Lecture06

Response of second order systems

*A general second-order system is characterized by the following transfer function.

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \implies = \frac{b}{s^2 + as + b}$$

1+GH=0 is called the characteristic equation

* $\omega_n = \sqrt{b}$ is referred to as *the un-damped natural frequency* of the second order system, which is the frequency of oscillation of the system without damping.

* $\xi = \frac{a}{2\sqrt{b}}$ referred to as *the damping ratio* of the second order system, which is a measure of the

degree of resistance to change in the system output.

Example#1: Determine the un-damped natural frequency and damping ratio of the following second order system. $\frac{C(s)}{R(s)} = \frac{4}{s^2 + 2s + 4}$

Sol: Compare the numerator and denominator of the given transfer function with the general 2^{nd} order transfer function.

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{4}{s^2 + 2s + 4}$$
$$\omega_n = \sqrt{4} = 2, \ 2\zeta\omega_n = 2 \Longrightarrow \zeta = 0.5$$

* the second order system have two poles; these poles are $p_{1,2} = -\omega_n \zeta \mp \omega_n \sqrt{\zeta^2 - 1}$

1-real & distinct 2-real & same 3-complex conjugate 4-imaginary pole

*note: 1) the transient &steady state time response to a 2^{nd} order system depend on the values of the 2 roots of the char-eq.

2) the roots of the char-eq called (poles) 3) the factor of s^2 should be (1).

* the dynamic behavior of second order system can be described by ζ and ω_n . According the value of ζ , a second-order system can be set into one of the four categories:

1-Overdamped - when the system has two real distinct poles ($\zeta >$ 1).

2- Underdamped - when the system has two complex conjugate poles (0< ζ <1).

3. Undamped - when the system has two imaginary poles ($\zeta = 0$).

4. Critically damped - when the system has two real but equal poles ($\zeta = 1$).

* for any RLC circuit the system will be 2^{nd} order system

1) the time response for 2^{nd} order system with $\zeta = 1$ (critical damped).

* in this case, the system response is called critically damped, the closed loop poles are real & equal, where $p_{1,2} = -\omega_n \zeta \mp \omega_n \sqrt{\zeta^2 - 1}$ with $\zeta = 1$ these poles becomes: $p_{1,2} = -\omega_n$ therefore $\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{s^2 + 2s + \omega_n^2} = \frac{\omega_n^2}{(s + \omega_n)^2}$

$$C(s) = \frac{\omega_n^2}{s(s + \omega_n)^2} = \frac{A}{s} + \frac{B_1}{(s + \omega_n)^2} + \frac{B_2}{(s + \omega_n)}, \quad A = \frac{\omega_n^2}{s(s + \omega_n)^2} \cdot s = 1$$

$$A = \frac{\omega_n^2}{s(s+\omega_n)^2} \cdot (s+\omega_n)^2 = -\omega_n \quad , \ A = \frac{d}{ds} \left(\frac{\omega_n^2}{s(s+\omega_n)^2} \cdot (s+\omega_n)^2 \right) = -1$$

$$C(s) = \frac{1}{s} - \frac{\omega_n}{\left(s + \omega_n\right)^2} - \frac{1}{\left(s + \omega_n\right)} \Longrightarrow C(t) = 1 - \omega_n t e^{-\omega_n t} - e^{-\omega_n t} \quad \text{, at ant } t \ge 0$$

* the response doesn't oscillated

t	C(t)
0	
1	
2	
3	
4	

<u>H.W:</u> Find the response c(t) for $C(s) = \frac{s+3}{s(s+2)^2}$, and find $c_{s.s}(t)$ and $e_{s.s}(t)$

Ans:
$$c(t) = 0.75 - (t + 0.75)e^{-2t}$$
, $c_{s.s}(t) = \lim_{t \to \infty} c(t) = 0.75$, $e_{s.s}(t) = \lim_{t \to \infty} e(t) = 0.25$

2) the time response for 2^{nd} order system with $\zeta >1$ (over damped).

The overdamped system is corresponds to $\zeta > 1$, the response doesn't oscillated, the closed loop poles are real put unequal($s_1 \neq s_2$), $s_{1,2} = -\omega_n \zeta \mp \omega_n \sqrt{\zeta^2 - 1}$

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s + \omega_n \zeta + \omega_n \sqrt{\zeta^2 - 1})(s + \omega_n \zeta - \omega_n \sqrt{\zeta^2 - 1})} = \frac{\omega_n^2}{s_1 \cdot s_2}$$

$$C(s) = \frac{\omega_n^2}{s(s_1.s_2)} = \frac{A}{s} + \frac{B}{s_1} + \frac{C}{s_2}, \quad C(t) = 1 + \frac{\omega_n}{2\sqrt{\zeta^2 - 1}} \left[\frac{1}{s_1} e^{-s_1 t} - \frac{1}{s_2} e^{-s_2 t} \right]$$
$$C(t) = 1 + \frac{\omega_n}{2\sqrt{\zeta^2 - 1}} \left[\frac{e^{-\omega_n \zeta + \omega_n \sqrt{\zeta^2 - 1} t}}{-\omega_n \zeta + \omega_n \sqrt{\zeta^2 - 1}} - \frac{e^{-\omega_n \zeta - \omega_n \sqrt{\zeta^2 - 1} t}}{-\omega_n \zeta - \omega_n \sqrt{\zeta^2 - 1}} \right],$$

3) the time response for 2^{nd} order system with $0 < \zeta < 1$ (under damped).

* in this case, the system response is called under damped, the closed loop poles are complex conjucate and lie in the left half s-plane, the transient response is oscillatory.

$$p_{1,2} = -\omega_n \zeta \mp j\omega_n \sqrt{1-\zeta^2}$$
 with unit step input R(s)=1/s

$$C(s) = \frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)} = \frac{A}{s} + \frac{Bs + C}{(s^2 + 2\zeta\omega_n s + \omega_n^2)}, A = 1, B = -1, C = -2\zeta\omega_n$$

$$C(s) = \frac{1}{s} + \frac{-s - 2\zeta\omega_n}{(s^2 + 2\zeta\omega_n s + \omega_n^2)} = \frac{1}{s} - \frac{1}{(s^2 + 2\zeta\omega_n s + \omega_n^2)} - \frac{2\zeta\omega_n}{(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

$$C(s) = \frac{1}{s} - \frac{s}{s^2 + 2\zeta\omega_n s + \zeta^2\omega_n^2 + \omega_n^2 - \zeta^2\omega_n^2} - \frac{2\zeta\omega_n}{s^2 + 2\zeta\omega_n s + \zeta^2\omega_n^2 + \omega_n^2 - \zeta^2\omega_n^2}$$

$$C(s) = \frac{1}{s} - \frac{s + \zeta\omega_n}{(s + \zeta\omega_n)^2 + \omega_n^2(1 - \zeta^2)} - \frac{\zeta\omega_n}{(s + \zeta\omega_n)^2 + \omega_n^2(1 - \zeta^2)}$$

$$C(s) = \frac{1}{s} - \frac{s + \zeta \omega_n}{\left(s + \zeta \omega_n\right)^2 + \omega_d^2} - \frac{\zeta \omega_n}{\left(s + \zeta \omega_n\right)^2 + \omega_d^2}$$

*Where $\omega_d = \omega_n \sqrt{1 - \zeta^2}$, is the frequency of transient oscillations and is called damped natural frequency.

$$C(s) = \frac{1}{s} - \frac{s + \zeta\omega_n}{\left(s + \zeta\omega_n\right)^2 + \omega_d^2} - \frac{\frac{\zeta}{\sqrt{1 - \zeta^2}}\omega_n\sqrt{1 - \zeta^2}}{\left(s + \zeta\omega_n\right)^2 + \omega_d^2} = \frac{1}{s} - \frac{s + \zeta\omega_n}{\left(s + \zeta\omega_n\right)^2 + \omega_d^2} - \frac{\zeta}{\sqrt{1 - \zeta^2}}\frac{\omega_d}{\left(s + \zeta\omega_n\right)^2 + \omega_d^2}$$

$$c(t) = 1 - e^{-\zeta \omega_n t} \cos \omega_d t - \frac{\zeta}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin \omega_d t \Longrightarrow c(t) = 1 - e^{-\zeta \omega_n t} \left[\cos \omega_d t + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_d t \right]$$

$$(t) = 1 - \frac{e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} \left[\sin(\omega_d t + \beta) \right] \qquad \beta = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$$

If $\zeta = 0$ =, the $\omega_d = \omega_n \sqrt{1 - \zeta^2} = \omega_n$, $c(t) = 1 - \cos \omega_n t$

*note : the system response depending on the value of ζ as shown in Figure below.

* Time-Domain Specification: The transient response of a practical control system often exhibits damped oscillations before reaching steady state. In specifying the transient-response characteristics of a control system to a unit-step input, it is common to specify the following: 1. Delay time, t_d 2. Rise time, t_r 3. Peak time, t_p 4. Maximum overshoot, M_p 5. Settling time, t_s

*These specifications are defined in what follows and are shown graphically in Figure below. **<u>1. Delay time, t_d</u>**: The delay time is the time required for the response to reach half the final value the very first time.

<u>2. Rise time, t_r:</u> The rise time is the time required for the response to rise from 10% to 90%, 5% to 95%, or 0% to 100% of its final value. For underdamped secondorder systems, the 0% to 100% rise time is normally used. For overdamped systems, the 10% to 90% rise time is commonly used.

<u>**3.** Peak time, t_p :</u> The peak time is the time required for the response to reach the first peak of the overshoot.

<u>4. Maximum (percent) overshoot, M_{p,:}</u> The maximum overshoot is the maximum peak value of the response curve measured from unity. If the final steady-state value of the response differs from unity, then it is common to use the maximum percent overshoot. It is defined by

Maximum percent overshoot = $\% MP = \frac{C(t_p) - C(\infty)}{C(\infty)} * 100\%$

The amount of the maximum (percent) overshoot directly indicates the relative stability of the system.

<u>5. Settling time, t_s:</u> The settling time is the time required for the response curve to reach and stay within a range about the final value of size specified by absolute percentage of the final value (usually 2% or 5%). The settling time is related to the largest time constant of the control system.

*Settling time (2%) criterion: Time consumed in exponential decay up to 98% of the input. $t_s = 4T = \frac{4}{\zeta \omega_n}$.

* Settling time (5%) criterion: Time consumed in exponential decay up to 95% of the input.

$$t_s = 3T = \frac{3}{\zeta \omega_n}$$

Example: Consider the system shown in following figure, where damping ratio is 0.6 and natural undamped frequency is 5 rad/sec. Obtain the rise time t_r , peak time t_p , maximum overshoot M_p , and settling time 2% and 5% criterion t_s when the system is subjected to a unit-step input.

Sol: $t_r = \frac{3.141 - \theta}{\omega_n \sqrt{1 - \zeta^2}}$, $\theta = \tan^{-1}(\frac{\omega_n \sqrt{1 - \zeta^2}}{\zeta \omega_n}) = 0.93 \text{ rad}$, $t_r = \frac{3.141 - 0.93}{5\sqrt{1 - 0.6^2}} = 0.55s$

$$t_p = \frac{\pi}{\omega_d} = \frac{3.141}{4} = 0.785s$$
, $t_s = \frac{4}{\zeta\omega_n} = \frac{4}{0.6 \times 5} = 1.33s$ based on 2%

 $t_s = \frac{3}{\zeta \omega_n} = \frac{3}{0.6 \times 5} = 1s \text{ based on 5\%}, \quad M_p = e^{-\frac{\pi \zeta}{\sqrt{1-\zeta^2}}} \times 100 = e^{-\frac{3.14 \times 0.6}{\sqrt{1-0.6^2}}} \times 100 = 9.5\%$

