
Chapter 8

MAGNETIC FORCES, MATERIALS,
AND DEVICES

Do all the good you can,
By all the means you can,
In all the ways you can,
In all the places you can,
At all the times you can,
To all the people you can,
As long as ever you can.

—JOHN WESLEY

8.1 INTRODUCTION

Having considered the basic laws and techniques commonly used in calculating magnetic
field B due to current-carrying elements, we are prepared to study the force a magnetic
field exerts on charged particles, current elements, and loops. Such a study is important to
problems on electrical devices such as ammeters, voltmeters, galvanometers, cyclotrons,
plasmas, motors, and magnetohydrodynamic generators. The precise definition of the mag-
netic field, deliberately sidestepped in the previous chapter, will be given here. The con-
cepts of magnetic moments and dipole will also be considered.

Furthermore, we will consider magnetic fields in material media, as opposed to the
magnetic fields in vacuum or free space examined in the previous chapter. The results of
the preceding chapter need only some modification to account for the presence of materi-
als in a magnetic field. Further discussions will cover inductors, inductances, magnetic
energy, and magnetic circuits.

8.2 FORCES DUE TO MAGNETIC FIELDS

There are at least three ways in which force due to magnetic fields can be experienced. The
force can be (a) due to a moving charged particle in a B field, (b) on a current element in an
external B field, or (c) between two current elements.
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A. Force on a Charged Particle

According to our discussion in Chapter 4, the electric force Fe on a stationary or moving
electric charge Q in an electric field is given by Coulomb's experimental law and is related
to the electric field intensity E as

Fe = QE (8.1)

This shows that if Q is positive, Fe and E have the same direction.
A magnetic field can exert force only on a moving charge. From experiments, it is

found that the magnetic force Fm experienced by a charge Q moving with a velocity u in a
magnetic field B is

Fm = Qn X B (8.2)

This clearly shows that Fm is perpendicular to both u and B.
From eqs. (8.1) and (8.2), a comparison between the electric force ¥e and the magnetic

force Fm can be made. Fe is independent of the velocity of the charge and can perform
work on the charge and change its kinetic energy. Unlike Fe, Fm depends on the charge ve-
locity and is normal to it. Fm cannot perform work because it is at right angles to the direc-
tion of motion of the charge (Fm • d\ = 0); it does not cause an increase in kinetic energy
of the charge. The magnitude of Fm is generally small compared to Fe except at high ve-
locities.

For a moving charge Q in the presence of both electric and magnetic fields, the total
force on the charge is given by

F = F + F

or

F = g(E + u X B) (8.3)

This is known as the Lorentz force equation.1 It relates mechanical force to electrical
force. If the mass of the charged particle moving in E and B fields is m, by Newton's
second law of motion.

du
= m — = (8.4)

The solution to this equation is important in determining the motion of charged particles in
E and B fields. We should bear in mind that in such fields, energy transfer can be only by
means of the electric field. A summary on the force exerted on a charged particle is given
in Table 8.1.

Since eq. (8.2) is closely parallel to eq. (8.1), which defines the electric field, some
authors and instructors prefer to begin their discussions on magnetostatics from eq. (8.2)
just as discussions on electrostatics usually begin with Coulomb's force law.

After Hendrik Lorentz (1853-1928), who first applied the equation to electric field motion.



306 W Magnetic Forces, Materials, and Devices

TABLE «.! Force on a Charged Particle

State of Particle E Field B Field Combined E and B Fields

Stationary

Moving Qu X B

QE

2(E + u X B)

B. Force on a Current Element

To determine the force on a current element / dl of a current-carrying conductor due to the
magnetic field B, we modify eq. (8.2) using the fact that for convection current [see
eq. (5.7)]:

J = P,u

From eq. (7.5), we recall the relationship between current elements:

Idl = KdS = idv

Combining eqs. (8.5) and (8.6) yields

I dl = pvu dv = dQu

Alternatively, / dl = — dl = dQ — = dQ u
dt dt

(8.5)

(8.6)

Hence,

Idl = dQu (8.7)

This shows that an elemental charge dQ moving with velocity u (thereby producing con-
vection current element dQ u) is equivalent to a conduction current element / dl. Thus the
force on a current element / dl in a magnetic field B is found from eq. (8.2) by merely re-
placing Qu by / dl; that is,

d¥ = Idl X B (8.8)

If the current / is through a closed path L or circuit, the force on the circuit is given by

(8.9), F = (b Idl X B i

In using eq. (8.8) or (8.9), we should keep in mind that the magnetic field produced by the
current element / dl does not exert force on the element itself just as a point charge does
not exert force on itself. The B field that exerts force on / dl must be due to another
element. In other words, the B field in eq. (8.8) or (8.9) is external to the current element
/ dl. If instead of the line current element / dl, we have surface current elements K dS
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or a volume current element J dv, we simply make use of eq. (8.6) so that eq. (8.8)
becomes

dF = KdS XB or dF = J dv X B

while eq. (8.9) becomes

F = \ KdSXB or F = J d v X B

(8.8a)

(8.9a)

From eq. (8.8)

The magnetic field B is defined as the force per unit current element.

Alternatively, B may be defined from eq. (8.2) as the vector which satisfies FJq = u X B
just as we defined electric field E as the force per unit charge, FJq. Both of these defini-
tions of B show that B describes the force properties of a magnetic field.

C. Force between Two Current Elements

Let us now consider the force between two elements /[ d\x and I2 d\2- According to
Biot-Savart's law, both current elements produce magnetic fields. So we may find the
force d(d¥{) on element /] dl{ due to the field dB2 produced by element I2 d\2 as shown in
Figure 8.1. From eq. (8.8),

But from Biot-Savart's law,

Hence,

d(dF}) = 7, d\x X dB2

= /xo/2 d\2 X aRii

^

(8.10)

(8.11)

(8.12)

Figure 8.1 Force between two current loops.
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This equation is essentially the law of force between two current elements and is analogous
to Coulomb's law, which expresses the force between two stationary charges. From
eq. (8.12), we obtain the total force F, on current loop 1 due to current loop 2 shown in
Figure 8.1 as

F, =
4TT

X (dl2 X
(8.13)

L, JL2

Although this equation appears complicated, we should remember that it is based on
eq. (8.10). It is eq. (8.9) or (8.10) that is of fundamental importance.

The force F2 on loop 2 due to the magnetic field Bx from loop 1 is obtained from
eq. (8.13) by interchanging subscripts 1 and 2. It can be shown that F2 = —F^ thus F, and
F2 obey Newton's third law that action and reaction are equal and opposite. It is worth-
while to mention that eq. (8.13) was experimentally established by Oersted and Ampere;
Biot and Savart (Ampere's colleagues) actually based their law on it.

EXAMPLE 8.1
A charged particle of mass 2 kg and charge 3 C starts at point (1, - 2 , 0) with velocity
4ax + 3az m/s in an electric field 123^ + lOâ , V/m. At time t = 1 s, determine

(a) The acceleration of the particle

(b) Its velocity

(c) Its kinetic energy

(d) Its position

Solution:

(a) This is an initial-value problem because initial values are given. According to
Newton's second law of motion,

F = ma = QE

where a is the acceleration of the particle. Hence,

QE 3 ,
a = — = - (12a., + 10ay) = 18a* + 15aym/s2

du d
a = — = — (ux, uy, uz) = 18ax + 15a,

(b) Equating components gives

dux

~dt
= 18->KX = 18r + A

- ^ = 15 -> «v = 15? + B
dt y

(8.1.1)

(8.1.2)
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~dt
= 0 - > M 7 = C (8.1.3)

where A, B, and C are integration constants. But at t = 0, u = Aax + 3az. Hence,

ux(t = 0) = 4^>4 = 0 + A or A = 4

uy(t = 0) = 0 - > 0 = 0 + B or B = 0

uz(t = O) = 3 H > 3 = C

Substituting the values of A, B, and C into eqs. (8.1.1) to (8.1.3) gives

u(r) = (wx, MV, Mj) = (18f + 4, 15f, 3)

Hence

u(t = 1 s) = 22a., + 15a}, + 3az m/s

(c) Kinetic energy (K.E.) = -m ju|2 = - (2)(222 + 152 + 32)

= 718J

(d) u = — = —{x,y,z) = (18r + 4, 15?, 3)

Equating components yields

— = ux = 18/ + 4 -^ x = 9r2 + 4f + (8.1.4)

dt ~y ""

— = uz = 3 -> z =

dt

At t = 0, (JC, j , z) = (1, - 2 , 0); hence,

x(t = 0) = 1 -> 1 = 0 + A,

y(f = 0) = - 2 - > - 2 = 0 + B,

z(f = 0) = 0 ^ 0 = 0 + C{ or C, = 0

Substituting the values of Ab Bu and C, into eqs. (8.1.4) to (8.1.6), we obtain

(x, y, z) = (9r2 + 4? + 1, 7.5?2 - 2, 30

or A] = 1

or 5, = - 2

(8.1.5)

(8.1.6)

(8.1.7)

Hence, at t = 1, (*, j , z) = (14, 5.5, 3).
By eliminating tm eq. (8.1.7), the motion of the particle may be described in terms of *, y,
and z.
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PRACTICE EXERCISE 8.1

A charged particle of mass 1 kg and charge 2 C starts at the origin with zero initial
velocity in a region where E = 3az V/m. Find

(a) The force on the particle

(b) The time it takes to reach point P(0, 0, 12 m)

(c) Its velocity and acceleration at P

(d) Its K.E. at P.

Answer: (a) 6az N, (b) 2 s, (c) 12az m/s, 6az m/s2, (d) 72 J.

EXAMPLE 8.2
A charged particle of mass 2 kg and 1 C starts at the origin with velocity 3av, m/s and
travels in a region of uniform magnetic field B = lOâ , Wb/m . At t = 4 s, calculate

(a) The velocity and acceleration of the particle

(b) The magnetic force on it

(c) Its K.E. and location

(d) Find the particle's trajectory by eliminating t.

(e) Show that its K.E. remains constant.

Solution:

du
(a) F = m — = Qu X B

dt

du Q
a = — = —u X B

dt m

Hence

(uxax + uy&y + uzaz) = - ux uy uz

0 0 10

By equating components, we get

dux

~di

duz

dt

= -5ur

= 5 ( 0 , - Ujiy)

(8.2.1)

(8.2.2)

(8.2.3)
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We can eliminate ux or uy in eqs. (8.2.1) and (8.2.2) by taking second derivatives of one
equation and making use of the other. Thus

d2ux duy

dt2 = 5 - = - 2 5 * ,

or

d ux

~d7 25ux = 0

which is a linear differential equation with solution (see Case 3 of Example 6.5)

ux = d cos 5/ + C2 sin 5? (8.2.4)

From eqs. (8.2.1) and (8.2.4),

5M,, = — = - 5 C , sin 5f + 5C2 cos 5t (8.2.5)

dt

or

uy = — d sin 5? + C2 cos 5?
We now determine constants Co, Cu and C2 using the initial conditions. At t = 0, u = 3a r

Hence,

ux = 0 -> 0 = Cj • 1 + C2 • 0 -» C, = 0

uy = 3 -^ 3 = - d • 0 + C2 • 1 -» C2 = 3

uz = 0 -» 0 = Co

Substituting the values of Co, C,, and C2 into eqs. (8.2.3) to (8.2.5) gives

u = (ux, uy, uz) = (3 sin 5;, 3 cos 5t, 0) (8.2.6)

Hence,

and

(b)

or

U(f = 4) = (3 sin 20, 3 cos 20, 0)
= 2.739ax + 1.224ay m/s

du
a = — = (15 cos 5f, - 15 sin 5t, 0)

if

a(f = 4) = 6.101a* - 13.703avm/s2

F = ma = 12.2ax - 27.4avN

F = gu X B = (1X2.7398* + 1.224av) X 10a,
= 12.2a*- 27.4a,, N
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(c) K.E. = l/2m |u|2 = 1/2(2) (2.7392 + 1.2242) = 9 J

ux = — = 3 sin 5f —> x = —— cos 5? + bx

dy 3
uy = — = 3 cos 5f -> y = - sin 5t + b2

at 5

dz

dt

(8.2.7)

(8.2.8)

(8.2.9)

where bu b2, and b3 are integration constants. At t = 0, (x, y, z) = (0, 0, 0) and hence,

x(t = 0) = 0 -> 0 = 1 = 0.6

y(t = 0) = 0 0 = - • 0 + b2 -> 62 = 0

(8.2.10)

z(/ = 0) = 0 -> 0 = &3

Substituting the values of bt, b2, and b3 into eqs. (8.2.7) to (8.2.9), we obtain

(x, y, z) = (0.6 - 0.6 cos 5?, 0.6 sin 5f, 0)

At t = 4 s,

(x, y, z) = (0.3552, 0.5478, 0)

(d) From eq. (8.2.10), we eliminate t by noting that

(x - 0.6)2 + y2 = (0.6)2 (cos2 5t + sin2 5?), z = 0

or

(x - 0.6)2 + y2 = (0.6)2, z = 0

which is a circle on plane z = 0, centered at (0.6, 0, 0) and of radius 0.6 m. Thus the parti-
cle gyrates in an orbit about a magnetic field line.

(e) K.E. = -m |u|2 = - ( 2 ) (9 cos2 5t + 9 sin2 5t) = 9 J

which is the same as the K.E. at t = 0 and t = 4 s. Thus the uniform magnetic field has no
effect on the K.E. of the particle.

Note that the angular velocity cu = QBIm and the radius of the orbit r = uju>, where
MO is the initial speed. An interesting application of the idea in this example is found in a
common method of focusing a beam of electrons. The method employs a uniform mag-
netic field directed parallel to the desired beam as shown in Figure 8.2. Each electron
emerging from the electron gun follows a helical path and is back on the axis at the same
focal point with other electrons. If the screen of a cathode ray tube were at this point, a
single spot would appear on the screen.
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focal point
Figure 8.2 Magnetic focusing of a
beam of electrons: (a) helical paths
of electrons, (b) end view of paths.

(a) (b)

PRACTICE EXERCISE 8.2

A proton of mass m is projected into a uniform field B = Boaz with an initial veloc-
ity aax + /3ar (a) Find the differential equations that the position vector r =
xax + yay + zaz must satisfy, (b) Show that a solution to these equations is

a
x = — sin oit,

0)

a
y — — cos ut,

where w = eBJm and e is the charge on the proton, (c) Show that this solution de-
scribes a circular helix in space.

Answer: (a) — = a cos ut,— — -a sin cat, — = j3, (b) and (c) Proof.
at at at

EXAMPLE 8.3
A charged particle moves with a uniform velocity 4ax m/s in a region where
E = 20 ay V/m and B = Boaz Wb/m2. Determine Bo such that the velocity of the particle
remains constant.

Solution:

If the particle moves with a constant velocity, it implies that its acceleration is zero. In
other words, the particle experiences no net force. Hence,

0 = 2 (20av + 4ax X Boa,)

or

-20av = -ABoay

Thus Bo = 5.
This example illustrates an important principle employed in a velocity filter shown in

Figure 8.3. In this application, E, B, and u are mutually perpendicular so that Qu X B is
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charged _ u
particles

Aperture
^_ Particles with

constant velocity

F m = Q u X B

Figure 8.3 A velocity filter for charged particles.

directed opposite to QE, regardless of the sign of the charge. When the magnitudes of the
two vectors are equal,

QuB = QE

or

This is the required (critical) speed to balance out the two parts of the Lorentz force. Parti-
cles with this speed are undeflected by the fields; they are "filtered" through the aperture.
Particles with other speeds are deflected down or up, depending on whether their speeds
are greater or less than this critical speed.

PRACTICE EXERCISE 8.3

Uniform E and B fields are oriented at right angles to each other. An electron moves
with a speed of 8 X 106 m/s at right angles to both fields and passes undeflected
through the field.

(a) If the magnitude of B is 0.5 mWb/m2, find the value of E.

(b) Will this filter work for positive and negative charges and any value of mass?

Answer: (a) 4 kV/m, (b) Yes.

EXAMPLE 8.4
A rectangular loop carrying current I2 is placed parallel to an infinitely long filamentary
wire carrying current Ix as shown in Figure 8.4(a). Show that the force experienced by the
loop is given by

2x
1_

iPo

1

po
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(a)

-2-H

w

Figure 8.4 For Example 8.4:
(a) rectangular loop inside the field
produced by an infinitely long wire,
(b) forces acting on the loop and
wire.

(b)

Solution:

Let the force on the loop be

F 4 = I? <\> dh X B ,¥( = F, + F7 +

where F b F2 , F3 , and F 4 are, respectively, the forces exerted on sides of the loop labeled 1,
2, 3, and 4 in Figure 8.4(b). Due to the infinitely long wire

a
2TTPO

Hence,

F, = I2 | d\2 X Bl = I2 dz az X

2irpo
ao (attractive)

Fj is attractive because it is directed toward the long wire; that is, F, is along -ap due to the
fact that loop side 1 and the long wire carry currents along the same direction. Similarly,

F 3 = I2 d\2 X B, = I2 i7 X

z=b
2TT(PO + a)

2TT(PO + a)

F 2 = 72 I i p ap X

A'c/l^ , Po + Cl

= — In ;
2TT P O

(repulsive)

(parallel)
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dpap x

V-Jih , Po + a
2TT

In az (parallel)

The total force Fe on the loop is the sum of F l5 F2, F3, and F4; that is,

1 1
F, =

2w po + a_

which is an attractive force trying to draw the loop toward the wire. The force Fw on the
wire, by Newton's third law, is — F^; see Figure 8.4(b).

PRACTICE EXERCISE 8.4

In Example 8.4, find the force experienced by the infinitely long wire if lx = 10 A,
I2 — 5 A, po = 20 cm, a = 10 cm, b — 30 cm.

Answer: Sâ  £tN.

8.3 MAGNETIC TORQUE AND MOMENT

Now that we have considered the force on a current loop in a magnetic field, we can deter-
mine the torque on it. The concept of a current loop experiencing a torque in a magnetic
field is of paramount importance in understanding the behavior of orbiting charged parti-
cles, d.c. motors, and generators. If the loop is placed parallel to a magnetic field, it expe-
riences a force that tends to rotate it.

The torque T (or mechanical moincnl of force) on ihe loop is the \cclor product of
the force F and iho momem arm r.

That is,

T = r X F (8.14)

and its units are Newton-meters (N • m).
Let us apply this to a rectangular loop of length € and width w placed in a uniform

magnetic field B as shown in Figure 8.5(a). From this figure, we notice that d\ is parallel to
B along sides 12 and 34 of the loop and no force is exerted on those sides. Thus

F = / d \ X B + I \ d \ X B

{ 0

= / dz az X B + / dz a z X B
'0 'e
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it//
2~—w-f-

1

3 . / 4
f l / /

1 / B

I fl

i I

— axis of rotation

(a) (b)

Figure 8.5 Rectangular planar loop in a uniform magnetic field.

or

F = Fo - Fo = 0 (8.15)

where |F0| = IB£ because B is uniform. Thus, no force is exerted on the loop as a whole.
However, Fo and — Fo act at different points on the loop, thereby creating a couple. If the
normal to the plane of the loop makes an angle a with B, as shown in the cross-sectional
view of Figure 8.5(b), the torque on the loop is

|T| = |FO| ws ina

or

T = Bliw sin a

But €w = S, the area of the loop. Hence,

T = BIS sin a

We define the quantity

! m = ISa,

(8.16)

(8.17)

(8.18)

as the magnetic dipole moment (in A/m2) of the loop. In eq. (8.18), an is a unit normal
vector to the plane of the loop and its direction is determined by the right-hand rule: fingers
in the direction of current and thumb along an.

The magnetic dipolc moment is the product of current and area of the loop; its di-
rection is normal to the loop.

Introducing eq. (8.18) in eq. (8.17), we obtain

| T = m X B (8.19)
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This expression is generally applicable in determining the torque on a planar loop of any
arbitrary shape although it was obtained using a rectangular loop. The only limitation is
that the magnetic field must be uniform. It should be noted that the torque is in the direc-
tion of the axis of rotation (the z-axis in the case of Figure 8.5a). It is directed such as to
reduce a so that m and B are in the same direction. In an equilibrium position (when m and
B are in the same direction), the loop is perpendicular to the magnetic field and the torque
will be zero as well as the sum of the forces on the loop.

8.4 A MAGNETIC DIPOLE

A bar magnet or a small filamentary current loop is usually referred to as a magnetic
dipole. The reason for this and what we mean by "small" will soon be evident. Let us de-
termine the magnetic field B at an observation point P(r, 8, 4>) due to a circular loop carry-
ing current / as in Figure 8.6. The magnetic vector potential at P is

(8.20)

It can be shown that at far field (r ^> a, so that the loop appears small at the observation
point), A has only 0-component and it is given by

(8.21a)

or

A

jxj-wa sin

4TIT2

^ o m X

47rr2

ar
(8.21b)

P(r, 6, 0)

Figure 8.6 Magnetic field at P due to a current
loop.
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where m = Iira2az, the magnetic moment of the loop, and a, X ar = sin d a0. We deter-
mine the magnetic flux density B from B = V X A as

B = ~ : (2 cos 6 ar + sin 6 ; (8.22)

It is interesting to compare eqs. (8.21) and (8.22) with similar expressions in
eqs. (4.80) and (4.82) for electrical potential V and electric field intensity E due to an elec-
tric dipole. This comparison is done in Table 8.2, in which we notice the striking similari-

TABLE 8.2 Comparison between Electric and Magnetic Monopoles and Dipoles

Electric

V -

Monopoie (point charge)

Qcasd

E
Qd

(2 cos B ar + sin1©:

+0

Dipole (two point charge)

Magnetic

Does not exist

Qm

Monopoie (point charge)

A = •

sin 0 i 0

4irr2

Me,
B = (2 cos Hr + sin 9ae)

47TC3

Dipole (small current loop or bar magnet)



320 Magnetic Forces, Materials, and Devices

Figure 8.7 The B lines due to
magnetic dipoles: (a) a small
current loop with m = IS, (b) a
bar magnet with m = Qm€.

(a) (b)

ties between B as far field due to a small current loop and E at far field due to an electric
dipole. It is therefore reasonable to regard a small current loop as a magnetic dipole. The B
lines due to a magnetic dipole are similar to the E lines due to an electric dipole. Figure
8.7(a) illustrates the B lines around the magnetic dipole m = IS.

A short permanent magnetic bar, shown in Figure 8.7(b), may also be regarded as a
magnetic dipole. Observe that the B lines due to the bar are similar to those due to a small
current loop in Figure 8.7(a).

Consider the bar magnet of Figure 8.8. If Qm is an isolated magnetic charge (pole
strength) and € is the length of the bar, the bar has a dipole moment Qm€. (Notice that Qm

does exist; however, it does not exist without an associated — Qm. See Table 8.2.) When the
bar is in a uniform magnetic field B, it experiences a torque

T=mXB=2JXB (8.23)

where € points in the direction south-to-north. The torque tends to align the bar with the
external magnetic field. The force acting on the magnetic charge is given by

F = QmB (8.24)

Since both a small current loop and a bar magnet produce magnetic dipoles, they are equiv-
alent if they produce the same torque in a given B field; that is, when

T = QJB = ISB

Hence,

QJ = IS

showing that they must have the same dipole moment.

(8.25)

(8.26)

n
s
rl«

*~F
B

Figure 8.8 A bar magnet in an external magnetic field.
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EXAMPLE 8.5
Determine the magnetic moment of an electric circuit formed by the triangular loop of
Figure 8.9.

Solution:

From Problem 1.18(c), the equation of a plane is given by Ax + By + Cz + D = 0 where
D= -(A2 + B2 + C2). Since points (2, 0, 0), (0, 2, 0), and (0, 0, 2) lie on the plane, these
points must satisfy the equation of the plane, and the constants A, B, C, and D can be
determined. Doing this gives x + y + z = 2 as the plane on which the loop lies. Thus we
can use

m = ISan

where

S = loop area = - X base X height = - (2 V2)(2 V2)sin 60°

= 4 sin 60°

If we define the plane surface by a function

f(x,y,z) = x + y + z ~ 2 = 0,

V / ^ (
a = ±

ay + az)

V 3

We choose the plus sign in view of the direction of the current in the loop (using the right-
hand rule, m is directed as in Figure 8.9). Hence

^ (a, + ay + a,)
m = 5 (4 sin 60°) r-

V 3
= 10(ax + ay + a,) A • m2

Figure 8.9 Triangular loop of Example 8.5.
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PRACTICE EXERCISE 8.5

A rectangular coil of area 10 cm2 carrying current of 50 A lies on plane
2x + 6y - 3z = 7 such that the magnetic moment of the coil is directed away from
the origin. Calculate its magnetic moment.

Answer: (1.429a, + 4.286a,, - 2.143az) X 10~2 A • m2

EXAMPLE 8.6
A small current loop L, with magnetic moment 53;, A/m is located at the origin while
another small loop current L2 with magnetic moment 3ay A • m2 is located at (4, —3, 10).
Determine the torque on L2.

Solution:

The torque T2 on the loop L2 is due to the field Bj produced by loop L,. Hence,

T2 = m2 X B,

Since m, for loop Lx is along az, we find Bj using eq. (8.22):

B =
4irr

(2 cos 9 ar + sin 8 ag)

Using eq. (2.23), we transform m2 from Cartesian to spherical coordinates:

m2 = 3av = 3 (sin 6 sin 4> ar + cos 6 sin 0 ae + cos <t> a^)

At (4, - 3 , 10),

r = V 4 2 + (-3)2 + 102 = 5 V 5

2

V5

Hence,

p 5 1 1
tan 6 = — = — = >sin0 = —1=,

z 10 2 V ?
COS P =

y - 3 - 3 4
t a n <j) = — = > sin 0 = , c o s <j> = —

B
_ 4 x X 1 0 ' 7 X 5 / 4 1
— j= I j= ar H -j= ae

47T625V5 VV5 V5
10"7

(4ar + a,)625

m2 - 3
5V5 5V5 5
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and

T =
1 0

4V/5a<A) X (4ar1_ ( 3 a r 6
625 (5 V5)

= 4.293 X 10"" (-6a r + 38.78ae + 24a0)
= -0.258ar + 1.665a,, + l.O3a0nN • m

PRACTICE EXERCISE 8.6

If the coil of Practice Exercise 8.5 is surrounded by a uniform field 0.6ax + 0.43^ +
0.5a. Wb/m2,

(a) Find the torque on the coil.

(b) Show that the torque on the coil is maximum if placed on plane 2x - 8>' +
4z = V84. Calculate the value of the maximum torque.

Answer: (a) 0.03a,, - 0.02av - 0.02a. N • m, (b) 0.04387 N • m.

8.5 MAGNETIZATION IN MATERIALS

Our discussion here will parallel that on polarization of materials in an electric field. We
shall assume that our atomic model is that of an electron orbiting about a positive nucleus.

We know that a given material is composed of atoms. Each atom may be regarded as
consisting of electrons orbiting about a central positive nucleus; the electrons also rotate
(or spin) about their own axes. Thus an internal magnetic field is produced by electrons or-
biting around the nucleus as in Figure 8.10(a) or electrons spinning as in Figure 8.10(b).
Both of these electronic motions produce internal magnetic fields B, that are similar to the
magnetic field produced by a current loop of Figure 8.11. The equivalent current loop has
a magnetic moment of m = IbSan, where S is the area of the loop and Ib is the bound
current (bound to the atom).

Without an external B field applied to the material, the sum of m's is zero due to
random orientation as in Figure 8.12(a). When an external B field is applied, the magnetic

Figure 8.10 (a) Electron orbiting around the
nucleus; (b) electron spin.

nucleus

23 electron
(J) electron

(a)
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Figure 8.11 Circular current loop equivalent to electronic motion of
Figure 8.10.

moments of the electrons more or less align themselves with B so that the net magnetic
moment is not zero, as illustrated in Figure 8.12(b).

The magnetization M (in amperes/meter) is the magnetic dipole moment per unit
volume.

If there are N atoms in a given volume Av and the kth atom has a magnetic moment m*.,

M = lim k-\

>0 Av
(8.27)

A medium for which M is not zero everywhere is said to be magnetized. For a differential
volume dv', the magnetic moment is dm = M dv'. From eq. (8.21b), the vector magnetic
potential due to dm is

dX =
X

A-KR1
dv' =

According to eq. (7.46),

R

X R
-dv'

B = 0, M = 0
Hgurc 8.! 2 Magnetic dipole mo-
ment in a volume Av: (a) before B is
applied, (b) after B is applied.

(a) (b)
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Hence,

Using eq. (7.48) gives

A = — I M X V - dv'
4TT R

(8.28)

' - = -V'XM-V'X-

Substituting this into eq. (8.28) yields

4TT Jy, R 4TT JV, fl

Applying the vector identity

V X F dv' = - <J> F X r f S

to the second integral, we obtain

4TT JV, J? 4TT JS , R

Ho f ibdv' JXO
(8.29)

4ir )v, R 4TT )S. R

Comparing eq. (8.29) with eqs. (7.42) and (7.43) (upon dropping the primes) gives

h = V X M

and

(8.30)

(8.31)

where Jb is the bound volume current density or magnetization volume current density (in
amperes per meter square), Kb is the bound surface current density (in amperes per meter),
and an is a unit vector normal to the surface. Equation (8.29) shows that the potential of a
magnetic body is due to a volume current density Jb throughout the body and a surface
current Kb on the surface of the body. The vector M is analogous to the polarization P in
dielectrics and is sometimes called the magnetic polarization density of the medium. In
another sense, M is analogous to H and they both have the same units. In this respect, as
J = V X H, so is Jb = V X M. Also, Jb and Kb for a magnetized body are similar to ppv

and pps for a polarized body. As is evident in eqs. (8.29) to (8.31), Jh and Kh can be derived
from M; therefore, ib and Kb are not commonly used.
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In free space, M = 0 and we have

V X H = it or V X
B

(8.32)

where Jy is the free current volume density. In a material medium M i= 0, and as a result,
B changes so that

*x(i)-J/+J.-J -
= V X H + V X M

or

B = M) (8.33)

The relationship in eq. (8.33) holds for all materials whether they are linear or not. The
concepts of linearity, isotropy, and homogeneity introduced in Section 5.7 for dielectric
media equally apply here for magnetic media. For linear materials, M (in A/m) depends
linearly on H such that

(8.34)

where \m is a dimensionless quantity (ratio of M to H) called magnetic susceptibility of the
medium. It is more or less a measure of how susceptible (or sensitive) the material is to a
magnetic field. Substituting eq. (8.34) into eq. (8.33) yields

B = /xo(l +

or

where

(8.35)

(8.36)

(8.37)

The quantity /x = /io/xr is called the permeability of the material and is measured in
henrys/meter; the henry is the unit of inductance and will be defined a little later. The di-
mensionless quantity /xr is the ratio of the permeability of a given material to that of free
space and is known as the relative permeability of the material.

It should be borne in mind that the relationships in eqs. (8.34) to (8.37) hold only for
linear and isotropic materials. If the materials are anisotropic (e.g., crystals), eq. (8.33) still
holds but eqs. (8.34) to (8.37) do not apply. In this case, fi has nine terms (similar to e in
eq. 5.37) and, consequently, the fields B, H, and M are no longer parallel.

B

ixr =

- A

1 +

io/xrH

Xm
E.
Mo
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8.6 CLASSIFICATION OF MAGNETIC MATERIALS

In general, we may use the magnetic susceptibility \m or the relative permeability \ir to
classify materials in terms of their magnetic property or behavior. A material is said to be
nonmagnetic if ym = 0 (or jxr = 1); it is magnetic otherwise^ Free space, air, and materials
with Xm = 0 (or fir = 1) are regar3eTas"fT61imagnetic.

Roughly speaking, magnetic materials may be grouped into three major classes: dia-
magnetic, paramagnetic, and ferromagnetic. This rough classification is depicted in
Figure 8.13. A material is said to be diamagnetic if it has \xr S 1 (i.e., very small nega-
tive Xm)- It is paramagnetic if pr S 1 (i.e., very small positive xm)- If Mr ^ 1 (i-e-> verY
large positive xm)> the material is ferromagnetic. Table B.3 in Appendix B presents the
values fir for some materials. From the table, it is apparent that for most practical purposes
we may assume that \ir — 1 for diamagnetic and paramagnetic materials. Thus, we may
regard diamagnetic and paramagnetic materials as linear and nonmagnetic. Ferromagnetic
materials are always nonlinear and magnetic except when their temperatures are above
curie temperature (to be explained later). The reason for this will become evident as we
more closely examine each of these three types of magnetic materials.

Diamagnetism occurs in materials where the magnetic fields due to electronic motions
of orbiting and spinning completely cancel each other. Thus, the permanent (or intrinsic)
magnetic moment of each atom is zero and the materials are weakly affected by a magnetic
field. For most diamagnetic materials (e.g., bismuth, lead, copper, silicon, diamond,
sodium chloride), xm is of the order of - 1(T5. In certain types of materials called super-
conductors at temperatures near absolute zero, "perfect diamagnetism" occurs: xm

 = ~ 1
or jjir = 0 and B = 0. Thus superconductors cannot contain magnetic fields.2 Except for
superconductors, diamagnetic materials are seldom used in practice. Although the diamag-
netic effect is overshadowed by other stronger effects in some materials, all materials
exhibit diamagnetism.

Materials whose atoms have nonzero permanent magnetic moment may be paramag-
netic or ferromagnetic. Paramagnetism occurs in materials where the magnetic fields pro-

Magnetic Materials

Linear

Diamagnetics

Xm<0, M r s 1.0

Paramagnetics

Xm > 0, fir a

Nonlinear

Ferromagnetics

Xm » 0, nr a>

Figure 8.13 Classification of magnetic materials.

2An excellent treatment of superconductors is found in M. A. Plonus, Applied Electromagnetics.
New York: McGraw-Hill, 1978, pp. 375-388. Also, the August 1989 issue of the Proceedings of
IEEE is devoted to superconductivity.
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duced by orbital and spinning electrons do not cancel completely. Unlike diamagnetism,
paramagnetism is temperature dependent. For most paramagnetic materials (e.g., air, plat-
inum, tungsten, potassium), \m is ofthe order +10~5 to +10~3 and is temperature depen-
dent. Such materials find application in masers.

Ferromagnetism occurs in materials whose atoms have relatively large permanent
magnetic moment. They are called ferromagnetic materials because the best known
member is iron. Other members are cobalt, nickel, and their alloys. Ferromagnetic materi-
als are very useful in practice. As distinct from diamagnetic and paramagnetic materials,
ferromagnetic materials have the following properties:

1. They are capable of being magnetized very strongly by a magnetic field.
2. They retain a considerable amount of their magnetization when removed from the

field.
3. They lose their ferromagnetic properties and become linear paramagnetic materials

when the temperature is raised above a certain temperature known as the curie tem-
perature. Thus if a permanent magnet is heated above its curie temperature (770°C
for iron), it loses its magnetization completely.

4. They are nonlinear; that is, the constitutive relation B = /xo/irH does not hold for
ferromagnetic materials because \x.r depends on B and cannot be represented by a
single value.

Thus, the values of /xr cited in Table B.3 for ferromagnetics are only typical. For example,
for nickel \x.r = 50 under some conditions and 600 under other conditions.

As mentioned in Section 5.9 for conductors, ferromagnetic materials, such as iron and
steel, are used for screening (or shielding) to protect sensitive electrical devices from dis-
turbances from strong magnetic fields. A typical example of an iron shield is shown in
Figure 8.14(a) where the compass is protected. Without the iron shield, the compass gives
an erroneous reading due to the effect of the external magnetic field as in Figure 8.14(b).
For perfect screening, it is required that the shield have infinite permeability.

Even though B = juo(H + M) holds for all materials including ferromagnetics, the
relationship between B and H depends on previous magnetization of a ferromagnetic

Iron shield

(N-»-) *
s I)(

(b)

Figure 8.14 Magnetic screening: (a) iron shield protecting a small compass,
(b) compass gives erroneous reading without the shield.
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material—its "magnetic history." Instead of having a linear relationship between B and H
(i.e., B = fiH), it is only possible to represent the relationship by a magnetization curve or
B-H curve.

A typical B-H curve is shown in Figure 8.15. First of all, note the nonlinear relation-
ship between B and H. Second, at any point on the curve, fi is given by the ratio B/H and
not by dB/dH, the slope of the curve.

If we assume that the ferromagnetic material whose B-H curve.in Figure 8.15 is ini-
tially unmagnetized, as H increases (due to increase in current) from O to maximum
applied field intensity Hm.dX, curve OP is produced. This curve is referred to as the virgin or
initial magnetization curve. After reaching saturation at P, if H is decreased, B does not
follow the initial curve but lags behind H. This phenomenon of B lagging behind H is
called hysteresis (which means "to lag" in Greek).

If H is reduced to zero, B is not reduced to zero but to Bn which is referred to as the
permanent flux density. The value of Br depends on //max, the maximum applied field in-
tensity. The existence of Br is the cause of having permanent magnets. If H increases neg-
atively (by reversing the direction of current), B becomes zero when H becomes Hc, which
is known as the coercive field intensity. Materials for which Hc is small are said to be mag-
netically hard. The value of Hc also depends on Hmm.

Further increase in H in the negative direction to reach Q and a reverse in its direction
to reach P gives a closed curve called a hysteresis loop. The shape of hysteresis loops
varies from one material to another. Some ferrites, for example, have an almost rectangu-
lar hysteresis loop and are used in digital computers as magnetic information storage
devices. The area of a hysteresis loop gives the energy loss (hysteresis loss) per unit
volume during one cycle of the periodic magnetization of the ferromagnetic material. This
energy loss is in the form of heat. It is therefore desirable that materials used in electric
generators, motors, and transformers should have tall but narrow hysteresis loops so that
hysteresis losses are minimal.

Initial
magnetization
curve

Figure 8.15 Typical magnetization (B-H) curve.
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EXAMPLE 8.7
Region 0 ^ z — 2 m is occupied by an infinite slab of permeable material (/xr = 2.5). If
B = \0y&x — 5xay mWb/m2 within the slab, determine: (a) J, (b) ih, (c) M, (d) Kb on
z = 0.

Solution:

(a) By definition,

J = V X H = V X B 1

4ir X 10"'(2.5) V dx dy

dB,
a

106

( - 5 - 10)10 X = -4.775azkA/mz

(b) h = XmJ = (Mr - DJ = 1.5(-4.775az) • 103

= -7.163a7kA/m2

(c) M = XmH =
B 1.5(10yax - 5xay) • 10

Air X 10"7(2.5)

- 3

= 4.775vax - 2.387xav kA/m
(d) Kb = M X an. Since z = 0 is the lower side of the slab occupying 0 < z ^ 2,
an = — az. Hence,

Kb = (4.775jax - 2.387xav) X (-a,)
= 2.387xax + 4.775jaT'kA/m

PRACTICE EXERCISE 8.7

In a certain region (/i = 4.6/x0),

find: (a) Xm, (b) H, (c) M.

B = We~\ mWb/m2

Answer: (a) 3.6, (b) mOe^a, A/m, (c) 6228e"yaz A/m.

8.7 MAGNETIC BOUNDARY CONDITIONS

We define magnetic boundary conditions as the conditions that H (or B) field must satisfy
at the boundary between two different media. Our derivations here are similar to those in
Section 5.9. We make use of Gauss's law for magnetic fields

B • dS = 0 (8.38)
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and Ampere's circuit law

H • d\ = I 3.39)

Consider the boundary between two magnetic media 1 and 2, characterized, respec-
tively, by ix{ and /x2 as in Figure 8.16. Applying eq. (8.38) to the pillbox (Gaussian surface)
of Figure 8.16(a) and allowing Ah —> 0, we obtain

ln AS - B2n AS = (8.40)

Thus

or (8.41)

since B = ^H. Equation (8.41) shows that the normal component of B is continuous at the
boundary. It also shows that the normal component of H is discontinuous at the boundary;
H undergoes some change at the interface.

Similarly, we apply eq. (8.39) to the closed path abcda of Figure 8.16(b) where
surface current K on the boundary is assumed normal to the path. We obtain

Ah
\n ' ~~Z I" H2n

Ah

As Ah -> 0, eq. (8.42) leads to

H Aw H M H Ak

Hit H2, — K

(8.42)

(8.43)

f
H,

(a) (b)

Figure 8.16 Boundary conditions between two magnetic media: (a) for B, (b) for H.
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This shows that the tangential component of H is also discontinuous. Equation (8.43) may
be written in terms of B as

— = K (8.44)

In the general case, eq. (8.43) becomes

(H, - H2) X an l2 = K (8.45)

where anl2 is a unit vector normal to the interface and is directed from medium 1 to
medium 2. If the boundary is free of current or the media are not conductors (for K is free
current density), K — 0 and eq. (8.43) becomes

I H l r - H2, or (8.46)

Thus the tangential component of H is continuous while that of B is discontinuous at the
boundary.

If the fields make an angle 6 with the normal to the interface, eq. (8.41) results in

cos 0[ = Bln = B2n = B2 cos

while eq. (8.46) produces

Mi

B2

sin 0, = Hu = H2t = — sin 62

(8.47)

(8.48)

Dividing eq. (8.48) by eq. (8.47) gives

r tan I

tan02
(8.49)

which is [similar to eq. (5.65)] the law of refraction for magnetic flux lines at a boundary
with no surface current.

EXAMPLE 8.8 Given that H! = -2a x + 6ay + 4az A/m in region y - x - 2 < 0 where /*] = 5/*0, cal-
culate

(a) M, and B,

(b) H2 and B2 in region y - x - 2 > 0 where ju2 = 2;ito

Solution:

Since j - x - 2 = 0 i s a plane, y - x < 2 o r y < x + 2 i s region 1 in Figure 8.17. A
point in this region may be used to confirm this. For example, the origin (0, 0) is in this
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Figure 8.17 For Example 8.8.

region since 0 - 0 - 2 < 0. If we let the surface of the plane be described by j{x, y) =
y — x — 2, a unit vector normal to the plane is given by

(a) M,

= ay - a*

V~2
= ( / M - 1)H, = ( 5 - lX-2 ,6 ,4 )

+ 24av, + 16a7 A/m

(b) HlB = (H! • aB)aB = | ( -2 ,6 ,4)

B, = ^JHJ = Aio/nnH, = 4TT X 10"7(5)(-2, 6,4)
= -12.57a* + 37.7ay + 25.13a,/iWb/m2

( -1 ,1 ,0)1 ( -1 ,1 ,0)

Vl J V2

But

Hence,

— Hln + Hlf

Ult = H, - Hln = (-2, 6, 4) - (-4,4, 0)
= 2ar + 2av + 4a7

Using the boundary conditions, we have

H2, = H u = 4az

or

H2n = — HIB = | ( -4a , + 4ay) = -10a* + 10a,
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Thus

H 2 = H2n + H2, = - 8 a x + 12av + 4a. A/m

and

B 2 = fi2H2 = jxojxr2n2 = (4TT X 10 7 ) (2 ) ( -8 , 12, 4)
= -20 .11a , + 30.16ay + 10.05a.

PRACTICE EXERCISE 8.8

Region 1, described by 3x + Ay > 10, is free space whereas region 2, described by
3x + Ay < 10, is a magnetic material for which /* = J OJU0. Assuming that the
boundary between the material and free space is current free find B7 if B, =
0.1a,+ 0.4av +0.2a. Wb/m2

Answer: -1.052a, + 1.264a,. + 2az Wb/m2

EXAMPLE 8.9 The xy-plane serves as the interface between two different media. Medium 1 (z < 0) is
filled with a material whose Mr = 6, and medium 2 (z > 0) is filled with a material whose
Hr = 4. If the interface carries current (1/Mo) av mA/m, and B2 = 5a, + 8a mWb/m2 find
HiandB,.

Solution:

In the previous example K = 0, so eq. (8.46) was appropriate. In this example, however,
K # 0, and we must resort to eq. (8.45) in addition to eq. (8.41). Consider the problem as
illustrated in Figure 8.18. Let B, = (Bx, By, Bz) in mWb/m2.

But

[2) nr2=4

Bin = B2 n

(5a,

K
-» -y

B7 = 8

mA/m

Figure 8.18 For Example 8.9.

(8.8.1)

(8.8.2)
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and

H, =
B, 1

{Bxax + Byay + Bzaz) mA/m (8.8.3)

Having found the normal components, we can find the tangential components using

(H, - H2) X anl2 = K

or

H, X anl2 = H2 X aBl2 + K (8.8.4)

Substituting eqs. (8.8.2) and (8.8.3) into eq. (8.8.4) gives

— ( B A + 5vay + Bzaz) X az = —- (5a, + 8az) X a, + — av
6^ ' 4/x M

Equating components yields

By = 0, :

From eqs. (8.8.1) and (8.8.5),

- 5
4

o r

6
T
4

B, = 1.5a,, + 8azmWb/m2

H, = — = — (0.25ax + 1.33a,) mA/m
Ml Mo

and

(8.8.5)

H2 = — (1.25a* + 2az) mA/m
Mo

Note that Hlx is (1//O mA/m less than H2x due to the current sheet and also that
Bin = B2n.

PRACTICE EXERCISE 8.9

A unit normal vector from region 2 {ft, = 2MO) to region 1 {ft, = Mo) is a«2i =

(6ax + 2a, - 3az)/7. If H, = \0ax + ay + 12az A/m and H2 =
4az A/m, determine

(a) H ^

(b) The surface current density K on the interface

(c) The angles Bj and B2 make with the normal to the interface.

- 5ay +

Answer: (a) 5.833, (b) 4.86a* - 8.64a. + 3.95a, A/m, (c)76.27°, 77.62°.
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8.8 INDUCTORS AND INDUCTANCES

A circuit (or closed conducting path) carrying current / produces a magnetic field B which
causes a flux ¥* = J B • dS to pass through each turn of the circuit as shown in Figure 8.19.
If the circuit has N identical turns, we define the flux linkage X as

X = NY (8.50)

Also, if the medium surrounding the circuit is linear, the flux linkage X is proportional to
the current / producing it; that is,

or X = (8.51)

where Lisa constant of proportionality called the inductance of the circuit. The inductance
L is a property of the physical arrangement of the circuit. A circuit or part of a circuit that
has inductance is called an inductor. From eqs. (8.50) and (8.51), we may define induc-
tance L of an inductor as the ratio of the magnetic flux linkage X to the current / through the
inductor; that is,

X
(8.52)

The unit of inductance is the henry (H) which is the same as webers/ampere. Since the
henry is a fairly large unit, inductances are usually expressed in millihenrys (mH).

The inductance denned by eq. (8.52) is commonly referred to as self-inductance since
the linkages are produced by the inductor itself. Like capacitances, we may regard induc-
tance as a measure of how much magnetic energy is stored in an inductor. The magnetic
energy (in joules) stored in an inductor is expressed in circuit theory as:

Wm = ^L (8.53)

Figure 8.19 Magnetic field B produced by a circuit.
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or

L — — (8.54)

Thus the self-inductance of a circuit may be defined or calculated from energy considera-
tions.

If instead of having a single circuit we have two circuits carrying current I\ and I2 as
shown in Figure 8.20, a magnetic interaction exists between the circuits. Four component
fluxes ^ n , f|2, V 21, and f22

 a r e produced. The flux "f \2, for example, is the flux passing
through circuit 1 due to current I2 in circuit 2. If B2 in the field due to I2 and S\ is the area
of circuit 1, then

(8.55)

We define the mutual inductance Mn as the ratio of the flux linkage X12 = N{fu on circuit
1 to current I2, that is,

! .. x12
12 = T =

I i

(8.56)

Similarly, the mutual inductance M2\ is defined as the flux linkages of circuit 2 per unit
current /,; that is,

M7I =
h /,

(8.57a)

It can be shown by using energy concepts that if the medium surrounding the circuits is
linear (i.e., in the absence of ferromagnetic material),

M12 = M2{ (8.57b)

The mutual inductance Mi2 or M2l is expressed in henrys and should not be confused with
the magnetization vector M expressed in amperes/meter.

Figure 8.20 Magnetic interaction between
two circuits.
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We define the self-inductance of circuits 1 and 2, respectively, as

L = x,, _ w
(8.58)

and

U = x,22 (8.59)

where V, = + + ¥^2-The total energy in the magnetic field is the
sum of the energies due to Lh L2, andMI2 (orM21); that is,

Wm = W2 + W12

2 + ~L2I
2
2 (8.60)

The positive sign is taken if currents /] and I2 flow such that the magnetic fields of the two
circuits strengthen each other. If the currents flow such that their magnetic fields oppose
each other, the negative sign is taken.

As mentioned earlier, an inductor is a conductor arranged in a shape appropriate to
store magnetic energy. Typical examples of inductors are toroids, solenoids, coaxial trans-
mission lines, and parallel-wire transmission lines. The inductance of each of these induc-
tors can be determined by following a procedure similar to that taken in determining the
capacitance of a capacitor. For a given inductor, we find the self-inductance L by taking
these steps:

1. Choose a suitable coordinate system.
2. Let the inductor carry current /.
3. Determine B from Biot-Savart's law (or from Ampere's law if symmetry exists)

and calculate f from V = / B • dS.
X NY

4. Finally find L from L = — = .

The mutual inductance between two circuits may be calculated by taking a similar proce-
dure.

In an inductor such as a coaxial or a parallel-wire transmission line, the inductance
produced by the flux internal to the conductor is called the internal inductance L-m while
that produced by the flux external to it is called external inductance Lext. The total induc-
tance L is

Mn ' ^e\l

Just as it was shown that for capacitors

e
RC = -

a

(8.61)

(6.35)
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(8.62)

Thus Lext may be calculated using eq. (8.62) if C is known.
A collection of formulas for some fundamental circuit elements is presented in Table

8.3. All formulas can be derived by taking the steps outlined above.3

8.9 MAGNETIC ENERGY

Just as the potential energy in an electrostatic field was derived as

eE dvWE = - D • E dv = ~ (4.96)

we would like to derive a similar expression for the energy in a magnetostatic field. A
simple approach is using the magnetic energy in the field of an inductor. From eq. (8.53),

(8.53)

The energy is stored in the magnetic field B of the inductor. We would like to express
eq. (8.53) in terms of B or H.

Consider a differential volume in a magnetic field as shown in Figure 8.21. Let the
volume be covered with conducting sheets at the top and bottom surfaces with current A/.

conducting
sheets

Figure 8.21 A differential volume
in a magnetic field.

'Additional formulas can be found in standard electrical handbooks or in H. Knoepfel, Pulsed High
Magnetic Fields. Amsterdam: North-Holland, 1970, pp. 312-324.
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TABLE 8.3 A Collection of Formulas for Inductance of Common Elements

1. Wire

L

L =
877

2.

3.

Hollow

L = —
2TI

€»a

Parallel

L = —-
IT

cylinder

' \ a

wires

f J
- l n -

(3

4. Coaxial conductor

L = In -
7T a

5. Circular loop

ii ^ 1 In — — 2
2TT \ d

€ = 27rpo, po » d

6. Solenoid

L =

7. Torus (of circular cross section)

L = voN
2[Po - Vp2

o - a2]
2.1

8. Sheet

L = /to 2€ /«
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We assume that the whole region is filled with such differential volumes. From eq. (8.52),
each volume has an inductance

AL =
AT tiHAxAz

A/ A/

where A/ = H Ay. Substituting eq. (8.63) into eq. (8.53), we have

AWm = -AL A/2 = - iiH2 Ax Ay Az

or

_ l 2
m j

The magnetostatic energy density wm (in J/m3) is defined as

AWm 1 .. ,
wm = lim

Av->0 Av

Hence,

1 , 1 B2

2 2 2/*

Thus the energy in a magnetostatic field in a linear medium is

Wm= wmdv

or

which is similar to eq. (4.96) for an electrostatic field.

(8.63)

(8.64)

(8.65)

(8.66)

EXAMPLE 8.10
Calculate the self-inductance per unit length of an infinitely long solenoid.

Solution:

We recall from Example 7.4 that for an infinitely long solenoid, the magnetic flux inside
the solenoid per unit length is

B = nH = uln
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where n = N/€ = number of turns per unit length. If S is the cross-sectional area of the so-
lenoid, the total flux through the cross section is

Y = BS =

Since this flux is only for a unit length of the solenoid, the linkage per unit length is

X' = - = nV = im2IS

and thus the inductance per unit length is

L X' ,

V = /xn2S H/m

PRACTICE EXERCISE 8.10

A very long solenoid with 2 X 2 cm cross section has an iron core (p,r - 1000) and
4000 turns/meter. If it carries a current of 500 mA, find

(a) Its self-inductance per meter

(b) The energy per meter stored in its field

Answer: (a) 8.042 H/m, (b) 1.005 J/m.

EXAMPLE 8.11 Determine the self-inductance of a coaxial cable of inner radius a and outer radius b.

Solution:

The self-inductance of the inductor can be found in two different ways: by taking the four
steps given in Section 8.8 or by using eqs. (8.54) and (8.66).

Method 1: Consider the cross section of the cable as shown in Figure 8.22. We recall
from eq. (7.29) that by applying Ampere's circuit law, we obtained for region
1 (0 < p < a),

and for region 2 (a < p < b),

B , - - j a<*
2-wa
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© z-axis

(a) (b)

Figure 8.22 Cross section of the coaxial cable: (a) for region 1,
0 < p < a, (b) for region 2, a < p < b; for Example 8.11.

We first find the internal inductance Lin by considering the flux linkages due to the inner
conductor. From Figure 8.22(a), the flux leaving a differential shell of thickness dp is

dYi = 5, dp dz = - ~ dp dz
2ira

The flux linkage is dxPl multiplied by the ratio of the area within the path enclosing the flux
to the total area, that is,

because / is uniformly distributed over the cross section for d.c. excitation. Thus, the total
flux linkages within the differential flux element are

flip dp dz

lira2 a2

For length € of the cable,

X, = r dp dz
8TT

/ 8TT

The internal inductance per unit length, given by

m i H/m

(8.11.1)

(8.11.2)

is independent of the radius of the conductor or wire. Thus eqs. (8.11.1) and (8.11.2) are also
applicable to finding the inductance of any infinitely long straight conductor of finite radius.
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We now determine the external inductance Lext by considering the flux linkages
between the inner and the outer conductor as in Figure 8.22(b). For a differential shell of
thickness dp,

df2 = B2 dp dz
2-Kp

dp dz

In this case, the total current / is enclosed within the path enclosing the flux. Hence,

X, =
p=a Jz=0

al dp dz i"/€ , b
= In —

2irp 2-K a

_ \ 2 _ ^ b
L e x t ~ I ~ 2* a

Thus

\

or the inductance per length is

H/m

Method 2: It is easier to use eqs. (8.54) and (8.66) to determine L, that is,

2W

where

or L =

1 f B1

I H dv = —dv
2

Hence

2 [B\ 2T2 2

— — p dp d(j) dz
4TT a

= - ^ - r dz dct> p 3 dp =
0 J0 J0

8TT

^ P 6?P d<t> dz
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and

as obtained previously.

PRACTICE EXERCISE 8.11

Calculate the self-inductance of the coaxial cable of Example 8.11 if the inner con-
ductor is made of an inhomogeneous material having a = 2aJ{\ + p).

aot uj \ b (1 + b)
Answer: 1 In In

8TT IT I a (1 + a)

EXAMPLE 8.12 Determine the inductance per unit length of a two-wire transmission line with separation
distance d. Each wire has radius a as shown in Figure 6.37.

Solution:

We use the two methods of the last example.

Method 1: We determine Lin just as we did in the last example. Thus for region
0<p<a,we obtain

_ alt

as in the last example. For region a < p < d - a, the flux linkages between the wires are
cd—a /*€ T rt) jX2 =

The flux linkages produced by wire 1 are

dp dz = —- In
2TT a

X, + \? =
alt alt d- a

1 In
8TT 2TT a

By symmetry, the same amount of flux produced by current —/ in wire 2. Hence the total
linkages are

X 2(Xi+X2) [
If d 5s> a, the self-inductance per unit length is

H/m
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Method 2: From the last example,

Lm ~ 8

Now

B2dv 1 {[[ ii2!2

L e x t I2) 2» l \

dz

^ p dp d(j) dz

d—a

2ir a

Since the two wires are symmetrical,

L = 2 (Lin + Lext)

as obtained previously.

PRACTICE EXERCISE 8.12

Two #10 copper wires (2.588 mm in diameter) are placed parallel in air with a sepa-
ration distance d between them. If the inductance of each wire is 1.2 jiiH/m, calculate

(a) Lin and Lext per meter for each wire

(b) The separation distance d

Answer: (a) 0.05,1.15 juH/m, (b) 40.79 cm.

EXAMPLE 8.13
Two coaxial circular wires of radii a and b(b > a) are separated by distance h(h ^> a, b)
as shown in Figure 8.23. Find the mutual inductance between the wires.

Solution:

Let current /, flow in wire 1. At an arbitrary point P on wire 2, the magnetic vector poten-
tial due to wire 1 is given by eq. (8.21a), namely

A , =
A[h2 + b2f2

If/i » b

b
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Figure 8.23 Two coaxial circular wires; for Example
8.13.

Hence,

and

u;
,21.2

• d\2 =
4/r'

/x7r/,a b

~2h3

lbl

PRACTICE EXERCISE 8.13

Find the mutual inductance of two coplanar concentric circular loops of radii 2 m
and 3 m.

Answer: 2.632 /*H.

8.10 MAGNETIC CIRCUITS

The concept of magnetic circuits is based on solving some magnetic field problems using
circuit approach. Magnetic devices such as toroids, transformers, motors, generators, and
relays may be considered as magnetic circuits. The analysis of such circuits is made simple
if an analogy between magnetic circuits and electric circuits is exploited. Once this is done,
we can directly apply concepts in electric circuits to solve their analogous magnetic circuits.

The analogy between magnetic and electric circuits is summarized in Table 8.4 and
portrayed in Figure 8.24. The reader is advised to pause and study Table 8.4 and Figure
8.24. First, we notice from the table that two terms are new. We define the magnetomotive
force (mmf) 9* (in ampere-turns) as

(8.67)
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TABLE 8.4 Analogy between Electric and Magnetic
Circuits

Electric

Conductivity a

Field intensity E

Current / = / J • dS

Current density J = — = oE

Electromotive force (emf) V
Resistance R

Conductance G = —
R

V (
Ohm's law R = — = —

or V = E( = IR

Kirchoff's laws:
E / = 0

J. V - 2 RI = 0

Magnetic

Permeability /j

Field intensity H

Magnetic flux V = / B • dS

Flux density B = — = fiH

Magnetomotive force (mmf) 9
Reluctance 2ft

Permeance 9* = —
gft

Ohm's law gft = — = —

or 9 = Hi = » = Nl

Kirchhoff's laws:

The source of mmf in magnetic circuits is usually a coil carrying current as in Figure 8.24.
We also define reluctance 2ft (in ampere-turns/weber) as

(8.68)

where € and S are, respectively, the mean length and the cross-sectional area of the mag-
netic core. The reciprocal of reluctance is permeance (3>. The basic relationship for circuit
elements is Ohm's law (V = IR):

(8.69)

Based on this, Kirchhoff's current and voltage laws can be applied to nodes and loops of a
given magnetic circuit just as in an electric circuit. The rules of adding voltages and for

Figure 8.24 Analogy between
(a) an electric circuit, and (b) a
magnetic circuit.

(a) (b)
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combining series and parallel resistances also hold for mmfs and reluctances. Thus for n
magnetic circuit elements in series

and

3? = 3%,

For n magnetic circuit elements in parallel,

and

(8.70)

(8.71)

(8.72)

(8.73)

Some differences between electric and magnetic circuits should be pointed out. Unlike
an electric circuit where current / flows, magnetic flux does not flow. Also, conductivity a
is independent of current density J in an electric circuit whereas permeability JX varies with
flux density B in a magnetic circuit. This is because ferromagnetic (nonlinear) materials
are normally used in most practical magnetic devices. These differences notwithstanding,
the magnetic circuit concept serves as an approximate analysis of practical magnetic
devices.

8.11 FORCE ON MAGNETIC MATERIALS

It is of practical interest to determine the force that a magnetic field exerts on a piece of
magnetic material in the field. This is useful in electromechanical systems such as electro-
magnets, relays, rotating machines, and magnetic levitation. Consider, for example, an
electromagnet made of iron of constant relative permeability as shown in Figure 8.25. The
coil has N turns and carries a current /. If we ignore fringing, the magnetic field in the air
gap is the same as that in iron (Bln = B2n). To find the force between the two pieces of iron,
we calculate the change in the total energy that would result were the two pieces of the
magnetic circuit separated by a differential displacement d\. The work required to effect

dlA

Figure 8.25 An electromagnet.

/2F
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the displacement is equal to the change in stored energy in the air gap (assuming constant
current), that is

1 B
-Fdl = dWm = 2 | Sdl

2 Mo
(8.74)

where S is the cross-sectional area of the gap, the factor 2 accounts for the two air gaps, and
the negative sign indicates that the force acts to reduce the air gap (or that the force is at-
tractive). Thus

F = -2
B2S

(8.75)

Note that the force is exerted on the lower piece and not on the current-carrying upper
piece giving rise to the field. The tractive force across a single gap can be obtained from
eq. (8.75) as

F = -
B2S

(8.76)

Notice the similarity between eq. (8.76) and that derived in Example 5.8 for electrostatic
case. Equation (8.76) can be used to calculate the forces in many types of devices includ-
ing relays, rotating machines, and magnetic levitation. The tractive pressure (in N/m2) in a
magnetized surface is

P
F

S

B1

(8.77)

which is the same as the energy density wm in the air gap.

EXAMPLE 8.14
The toroidal core of Figure 8.26(a) has po = 10 cm and a circular cross section with
a = 1 cm. If the core is made of steel (/x = 1000 /io) and has a coil with 200 turns, calcu-
late the amount of current that will produce a flux of 0.5 mWb in the core.

(a) (b)

Figure 8.26 (a) Toroidal core of Example 8.14; (b) its equivalent elec-
tric circuit analog.
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Solution:

This problem can be solved in two different ways: using the magnetic field approach
(direct), or using the electric circuit analog (indirect).

Method 1: Since p0 is large compared with a, from Example 7.6,

UNI _ floHrNI

Hence,

B =

= BS =
HolirNI tea

2TTP0

or

8TT

_ 2(10 X 10~2)(0.5 X 10~3)

~ 4TT X 10~7(1000)(200)(l X 10

= 3.979 A

Method 2: The toroidal core in Figure 8.26(a) is analogous to the electric circuit of
Figure 8.26(b). From the circuit and Table 8.4.

or

/ = = 3.979 A

as obtained previously.

PRACTICE EXERCISE 8.14

A conductor of radius a is bent into a circular loop of mean radius po (see Figure
8.26a). If p0 = 10 cm and 2a - 1 cm, calculate the internal inductance of the loop.

Answer: 31.42 nH.

EXAMPLE 8.15 In the magnetic circuit of Figure 8.27, calculate the current in the coil that will produce a
magnetic flux density of 1.5 Wb/m in the air gap assuming that fi = 50/xo and that all
branches have the same cross-sectional area of 10 cm2.
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Figure 8.27 Magnetic circuit of Exam-
ple 8.15.

10 cm

Solution:

The magnetic circuit of Figure 8.27 is analogous to the electric circuit of Figure 8.28. In
Figure 8.27, Sft,, 2ft2, 2/l3, and <3la are the reluctances in paths 143, 123, 35 and 16, and 56
(air gap), respectively. Thus

(3i,='3i7 =

3 X 10s

30 X 10~z

(4TT X 10 7)(50)(10 X

20TT

9 X 10"
3 (4TT X 10~7)(50)(10 X

1 X 10~2

0.9 X 10s

20TT

5 X 10,8

'J"a ~ (4,r x 10"7)(l)(10 X 10~4) ~ 20ir

We combine 91, and 9l2 as resistors in parallel. Hence,

„ ,,„ 2ft,2ft7 2/1, 1.5 X 108

The total reluctance is

20x

7.4 X 108

91,

(a) (b)

Figure 8.28 Electric circuit analog of the magnetic circuit in
Figure 8.27.
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The

But

mmf is

r.-r = BaS. Hence

i a

1 —

= 44

52ft

N
.16

T

A

= NI = YJ

1.5 X 10 X 10~4 X 7.4 X 108

400 X 20TT

PRACTICE EXERCISE 8.15

The toroid of Figure 8.26(a) has a coil of 1000 turns wound on its core. If
p 0 = 10 cm and a = 1 cm, what current is required to establish a magnetic flux of
0.5 mWb

(a) If the core is nonmagnetic

(b) If the core has /xr = 500

Answer: (a) 795.8 A, (b) 1.592 A.

EXAMPLE 8.16 A U-shaped electromagnet shown in Figure 8.29 is designed to lift a 400-kg mass (which
includes the mass of the keeper). The iron yoke (jxr = 3000) has a cross section of 40 cm2

and mean length of 50 cm, and the air gaps are each 0.1 mm long. Neglecting the reluc-
tance of the keeper, calculate the number of turns in the coil when the excitation current
is 1 A.

Solution:

The tractive force across the two air gaps must balance the weight. Hence

F = 2
(B2

aS)
= mg

NI Figure 8.29 U-shaped electromagnet; for Example 8.16.

- iron yoke

- keeper

' weisht
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or

But

Since

mgno _ 400 X 9.8 X 4TT X 10 - i

S 40 X

Bn = 1.11 Wb/m2

cm = ZJL =ta 2 X 0.1 10- 3 10b

Air X 10 7 X 40 X 10 4

50 X 10~2

48TT

4TT X 10"' X 3000 X 40 X 10~

3? = NI = —NI
6 + 5 11

5 X 10"

48TT

P-o

11 L

7V= 162

11 X 1.11 X 0.1 X 10

6 X 4TT X 10~7 X 1

PRACTICE EXERCISE 8.16

Find the force across the air gap of the magnetic circuit of Example 8.15.

Answer: 895.2 N.

SUMMARY 1. The Lorentz force equation

F = g(E + u X B) = m
du
dt

relates the force acting on a particle with charge Q in the presence of EM fields. It ex-
presses the fundamental law relating EM to mechanics.

2. Based on the Lorentz force law, the force experienced by a current element Idl in a
magnetic field B is

dV = Idl X B

From this, the magnetic field B is defined as the force per unit current element.
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3. The torque on a current loop with magnetic moment m in a uniform magnetic field B is

T = m X B = ISan X B

4. A magnetic dipole is a bar magnet or a small filamental current loop; it is so called due
to the fact that its B field lines are similar to the E field lines of an electric dipole.

5. When a material is subjected to a magnetic field, it becomes magnetized. The magne-
tization M is the magnetic dipole moment per unit volume of the material. For linear
material,

where \m is the magnetic susceptibility of the material.
6. In terms of their magnetic properties, materials are either linear (diamagnetic or para-

magnetic) or nonlinear (ferromagnetic). For linear materials,

B = ,xH = = /xo(l + + M)

where /x = permeability and \xr = \il\xo = relative permeability of the material. For
nonlinear material, B = fi(H) H, that is, JX does not have a fixed value; the relationship
between B and H is usually represented by a magnetization curve.

7. The boundary conditions that H or B must satisfy at the interface between two differ-
ent media are

(H, - H2) X anl2 = K or Hu = H2/ if K = 0

where anl2 is a unit vector directed from medium 1 to medium 2.
8. Energy in a magnetostatic field is given by

Wm = - | B Udv

For an inductor carrying current /

= Vm 2

Thus the inductance L can be found using

L =
B -Hdv

9. The inductance L of an inductor can also be determined from its basic definition: the
ratio of the magnetic flux linkage to the current through the inductor, that is,

_ X NY
~ I ~ I
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Thus by assuming current /, we determine B and !P = / B • dS, and finally find

L = NY/I.
10. A magnetic circuit can be analyzed in the same way as an electric circuit. We simply

keep in mind the similarity between

= NI= 4> H = TO and V= IR

that is,

Thus we can apply Ohms and Kirchhoff's laws to magnetic circuits just as we apply
them to electric circuits.

11. The magnetic pressure (or force per unit surface area) on a piece of magnetic material is

F 1
~ = ~
S 2

B2

—
2/xo

where B is the magnetic field at the surface of the material.

8.1 Which of the following statements are not true about electric force Fe and magnetic force
Fm on a charged particle?

(a) E and Fc are parallel to each other whereas B and Fm are perpendicular to each other.

(b) Both Fe and Fm depend on the velocity of the charged particle.

(c) Both Fe and ¥m can perform work.

(d) Both Fc and Fm are produced when a charged particle moves at a constant velocity.

(e) Fm is generally small in magnitude compared to Fe.

(f) Fe is an accelerating force whereas Fm is a purely deflecting force.

8.2 Two thin parallel wires carry currents along the same direction. The force experienced by
one due to the other is

(a) Parallel to the lines

(b) Perpendicular to the lines and attractive

(c) Perpendicular to the lines and repulsive

(d) Zero

8.3 The force on differential length d\ at point P in the conducting circular loop in Figure
8.30 is

(a) Outward along OP

(b) Inward along OP
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Q Figure 8.30 For Review Questions 8.3 and 8.4.

O

O

O

(c) In the direction of the magnetic field

(d) Tangential to the loop at P

8.4 The resultant force on the circular loop in Figure 8.30 has the magnitude of

(a) 2wpJB

(b) irpllB

(c) 2PJB

(d) Zero

8.5 What is the unit of magnetic charge?

(a) Ampere-meter square

(b) Coulomb

(c) Ampere

(d) Ampere-meter

8.6 Which of these materials requires the least value of magnetic field strength to magne-
tize it?

(a) Nickel

(b) Silver

(c) Tungsten

(d) Sodium chloride

8.7 Identify the statement that is not true of ferromagnetic materials.

(a) They have a large \m.

(b) They have a fixed value of fir.

(c) Energy loss is proportional to the area of the hysteresis loop.

(d) They lose their nonlinearity property above the curie temperature.
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8.8 Which of these formulas is wrong?

(a) Bu,= B2n

(b) B2 = Vfi2,, + B\,

(c) // , = //„, + Hu

(d) a,,2i X (H t — H2) = K, where an2i is a unit vector normal to the interface and di-
rected from region 2 to region 1.

8.9 Each of the following pairs consists of an electric circuit term and the corresponding mag-
netic circuit term. Which pairs are not corresponding?

(a) V and S5

(b) GandSP

(c) e and n

(d) IR and tf9l

(e) 2 / = 0 and 2 f = 0

8.10 A multilayer coil of 2000 turns of fine wire is 20 mm long and has a thickness 5 mm of
winding. If the coil carries a current of 5 mA, the mmf generated is

(a) lOA-t

(b) 500 A-t

(c) 2000 A-t

(d) None of the above

Answers: 8.1 b,c, 8.2b, 8.3a, 8.4d, 8.5d, 8.6a, 8.7b, 8.8c, 8.9c,d, 8.10a.

PROBLEMS
• 8.1 An electron with velocity u = (3ar + 12aY — 4az) X 105m/s experiences no net

J force at a point in a magnetic field B = Wax + 20av + 30a;. mWb/m2. Find E at that
point.

8.2 A charged particle of mass 1 kg and charge 2 C starts at the origin with velocity 10az m/s
in a magnetic field B = 1 a, Wb/m2. Find the location and the kinetic energy of the parti-
cle at t = 2 s.

*8.3 A particle with mass 1 kg and charge 2 C starts from rest at point (2, 3, - 4 ) in a region
where E = - 4 a v V/m and B = 5ar Wb/m2. Calculate

(a) The location of the particle at t = I s

(b) Its velocity and K.E. at that location

8.4 A — 2-mC charge starts at point (0, 1, 2) with a velocity of 5ax m/s in a magnetic field
B = 6av Wb/m . Determine the position and velocity of the particle after 10 s assuming
that the mass of the charge is 1 gram. Describe the motion of the charge.
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Figure 8.31 For Problem 8.5.

*8.5 By injecting an electron beam normally to the plane edge of a uniform field Boaz, elec-
trons can be dispersed according to their velocity as in Figure 8.31.

(a) Show that the electrons would be ejected out of the field in paths parallel to the input

beam as shown.

(b) Derive an expression for the exit distance d above entry point.

8.6 Given that B = 6xa^ — 9yay + 3zaz Wb/m2, find the total force experienced by the rec-
tangular loop (on z = 0 plane) shown in Figure 8.32.

8.7 A current element of length 2 cm is located at the origin in free space and carries current
12 mA along ax. A filamentary current of 15az A is located along x = 3, y = 4. Find the
force on the current filament.

*8.8 Three infinite lines L b L2, and L3 defined by x = 0, y = 0; x = 0, y = 4; x = 3, y = 4,
respectively, carry filamentary currents —100 A, 200 A, and 300 A along az. Find the
force per unit length on

(a) L2 due to L,

(b) L[ due to L2

(c) L3 due to Lj

(d) L3 due to Lx and L2. State whether each force is repulsive or attractive.

Figure 8.32 For Problem 8.6.

, 5A

1 2 3
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Figure 8.33 For Problem 8.9.

8.9 A conductor 2 m long carrying 3A is placed parallel to the z-axis at distance p0 = 10 cm
as shown in Figure 8.33. If the field in the region is cos (4>/3) ap Wb/m2, how much work
is required to rotate the conductor one revolution about the z-axis?

*8.10 A conducting triangular loop carrying a current of 2 A is located close to an infinitely
long, straight conductor with a current of 5 A, as shown in Figure 8.34. Calculate (a) the
force on side 1 of the triangular loop and (b) the total force on the loop.

*8.11 A three-phase transmission line consists of three conductors that are supported at points
A, B, and C to form an equilateral triangle as shown in Figure 8.35. At one instant, con-
ductors A and B both carry a current of 75 A while conductor C carries a return current of
150 A. Find the force per meter on conductor C at that instant.

*8.12 An infinitely long tube of inner radius a and outer radius b is made of a conducting magnetic
material. The tube carries a total current / and is placed along the z-axis. If it is exposed to a
constant magnetic field Boap, determine the force per unit length acting on the tube.

5 A

Figure 8.34 For Problem 8.10.
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Figure 8.35 For Problem 8.11.
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*8.13 An infinitely long conductor is buried but insulated from an iron mass (fi = 2000^,o) as
shown in Figure 8.36. Using image theory, estimate the magnetic flux density at point P.

8.14 A galvanometer has a rectangular coil of side 10 by 30 mm pivoted about the center of the
shorter side. It is mounted in radial magnetic field so that a constant magnetic field of 0.4
Wb/m always acts across the plane of the coil. If the coil has 1000 turns and carries
current 2 mA, find the torque exerted on it.

= - 0 . 5 a , mWb/m2at(10, 0, 0). FindB8.15 A small magnet placed at the origin produces B
at

(a) (0 ,3 ,0)

(b) (3, 4, 0)

(c) ( 1 , 1 , - D

8.16 A block of iron (/* = 5000;uo) is placed in a uniform magnetic field with 1.5 Wb/m . If
iron consists of 8.5 X 1028 atoms/m3, calculate: (a) the magnetization M, (b) the average
magnetic current.

y

30 mm

o

p%-

0 A

20 mm

iron

20 mm \

*-x

Figure 8.36 For Problem 8.13.
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8.17 In a certain material for which n = 6.5/x0,

H = 10ax + 25av - 40az A/m

find

(a) The magnetic susceptibility xm of the material

(b) The magnetic flux density B

(c) The magnetization M,

(d) The magnetic energy density

8.18 In a ferromagnetic material (/* = 4.5/to),

B = 4>-a_ mWb/m2

calculate: (a) Xm, (b) H, (c) M, (d) Jb.

8.19 The magnetic field intensity is H = 1200 A/m in a material when B = 2 Wb/m2. When
H is reduced to 400 A/m, B = 1.4 Wb/m2. Calculate the change in the magnetization M.

8.20 An infinitely long cylindrical conductor of radius a and permeability /xo/xr is placed along
the z-axis. If the conductor carries a uniformly distributed current / along a7 find M and Jb

for 0 < p < a.

8.21 If M = — {—y&x + xay) in a cube of size a, find Jb. Assume ko is a constant.

*8.22 (a) For the boundary between two magnetic media such as is shown in Figure 8.16, show
that the boundary conditions on the magnetization vector are

Mu M2t
= K and • m l n =

Xml Xml Xm\ Xml

(b) If the boundary is not current free, show that instead of eq. (8.49), we obtain

tan 0, HI [

tan 62 L B-, sin d7

8.23 If Mi = 2fio for region 1 (0 < <j> < it) and p.2 = 5/*o for region 2 (IT < tj> < 2ir) and
B2 = 10ap + 15a0 - 20az mWb/m2. Calculate: (a) B,, (b) the energy densities in the
two media.

8.24 The interface 2x + y = 8 between two media carries no current. If medium
1 (2x + y > 8) is nonmagnetic with H | = — 4aA + 3av — az A/m. Find: (a) the mag-
netic energy density in medium 1, (b) M2 and B2 in medium 2 (2x + ^ £ 8 ) with
H = 10/io, (c) the angles H] and H2 make with the normal to the interface.

8.25 The interface 4x — 5z = 0 between two magnetic media carries current 35av A/m. If
H] = 25ax — 30av + 45a, A/m in region 4x — 5z < 0 where firl = 5, calculate H2 in
region 4x — 5z — 0 where fir2 = 10.
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8.26 The plane z = 0 separates air (z > 0, y, = / O from iron (z < 0, ^ = 2 0 0 , 0 . Given that

H = 10ax + 15av - 3a, A/m

in air, find B in iron and the angle it makes with the interface.

8.27 Region 0 s ? < 2 m is filled with an infinite slab of magnetic material (fi = 2.5juo). If
the surfaces of the slab at z = 0 and z = 2, respectively, carry surface currents 30a,- A/m
and — 40av A/m as in Figure 8.37, calculate H and B for

(a) z < 0

(b) 0 < z < 2

(c) z > 2

8.28 In a certain region for which x m = 19,

H = 5x2yzaA + 10xy2zav - 1 5 x y z V A/m

How much energy is stored in 0 < x < 1, 0 < v < 2, — 1 < z < 2 ?

1
8.29 The magnetization curve for an iron alloy is approximately given by B = —H +

H2n Wb/m2. Find: (a) \ir when H = 210 A/m, (b) the energy stored per unit volume in
the alloy as H increases from 0 to 210 A/m.

*8.30 (a) If the cross section of the toroid of Figure 7.15 is a square of side a, show that the self-
inductance of the toroid is

L = In
2po + a

(b) If the toroid has a circular cross section as in Figure 7.15, show that

L =

where p o ~^> a.

8.31 When two parallel identical wires are separated by 3 m, the inductance per unit length is
2.5 juH/m. Calculate the diameter of each wire.

Mo

Figure 8.37 For Problem 8.27.

—40 ax A/m

z = 0 30 ax A/m
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8.32 A solenoid with length 10 cm and radius 1 cm has 450 turns. Calculate its inductance.

8.33 The core of a toroid is 12 cm and is made of material with /xr = 200. If the mean radius
of the toroid is 50 cm, calculate the number of turns needed to obtain an inductance of
2.5 H.

8.34 Show that the mutual inductance between the rectangular loop and the infinite line current
of Figure 8.4 is

r a + p0

Calculate M12 when a = b = po = 1 m.

*8.35 Prove that the mutual inductance between the closed wound coaxial solenoids of length <
and €2 (^i ^ ^X turns Ny and N2, and radii r, and r2 with rx — r2 is

8.36 A cobalt ring (jxr = 600) has a mean radius of 30 cm. If a coil wound on the ring carries
12 A, calculate the number of turns required to establish an average magnetic flux density
of 1.5 Wb/m in the ring.

8.37 Refer to Figure 8.27. If the current in the coil is 0.5 A, find the mmf and the magnetic field
intensity in the air gap. Assume that [i = 500/no and that all branches have the same
cross-sectional area of 10 cm2.

8.38 The magnetic circuit of Figure 8.38 has current 10 A in the coil of 2000 turns. Assume that
all branches have the same cross section of 2 cm2 and that the material of the core is iron
with nr = 1500. Calculate R, 9, and V for

(a) The core
(b) The air gap

12 cm
0.6 cm

Figure 8.38 For Problem 8.38.
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Figure 8.39 For Problem 8.39.
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• L = 42 cm

8.39 Consider the magnetic circuit in Figure 8.39. Assuming that the core (^ = 1000/xo)hasa
uniform cross section of 4 cm2, determine the flux density in the air gap.

8.40 An electromagnetic relay is modeled as shown in Figure 8.40. What force is on the arma-
ture (moving part) of the relay if the flux in the air gap is 2 mWb? The area of the gap is
0.3 cm2, and its length 1.5 mm.

8.41 A toroid with air gap, shown in Figure 8.41, has a square cross section. A long conductor
carrying current 72 is inserted in the air gap. If 7, = 200 mA, N = 750, p0 = 10 cm,
a = 5 mm, and ia = 1 mm, calculate

(a) The force across the gap when 72 = 0 and the relative permeability of the toroid is
300

(b) The force on the conductor when 72 = 2 m A and the permeability of the toroid is in-
finite. Neglect fringing in the gap in both cases.

8.42 A section of an electromagnet with a plate below it carrying a load is shown in Figure
8.42. The electromagnet has a contact area of 200 cm2 per pole with the middle pole
having a winding of 1000 turns with 7 = 3 A. Calculate the maximum mass that can be
lifted. Assume that the reluctance of the electromagnet and the plate is negligible.

8.43 Figure 8.43 shows the cross section of an electromechanical system in which the plunger
moves freely between two nonmagnetic sleeves. Assuming that all legs have the same
cross-sectional area S, show that

F =
 2 ^ 2 / 2 ^ a

(a + 2x^x

Figure 8.40 For Problem 8.40.
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Figure 8.41 For Problem 8.41.

Figure 8.42 For Problem 8.42.

1 mm

Figure 8.43 For Problem 8.43.

u J + •

-nmagnetic sleeve


