -az is satisfied. Throughout this book, we shall stick to right-
handed coordinate systems.

Just as multiplication of two vectors gives a scalar or vector result, multiplication of
three vectors A, B, and C gives a scalar or vector result depending on how the vectors are
multiplied. Thus we have scalar or vector triple product.

C. Scalar Triple Product

Given three vectors A, B, and C, we define the scalar triple product as

A • (B X C) = B • (C X A) = C • (A X B) (1.28)

obtained in cyclic permutation. If A = (Ax, Ay, Az), B = (Bx, By, Bz), and C = (Cx, Cy, Cz),
then A • (B X C) is the volume of a parallelepiped having A, B, and C as edges and is
easily obtained by finding the determinant of the 3 X 3 matrix formed by A, B, and C;
that is,

A • (B X C) = Bx By Bz

Cy C,
(1.29)

Since the result of this vector multiplication is scalar, eq. (1.28) or (1.29) is called the
scalar triple product.

D. Vector Triple Product

For vectors A, B, and C, we define the vector tiple product as

A X (B X C) = B(A • C) - C(A • B) (1.30)
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obtained using the "bac-cab" rule. It should be noted that

but

(A • B)C # A(B • C)

(A • B)C = C(A • B).

(1.31)

(1.32)

1.8 COMPONENTS OF A VECTOR

A direct application of vector product is its use in determining the projection (or compo-
nent) of a vector in a given direction. The projection can be scalar or vector. Given a vector
A, we define the scalar component AB of A along vector B as [see Figure 1.10(a)]

AB = A cos 6AB = |A| |aB| cos 6AB

or

AR = A • afl (1.33)

The vector component AB of A along B is simply the scalar component in eq. (1.33) multi-
plied by a unit vector along B; that is,

AB = ABaB = (A (1-34)

Both the scalar and vector components of A are illustrated in Figure 1.10. Notice from
Figure 1.10(b) that the vector can be resolved into two orthogonal components: one com-
ponent AB parallel to B, another (A - As) perpendicular to B. In fact, our Cartesian repre-
sentation of a vector is essentially resolving the vector into three mutually orthogonal com-
ponents as in Figure l.l(b).

We have considered addition, subtraction, and multiplication of vectors. However, di-
vision of vectors A/B has not been considered because it is undefined except when A and
B are parallel so that A = kB, where k is a constant. Differentiation and integration of
vectors will be considered in Chapter 3.

-»- B • - B

(a)

Figure 1.10 Components of A along B: (a) scalar component AB, (b) vector
component AB.
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Given vectors A = 3ax + 4ay + az and B = 2ay - 5az, find the angle between A and B.

Solution:

The angle dAB can be found by using either dot product or cross product.

A • B = (3, 4, 1) • (0, 2, - 5 )
= 0 + 8 - 5 = 3

Alternatively:

A| = V3 2 + 42 + I2 = V26

COS BAR =

B| = VO2 + 22 + (-5)2 = V29

A B 3

IAIIBI V(26)(29)
= 0.1092

9AR = cos"1 0.1092 = 83.73°

A X B = 3 4
az

1
0 2 - 5

= ( -20 - 2)ax + (0 + 15)ay + (6 - 0)az

= (-22,15,6)

|A X B + 152 + 62 = V745

sin 6AB =
A X Bj V745

/ (26X29)
= 0.994

dAB = cos"1 0.994 = 83.73°

PRACTICE EXERCISE 1.4

If A = ax + 3az and B = 5a* + 2ay - 6a., find 6AB.

Answer: 120.6°.

EXAMPLE 1.5
Three field quantities are given by

P = 2ax - a,

Q = 2a^ - ay + 2az

R = 2ax - 33 ,̂ + az

Determine

(a) (P + Q) X (P - Q)

(b) Q R X P
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(c) P • Q X R

(d) sin0eR

(e) P X (Q X R)

(f) A unit vector perpendicular to both Q and R

(g) The component of P along Q

Solution:

(a) (P + Q) X (P - Q) = P X (P - Q) + Q X (P - Q)
= P X P - P X Q + Q X P - Q X Q
= O + Q X P + Q X P - O
= 2Q X P

= 2
ay a,

2 - 1 2
2 0 - 1

= 2(1 - 0) ax + 2(4 + 2) ay + 2(0 + 2) az

= 2ar + 12av 4a,

(b) The only way Q • R X P makes sense is

Q (RX P) = (2 , -1 ,2 ) 2
2

ay
- 3

0

a
1

- 1

= (2, - 1 , 2 ) -(3, 4, 6)
= 6 - 4 + 12 = 14.

Alternatively:

Q (R X P) =
2 - 1 2
2 - 3 1
2 0 - 1

To find the determinant of a 3 X 3 matrix, we repeat the first two rows and cross multiply;
when the cross multiplication is from right to left, the result should be negated as shown
below. This technique of finding a determinant applies only to a 3 X 3 matrix. Hence

Q (RXP)= _

• +

= +6+0-2+12-0-2
= 14

as obtained before.
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(c) From eq. (1.28)

or

(d)

P (Q X R) = Q (R X P) = 14

P (Q X R) = (2, 0, -1 ) • (5, 2, -4 )
= 10 + 0 + 4
= 14

| Q X R

IQIIRI 1(2,

/45 V5
3V14 V14

= 0.5976

(e) P X (Q X R) = (2, 0, -1 ) X (5, 2, -4 )
= (2, 3, 4)

Alternatively, using the bac-cab rule,

P X (Q X R) = Q(P R) - R(P Q)
= (2, - 1 , 2)(4 + 0 - 1) - (2, - 3 , 1)(4 + 0 - 2 )
= (2, 3, 4)

(f) A unit vector perpendicular to both Q and R is given by

± Q X R ±(5,2, - 4 )
3 |QXR|

= ± (0.745, 0.298, -0 .596)

Note that |a| = l , a - Q = 0 = a - R . Any of these can be used to check a.

(g) The component of P along Q is

cos 6PQaQPQ =

= (P • aG)ae =

(4

(P Q)Q
IQI2

= 2
9( 4 + 1 + 4 )

= 0.4444ar - 0.2222av + 0.4444a7.

PRACTICE EXERCISE 1.5

Let E = 3av + 4a, and F = 4a^ - 10av + 5a r

(a) Find the component of E along F.

(b) Determine a unit vector perpendicular to both E and F.

Answer: (a) (-0.2837, 0.7092, -0.3546), (b) ± (0.9398, 0.2734, -0.205).
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FXAMPIF 1 f. Derive the cosine formula

and the sine formula

a2 = b2 + c2 - 2bc cos A

sin A sin B sin C

a b c

using dot product and cross product, respectively.

Solution:

Consider a triangle as shown in Figure 1.11. From the figure, we notice that

a + b + c = 0

that is,

b + c = - a

Hence,

a2 = a • a = (b + c) • (b + c)
= b b + c c + 2 b c

a2 = b2 + c2 - 2bc cos A

where A is the angle between b and c.
The area of a triangle is half of the product of its height and base. Hence,

l-a X b| = l-b X c| = l-c X al

ab sin C = be sin A = ca sin B

Dividing through by abc gives

sin A sin B sin C

Figure 1.11 For Example 1.6.
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PRACTICE EXERCISE 1.6

Show that vectors a = (4, 0, -1 ) , b = (1,3, 4), and c = ( -5 , - 3 , - 3 ) form the
sides of a triangle. Is this a right angle triangle? Calculate the area of the triangle.

Answer: Yes, 10.5.

EXAMPLE 1.7 Show that points Ptf, 2, -4 ) , P2{\, 1, 2), and P 3 ( -3 , 0, 8) all lie on a straight line. Deter-
mine the shortest distance between the line and point P4(3, - 1 , 0).

Solution:

The distance vector fptp2 is given by

Similarly,

rPJP2 — rp2

Tp,P3 = Tp3-1

rPtP4
 = rP4 - •

rP P X rP

rP,= (1,1
= (-4

>, = ("3,
= (-8,

>, = (3, -
= (-2,

p =

=

a*
- 4
- 8

(0,0,

,2)
, - 1

0,8)
- 2 ,

1,0)
- 3 ,

a,
- 1

2

0)

- ( 5
6)

, 2, -4)

- (5, 2, -4)
12)

- (5, 2, -4)

4)

az

6
12

showing that the angle between r>iP2 and rPiPi is zero (sin 6 = 0). This implies that Ph P2,
and P3 lie on a straight line.

Alternatively, the vector equation of the straight line is easily determined from Figure
1.12(a). For any point P on the line joining P, and P2

where X is a constant. Hence the position vector r> of the point P must satisfy

i> - i>, = M*p2 ~ rP)

that is,

i> = i>, + \(i>2 - i>,)

= (5, 2, -4 ) - X(4, 1, -6 )

i> = (5 - 4X, 2 - X, - 4 + 6X)

This is the vector equation of the straight line joining Px and P2- If P3 is on this line, the po-
sition vector of F3 must satisfy the equation; r3 does satisfy the equation when X = 2.
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(a)

Figure 1.12 For Example 1.7.

The shortest distance between the line and point P4(3, - 1 , 0) is the perpendicular dis-
tance from the point to the line. From Figure 1.12(b), it is clear that

d = rPiPt sin 6 = |rP|p4 X aP]p2

312
= 2.426

53

Any point on the line may be used as a reference point. Thus, instead of using P\ as a ref-
erence point, we could use P3 so that

d= sin

PRACTICE EXERCISE 1.7

If P, is (1,2, - 3 ) and P2 is ( -4 , 0,5), find

(a) The distance P]P2

(b) The vector equation of the line P]P2

(c) The shortest distance between the line P\P2 and point P3(7, - 1 ,2 )

Answer: (a) 9.644, (b) (1 - 5X)ax + 2(1 - X) av + (8X - 3) â , (c) 8.2.

SUMMARY 1. A field is a function that specifies a quantity in space. For example, A(x, y, z) is a vector
field whereas V(x, y, z) is a scalar field.

2. A vector A is uniquely specified by its magnitude and a unit vector along it, that is,
A = AaA.
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3. Multiplying two vectors A and B results in either a scalar A • B = AB cos 6AB or a
vector A X B = AB sin 9ABan. Multiplying three vectors A, B, and C yields a scalar
A • (B X C) or a vector A X (B X C).

4. The scalar projection (or component) of vector A onto B is AB = A • aB whereas vector
projection of A onto B is AB = ABaB.

1.1 Identify which of the following quantities is not a vector: (a) force, (b) momentum, (c) ac-
celeration, (d) work, (e) weight.

1.2 Which of the following is not a scalar field?

(a) Displacement of a mosquito in space

(b) Light intensity in a drawing room

(c) Temperature distribution in your classroom

(d) Atmospheric pressure in a given region

(e) Humidity of a city

1.3 The rectangular coordinate systems shown in Figure 1.13 are right-handed except:

1.4 Which of these is correct?

(a) A X A = |A|2

( b ) A X B + B X A = 0

(c) A • B • C = B • C • A

(d) axay = az

(e) ak = ax - ay

where ak is a unit vector.

(a)

-*• y

(d) (e)

Figure 1.13 For Review Question 1.3.

(c)

y

(f)
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1.5 Which of the following identities is not valid?

(a) a(b + c) = ab + be
(b) a X (b + c) = a X b + a X c
(c) a • b = b • a
(d) c • (a X b) = - b • (a X c)

(e) aA • aB = cos dAB

1.6 Which of the following statements are meaningless?

(a) A • B + 2A = 0
(b) A • B + 5 = 2A

(c) A(A + B) + 2 = 0

(d) A • A + B • B = 0

1.7 Let F = 2ax - 63^ + 10a2 and G = ax + Gyay + 5az. If F and G have the same unit
vector, Gy is

(a) 6 (d) 0

(b) - 3 (e) 6

1.8 Given that A = ax + aay + az and B = <xax + ay + az, if A and B are normal to each
other, a is

(a) - 2 (d) 1
(b) -1/2 (e) 2

(c) 0

1.9 The component of 6ax + 2a}, — 3az along 3ax — 4a>( is

(a) -12ax - 9ay - 3az

(b) 30a, - 40a^
(c) 10/7
(d) 2

(e) 10

1.10 Given A = — 6ax + 3ay + 2az, the projection of A along ay is

(a) - 1 2
(b) - 4

(c) 3
(d) 7

(e) 12

Answers: Lid, 1.2a, 1.3b,e, 1.4b, 1.5a, 1.6b,c, 1.7b, 1.8b, 1.9d, 1.10c.
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1.1 Find the unit vector along the line joining point (2, 4, 4) to point ( - 3 , 2, 2).
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1.2 Let A = 2a^ + 53 ,̂ - 3az, B = 3a^ - 4ay, and C = ax + ay + az. (a) Determine
A + 2B. (b) Calculate |A - 5C| . (c) For what values of k is |kB| = 2? (d) Find
(A X B)/(A • B).

1.3 If

A = ay - 3az

C = 3ax 5av 7az

determine:

(a) A - 2B + C

(b) C - 4(A + B)

2A - 3B

(d) A • C - |B|2

(e) |B X (|A + | C )

1.4 If the position vectors of points T and S are 3a^ — 23 ,̂ + az and Aax 4- 6ay + 2ax, re-
spectively, find: (a) the coordinates of T and S, (b) the distance vector from T to S, (c) the
distance between T and S.

1.5 If

Aay + 6az

A = 5ax

B = -*x

C = 8ax + 2a,

find the values of a and /3 such that aA + 0B + C is parallel to the y-axis.

1.6 Given vectors

A = aax + ay + Aaz

o — ^a x ~T~ p3y O3Z

C = 5ax - 2ay + 7a,

determine a, /3, and 7 such that the vectors are mutually orthogonal.

1.7 (a) Show that

(A • B)2 + (A X B)2 = (AB)2

az X ax

a, • aY X a.' a, =
a^ X ay

a* • ay X az
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1.8 Given that

P = 2ax - Ay - 2az

Q = 4a_, + 3ay + 2a2

C = ~ax + ay + 2az

find: (a) |P + Q - R|, (b) P • Q X R, (c) Q X P • R, (d) (P X Q) • (Q X R),
(e) (P X Q) X (Q X R), (f) cos 6PR, (g) sin 6PQ.

1.9 Given vectors T = 2ax — 6ay + 3az and 8 = 3̂ -4- 2ay + az, find: (a) the scalar projec-
tion of T on S, (b) the vector projection of S on T, (c) the smaller angle between T and S.

1.10 If A = — ax + 6ay + 5az andB = ax + 2ay + 3ax, find: (a) the scalar projections of A
on B, (b) the vector projection of B on A, (c) the unit vector perpendicular to the plane
containing A and B.

1.11 Calculate the angles that vector H = 3ax + 5ay - 8az makes with the x-,y-, and z-axes.

1.12 Find the triple scalar product of P, Q, and R given that

P = 2ax - ay + az

Q = â  + ay + az

and

R = 2a, + 3az

1.13 Simplify the following expressions:

(a) A X (A X B)

(b) A X [A X (A X B)]

1.14 Show that the dot and cross in the triple scalar product may be interchanged, i.e.,
A • (B X C) = (A X B) • C.

1.15 Points Pi(l, 2, 3), P2(~5, 2, 0), and P3(2, 7, -3 ) form a triangle in space. Calculate the
area of the triangle.

1.16 The vertices of a triangle are located at (4, 1, -3 ) , ( -2 , 5, 4), and (0,1,6). Find the three
angles of the triangle.

1.17 Points P, Q, and R are located at ( - 1 , 4, 8), ( 2 , - 1 , 3), and ( - 1 , 2, 3), respectively.
Determine: (a) the distance between P and Q, (b) the distance vector from P to R, (c) the
angle between QP and QR, (d) the area of triangle PQR, (e) the perimeter of triangle PQR.

*1.18 If r is the position vector of the point (x, y, z) and A is a constant vector, show that:

(a) (r - A) • A = 0 is the equation of a constant plane

(b) (r — A) • r = 0 is the equation of a sphere

*Single asterisks indicate problems of intermediate difficulty.
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Figure 1.14 For Problem 1.20.
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(c) Also show that the result of part (a) is of the form Ax + By + Cz + D = 0 where
D = -(A2 + B2 + C2), and that of part (b) is of the form x2 + y2 + z2 = r2.

*1.19 (a) Prove that P = cos 0i&x + sin 6xay and Q = cos 82ax + sin 02ay are unit vectors in
the xy-plane respectively making angles &i and 82 with the x-axis.

(b) By means of dot product, obtain the formula for cos(02 — #i)- By similarly formulat-
ing P and Q, obtain the formula for cos(02 + #i).

(c) If 6 is the angle between P and Q, find —|P — Q| in terms of 6.

1.20 Consider a rigid body rotating with a constant angular velocity w radians per second about
a fixed axis through O as in Figure 1.14. Let r be the distance vector from O to P, the
position of a particle in the body. The velocity u of the body at P is |u| = dw=
r sin 6 |co or u = <o X r. If the rigid body is rotating with 3 radians per second about

an axis parallel to ax — 2ay + 2az and passing through point (2, —3, 1), determine the
velocity of the body at (1, 3,4).

1.21 Given A = x2yax — yzay + yz2az, determine:

(a) The magnitude of A at point T(2, —1,3)

(b) The distance vector from T to 5 if S is 5.6 units away from T and in the same direction
as A at T

(c) The position vector of S

1.22 E and F are vector fields given by E = 2xa_,. + ay + yzaz and F = xyax — y2ay+
xyzaz. Determine:

(a) | E | a t ( l , 2 , 3)

(b) The component of E along F at (1, 2, 3)

(c) A vector perpendicular to both E and F at (0, 1 , - 3 ) whose magnitude is unity


