Difference Equations and
z-Transforms

Part A : Difference Equations

16.A.1 Introduction, 16.A.2 Definitions, 16.A.3 Formation of Difference Equations, 16.A.4 Linear Difference
Equations with Constant Coefficients, 16.A.5 Rules for Finding Complementary Function, 16.A.6 Rules
for Finding Particular Integral, 16.A.7 Simultaneous Difference Equations with Constant Coefficients.

16.A.1 INTRODUCTION

Difference equations arise in the situations in which the discrete values of the independent variable
involve. Many practical phenomena are modelled with the help of difference equations. In engineering,
difference equations arise in control engineering, digital signal processing, electrical networks, etc. In
social sciences, difference equations arise to study the national income of acountry and then itsvariation
with time, Cobweb phenomenon in economics, etc. Analogueto differential equation, difference equation
is the most powerful instrument for the treatment of discrete processes.

16.A.2 DEFINITIONS

A difference equation isan equation which expresses a relation between an independent variable and
the successive values of the dependent variable or the successive differences of the dependent variable.

For example, Yorz + 2Vxan = 3Yyay +5Yy = X ..(i)
Ay, - 30y, +2A%y, +5Ay, +Y, =3 ..(i)
are two difference equations.
Since the differences are dsicrete values, egn. (i) can be written in the following form :
y(x + 3) + 2y(x + 2) — 3y(x + 1) + 5y(x) = x? (1)
Without loss of generality, the presentation asgiven in egn. (iii) will be considered in this chapter.
Order of a Difference Equation :

The difference between the largest and smallest arguments appearing in the difference equation is called
its order.
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e.g. The order of egn. (i) (or, iii) is (x + 3) —x = 3. Whereas the order of egn. (ii) can be determined only
after operating the A operators on the functions.
Solution of a Difference Equation :

A solution of a difference equation is a relation between the independent variable and the dependent
variable satisfying the equation.

e.g., Therelation y(x) = ca* isa solution of the difference equation y(x + 1) —ay(x) =0, a# 1 wherecis
an arbitrary constant.

The solution of a difference equation of order n shall generally contain n arbitrary constants.

A solution involving as many arbitrary constants as is the order of the equation, is called the
general solution.

Any solution obtained from the general solution by assigning particular values to the arbitrary
constants is called a particular solution.

In the above example, y(x) = ca* is the general solution and y(x) = 3a* is a particular solution.

16.A.3 FORMATION OF DIFFERENCE EQUATIONS

A difference equation isformed by eliminating the arbitrary constants from arelation giving the order of
the equationisequal to the number of arbitrary constants. Thefollowing examplesillustrate the formation
of difference equations::

Example 1. Form the difference equation from
y(n) = A3"+ B5"
by eliminating the constants A and B.
We have, y(n) = A3" + B.5"
y(n + 1) = 3A.3" + 5B.5"
y(n+ 2) = 27A.3" + 125B.5"
Eliminating A and B we obtain
ym) 1 1
y(n+1) 3 5 |_ 0
y(in+2) 27 125
O y(n+2){5-3} —y(n+1) {125-27} +y(n) {375-135} =0
O 2y(n +2) —98y(n + 1) + 240y(n) = 0
which isthe desired difference equation.
Example 2. Form the difference equation corresponding to the relation.

y = bx? — ax
We have, y = bx? — ax (i)
Ay =bAKX®) —aAX)=b.{(x+1)?—x%} —a{x+1-x}
0 A y=b@2x-1)-a (i)
and Ny =2b{(x+1)—x} =2b
0 - % Iy (i)
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From (ii) a:b(2x—l)—Ay:% D2y (2x—1) -y (V)

Substituting these values of a and b in (i) we obtain

2

y= X?.Azy—% . (2x — 1) xA?%y + XAy

0 (P =x)A% —2xAy + 2y =0
O € =% y(x +2) =2 (x+1) + (¥* +x+2) y(x) = 0
which isthe desired difference equation.

( )
| PROBLEMS }

=

Write the difference equations A%y, + A%y, + Ay, + Y, = 0 in the subscript notation.
Find the difference equation for the equations
(i) y = A3+ B(= 2)* (i) y = A2" + n3+L (i) y = (A+ Bn) 3

N

w

1
Show that y, = 3 k(k—1) isasolution of the difference equation y,,, — Y, = k.

ANSWERS
L Vs = Wi * D =0
2. ()yx+2)—y(x+1)—6y(x) =0 (i) y(n+1)-2y(n)=(n+3).3""
(iiy(n+2)—6y(n+1)—9y(n) =0

16.A.4 LINEAR DIFFERENCE EQUATIONS
A difference equation of the form

yn+r+kyn+r-1)+... + Kk y(n) = g(n) (i)
where ki, K, ......, kK are congtants and g(n) is functions of n or constant, is called linear difference

eguation with constant coefficients. If g(n) = 0, the equation is said to be homogeneous, otherwise, it is
called non-homogeneous. Clearly equation (i) in homogeneous form can be rewritten as

(B +k E7+... +k)y(n) =0 (i)
where E is the shift operator such that E".y(n) = y(n + r).

Iff(E) = (E"+k E*+ ... +k, then f(E) = O is called the auxiliary equation and f(E) is called
the characteristic function of (ii).

Here the results are similar to differential equation. However, the following results can easily be
established.

(@) If the auxiliary equation hasn distinct rootsa , d,, ...... , a,, then the general solution of (ii) is
yn=ca"+c, o, +...+c .a"
where ¢, C,, ...... , C, are arbitrary constants.

(b) If the auxiliary equation has real repeated roots, say a, repeated p times, o, repeated q times,
then the general solution of (ii) is

y(n) =(c, +cn+ ... + cpnp‘l) aP+(b+bn+... +D, nt) a9 .
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(c) If the auxiliary equation has non-repeated complex roots, say two of thembea, =a +if, a,
= a —if, then the general solution of (ii) is

y(n) =" (c, cosnB + c, sin nB) where r = Ja? +B% , B = tan* (B/a) and c,, c, are arhitrary
constants.

(d) If the auxiliary equation has repeated complex roots, say a +if3 and a —if3 both repeated twice
then the corresponding two terms of the general solution shall be

r"[(c, + c,n) cos nB + (c; + ¢,n) sin n@]
Example 1. Solve the difference equation
16y(n+2) —8y(n+ 1) +y(n) = 0.
The given equation can be written as
(16E2—8E + 1) y(n) =0
The auxiliary equationis 16E°—-8E+1=0
which has two equal roots 1/4, 1/4.
Thusthe general solutionisgiven by
y(n) = (c, + c,n) (V4)", where c,, ¢, are arbitrary constants.
Example 2. Solve the difference equation
Yo = 4yn+1 + l3yn =0.
The given equation can be written as
(E?-4E+13)y =0
The auxiliary equation is E°-4E+13=0
which has complex roots 2 + 3i, 2 — 3i.
Thusthe general solutionisgiven by
y,=r"(c, cosnb + c, sin nB)
where r=J4+9=,13 and 6 = tan™ (3/2).
Example 3. Solve 9y(n + 2) + 9y(n + 1) + 2y(n) = 0 with y(0) =1 and y(1) = 1.
The given equation can be written as
(9E2 + 9E + 2) y(n) = 0
The auxiliary equationis9E? + 9E+2=0
whose roots are — 1/3, — 2/3.
The general solutionis
y(n) = ¢, (~ V3" + c(- 2/3)"
Now y(0)=1givesc,+c,=1
y(1) =1gives—c,—2¢,=3
Solving we obtain, ¢, =5andc,=-4.
Hence the particular solution is

e
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( PROBLEMS ]

L J
Solve the following difference equations :
y(n + 2) + 6y(n + 1) + 25y(n) = 0. 2. Yo = T4y, =0withy,=1,y, =3.
y(n+4)+y,=0. 4. y(n+2) —2y(n+ 1) —3y(n) = 0.

y(n+ 4) + 12y(n + 2) — 64y(n) = 0.

9y(n + 2) —6y(n + 1) + y(n) = 0 with y(0) = L and y(1) = 1.

Youz T Vip + 8Ypey + 4y, =0withy(0) =0, y(1) =—1and y(2) = 2.
Vo= Yoa T Yoo Withy(1) =0, y(2) =1and n> 2.

(Fibonacci difference equation)

N o 0wk

ANSWERS
1. y(n) = (5)"(c, cosnB + c, sin nB) where 6 = tan (— 4/3)
2. y,=(n+2)21

3 = E+c2sinm-[+%cos@+c sin3ln
. y(n) =c, cos 2 2 1 4 2
Nt . Nt
4. ym)=c, 3+c,(-1" 5.y(n)=c 2"+ c(—2)" + 4" (%0057“345'“7)
6. y(m)=3". (V3" Ty = g V" +{gon) 2y
X y = . Y __5. 5 5. —
g 5735 (1+5 ”+5+J§ 1-45)
BT 10 2

16.A.5 NON-HOMOGENEOUS LINEAR DIFFERENCE EQUATIONS

Similar to the method of ordinary differential equations, the general solution of a non-homogeneous
linear difference equation isfound by adding aparticular solution called ‘ Particular Integral’ (P.l.) of the
non-homogeneous equation to the general solution called ‘Complementary Function’ (C.F) of the
corresponding homogeneous equation. Thus,

general solution = C.F. + PI.
For causal system, the C.F. isreferred as natural response and P.l. as forced response.
Consider equation (i) of the previous section (16.A.4) as

f(E) . y(n) = g(n) (1)
where fE)=E +k E1+... +k
Then the particular integral is given by
1 ..
Pl.= ——.
16 g(n) (if)

It can be evaluated by the method of operators. Various cases are given below :
Casel. When g(n) = a", ais a constant
1 .

PI.= "=
f(E) f(a)

.a", provided f(a) # 0

VED
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If f(a) = O then for the equation
1
(E-a)
n(n-1) ah?
2!

@ (E-a)y(n)=a"Pl.=

(b) (E—a)?y(n)=a", Pl.=

a"=n.a*?!

(© E—-apym =a", pl. = "M=DM=2) ns

3!
and so on.
Example 1. Solve (E?> — 5E + 6) y(n) = 4".

Auxiliary equation, E?>—-5E+6=0
Itsroots are 2 and 3.
O CF=c¢2"+¢c, 3"
PL=_, - .4
E“-5E +6
_ 1
 16-20+6

Hence the general solution is given by

y(n):cl.2”+cz.3”+E 4N,

Example 2. Solve (E? — 4E + 4) y(n) = 2",
Auxiliary equation E2—4E +4=0
Itsroots are 2 and 2

O CE=(c +cn).2"
Pl S S
U E?-4E+4°
:n(n_l) 2n—2
21
== on
8
Casell. 1. When g(n) =sin an
P|.:i_sinqn:
f(E)

1{ 1 n
=—|—.8€
2i | f(E)

(put E=4)
=1
2
1
1 . :
= 7([5 o7 2 (case fails)
[using (b)]

1 eit::m _ e—icxn
f(E) " 2

1 —icxni|
—.e
f(E)

1

_ 1{ 1,
= — .a - .
2i | f(E) f(E)

Now it issimilar to casel.
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2. When g(n) = cosan

1 1 eiorn +e—ian
Pl.= —— .cosan=
f(E) f(E) 2

1{ 1 an, 1 }
=—.|—.e +—.8e
2| f(E) f(E)

=11 ah+ 1 .b" | , as before.
2| f(E) f(E)

Now it issimilar to casell.
Example 3. Solve 2y(n + 2) + 3y(n + 1) + y(n) = cos 2n.
The given equation can be written as
(2E? + 3E + 1) y(n) = cos 2n
0 Auxiliary Equationis2E?+3E+1=0
whose roots are— 1 and — 1/2

O CEr=c¢c (—1)”+c2 (=12
1 i2n+ —i2n
P.I.:Z;.cosZn: 5 . € €
2E“+3E+1 2E° +3E +1 2

— 1 1 e|2n+ 1 —i2n
- . Y 2—.
2| 2E? +3E +1 2E® +3E+1

:1 i 1 i e|2r1 i 1 i _e—i2n
2| 2e%+3€2+1° 2% +3e7? +1

1 (Ze—i4+3e—i2 +1)ei2n +(2ei4 +3¢2 +1)_e—i2n
2° (2€'* +3€'? +1)(2e7'* +3e7'2 +1)
1 2(e—(4—2n)i +e(4—2n)i>+3(e—(2—2n)i +e(2—2n)i>+(e2ni +e—2ni)
2° 2(€4 +e7) +9(e'? +e7'?) +12
1 2cos(4-2n) +3cos(2 -2n) +cos2n
2 2cos4+9cos2 +12
Caselll. When g(n) = nP
PlL=—t nP=—t
f(E) f(1+A4)

The above P.. is evaluated in two steps.
1. Using Binomial theorem, expand [f(1 + A)]™ upto the term AP,
2. Express nP in the factorial form and operate the expansion terms on it.
Example 4. Solve y(n + 2) — y(n + 1) — 2y(n) = n?
The given equation can be written as
(E°—E-2) y(n) = n?.

VED
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Aucxiliary equation, E2°~E—-2=0
whoseroots are—1 and 2

O CE=c, (-1)"+c,2"
O Pl.= — L s 5 L .n?
E°-E-2 @1+A)? -(1+4) -2

-1
1 ) 1 N+ A )
= NnN"===|1- .n
N +A-2 2{ ( 2 ﬂ

(@ +n) (N +n) ,
1+ + +...... .n
2 2

2 2
N AN }n2:_1[1+%+3

|
N =

1+—+=—+— + =

1+é+§A2 o }(n(z) +n(1))
2 4

NI NP NP NP
T

[n® +n®] 4+ % [2n® +1} +§ [21n© }}

=—=(N?+n+2)
Hence the general solution is given by

y(n)=c,(-)"+c, 2”—% (n2+n+2)

Case I V. When g(n) = a". G(n), G(n) being a polynomial of degree n and a is a constant.

Pl. = i.a”G(n):an .L.G(n)
f(E) f(aE)
which isevaluated using case 1.
Example 5. Solvey(n+2) +y(n+1) +y(n)=n. 2"
The given equation can be written as
(E2+E+1)y(n)=n.2"
Auxiliary equationisE?+ E+1=0

whose roots are _117‘@' :
0 C.F. = ¢, cosn@ + ¢, sin nB where 6 = tan"* (- v/3)
E2+E+1 (2E)" +2E+1
o 1 1
C4EZ+2E+1° CA(L+A)? +2L+A) +1
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= 2n

1 o[ 10a+4p2 )T
o .N=—|1l+—————| .n
7+10A +4A 7 7
2" 10A +4N? 2”[ 10}
=——[1-— — p=—|Nn——
7 7 7 7
Hence the general solution is given by

y(n) = (5/2)"2 (c, cos B + ¢, sin nB) + 27 (n - 1—70) where 0 = tan™ (- 3).

o N 0w

10.
1.
13.
15.

10.

12.

14.

16.

VED
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Solve the following difference equations :

(E?-5E+6) y(nN)=n+2" 2.y(n+2)—4y(n+1) + 3y(n) = 5"
Yoo = ey + 6Y, = 36 4y -2y, =n+1
yin+2)+4y(n+1)+4=n 6. (E2—2E +5) y(n) =3.2"-5.6"
y(n+3) +y(n+2)-8y(n+1)—12y(n) = 2n* + 5
y(n+2) —y(n+1)—2y(n) = 9.y(n+2) —4y(n+ 1) + 4y(n) = 3n + 2"
Youp — 2 COSAY,,, +Y, = COSan, aisa constant
y(n+2) —7y(n + 1) + 12y(n) = cos n 12. y(n+ 2) —6y(n + 1) + 8y(n) = 32 + 2
Yoo = Yy + 8Y, =302+ 2-53" 14. Vi3 = Vpep + 8Ypeq — 4y, = N.2"
(E2—5E + 6) y(n) = 4" —n + 5) 16. y(n + 2) —4y(n + 1) + 4y(n) = n? . 2"
ANSWERS
1
y(n=c, 2"+c¢c,3"+ 2 (2n+2) —n2+t 2.y(n)=c, +c,3"+5%8
y,=¢ .2"+¢c,.3"+18 4yn)=c.2"-(n+2)
5n-6

y(n) =c, (-4)"+ 5

y(n) =5"2. (c, cosn@ + ¢, sin nb) + %2” —2—59 . 6", where 8 = tan™ (2)

2

n n 17
nN=c.3"+(c,+c,n) (-2)"— —+— -—
y(n) =c, (c,+c3n) (-2 s 7 =

1
ym=c, ()" + c2(2)”—% (MP+n+2) 9.y(n)=(c;+c,nM2"+6+3n+ gnz .2n

nsn(n-1a

1 .
Jsna 11.y(n):ﬁ[18cosn—7smn]

Y = CiCOsan+c,sinan +

8 8 44
y(n) = c,.2" + c, 4" + n? + §n+— 13.y,=c, 2"+ C, AN+’ + §n+3+5_3n

9

n
Y, =€, +(c,+cn).2"+ o (n—1) (n—2).2" 15.y(n) = ¢;.2" + ¢,.3" + 4" (n* — 13n + 61)/2

n
y(n) = (c, +cn)2" + 2_8 (n*—4n3 +5n2-2)

C-4\N-MATH\Ch16-1
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16.A.6 SIMULTANEOUS DIFFERENCE EQUATIONS WITH CONSTANT
COEFFICIENTS

Anal ogueto themethod for solving simultaneous ordinary differential equationswith constant coefficients
the simultaneous difference equations with constant coefficients are solved. The method is illustrated
with the following example :

Example. Solve y(n + 1) —y(n) + 2x(n + 1) = 0 and
x(n+ 1) —x(n) —2y(n) = 2",
Given equationsin symbolic form are

(E-1) y(n)+2Ex(n)=0 (1)

-2y(n) +(E-1) x(n) =2" (i)
Multiply (i) by (E — 1), (ii) by 2E and subtracting we obtain
O (E + 12 y(n) = 2E(2") = — 22 (i)
Auxiliary equation is (E + 1)2=0. Itsrootsare— 1, — 1
O CE=(c,+cn (="

plL=——1  pm2_T1 ome

(E+1)? 9
Therefore y(n) =(c, + c,n) (- 1)"— é ph+2 ..(iv)
2n+3

From (ii), —2(c,+c,n) (-D)"+ 5 +(E-1 x(n)=2"

0 E-Dxm =2+ 2c, + &n) (10— 2
_ I
O x(n)—[cl+c2(n Zﬂ( D"+ q (V)

O Egn. (iv) and (v) give the general solution.

( )
| PROBLEMS }

Solve:
1. y(n+1)+x(n)—3y(n) =n,

3y(n) + x(n + 1) —5x(n) = 4". with y(1) = 2 and x(1) = 0.
2. y(n+1)—-3y(n)—2x(n) +n=0

x(n + 1) —2x(n) — y(n) — n =0, with y(0) = 0, x(0) = 3.

ANSWERS
133 0 L gyt 4,19
100" 61 5 25

133 1 L, 3 35
e e ] |
XM= 100 20 5 25

1 ym=
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1
2. y(n):2.4”—2—5 n(n-1),

1
x(n):4”+2+5 n.(n+1)

PART B : Z-TRANSFORMS

16.B.1 Introduction, 16.B.2 Some Standard z-Transforms, 16.B.3 Properties of z-Transforms, 16.B.4 Initia
Value and Final Value Theorems, 16.B.5 Inverse z-Transforms, 16.B.6 Inverse z-Transforms by Power
Series Method, 16.B.7 Inverse z-Transform by Partial Fractions Method, 16.B.8 Inverse zTransform by
Integral Method, 16.B.9 Application to Difference Equations.

16.B.1 INTRODUCTION

The z-transform is named as aletter of the alphabet rather than a famous mathematician. A method for
solving linear constant coefficient difference equations by L aplace transformswasintroduced to graduate
engineering students by Gardner and Barnesin the early 1940s. They applied their procedure which was
based on jump functionsto transmission lines, and applicationsinvolving Bessel functions. Thisapproach
is quite complicated and in a separate attempt to simplify matters, a transform of a sampled signal or
sequence was defined in 1947 by W. Hurewicz as which was later denoted in 1952 as a *‘ Z-transform”
by a sampled-data control group at Colombia University.

In any case, it is presumably not an accident that the ztransform was invented at about the same
time as digital computers. However z-transform can be viewed as a mathematical operation that takes a
set of points (which representstime sequence in discrete-time systems) and transforms them into aset of
complex numbers.

Definitions : Given the sequence x(n), the z-transform is defined as

Z{x(n)} = X2 = z x(n).z™" (1)
n=-—oo
where zistaken to be a complex variable.
Thisexpression issometimesreferred to asthe two-sided z-transform since the summationisover
al the integers.
If x(n) =0for n<0, then the z-transform is

Z{x(N)} = X@) = z x(n)z ™" ..(ii)
n=0
Thisexpression is sometimes referred to as the one-sided z-transform. In thistext the discussions
will be confined to one-sided z-transform, so we call it simply as z-transform.
Clearly z-transform exists only for the values of zfor which the series of egn. (i) or (ii) converges.
The series of Eqgn. (ii) is said to converge absolutely when the series of real numbers

00

> Ixz"| ...(iii)

n=0
converges. It isalso well known that a series converges absolutely also converges.
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Let us apply ratio test to Eqn. (ii)
x(n+ )z | _
x(n)z™"
The convergence criterion requires that
x(n+1) <
x(n)

and so we obtain the region of convergence as

n+1
Xn

Lt

n- o

= Lt

n- o

X(n 1) | |—1
x(n)

naoo

|zt Lt

n- oo

|z]|> Lt

n- o

=R
x() (say)
Thusthe seriesin Eqn. (ii) converges out side the circle with centre at origin and radius R

16.B.2 SOME STANDARD Z-TRANSFORMS
(a) Discrete Unit impul se defined as
onN=x(n)=1 ,n=0
=0 , otherwise
Here X(2) = 1 since only the first term existsin Eqgn. (ii)
(b) Discrete Unit step defined as
un)=x(n)=1 , n=0
=0 , otherwise

00

Here X(Z):z .Z_n:#:;

(c) If x(n) =a"then

i _ i 1 z
X2=Y§ a".z"= al2)" = = Jlalz|<1
r;) r;)( ) l-alz z-a | |
(d) If x(n) =nP(n=0and p > 0) then

X@=Y n*.z"=2zF n"(nz"Y)

=—7z. %[i nP1 Z—n] =—_z. % {Z(nPY)}

If p= 1, then Z(n) = —;1)2 (x(n) = nis called discrete unit ramp)

(z
If p=2 2= 22
’ (z-1)°
3 2
If p=3, z(@):LZ:Z
(z-1)
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16.B.3 PROPERTIES OF Z-TRANSFORMS
(a) Linearity Property :
If x,(n) and x,(n) be two discrete functions then
Z{a x, () + B XM} = a Z{x, (M} + B Z{x,(n)}
where a and 3 are scalars.
(b) Shift Property :
1. 1f Z{x(n)} = X(2) and mis apositive integer then
Z{x(n—m)} =zM. X(2
Here the discrete function x(n) is shifted to the right. This property is useful to solve difference
equations.
Proof. By definition

00

Z{x(n—m)} = z x(n—m).z"

n=0
=X(0) ZzM+ X(1) 7 (Mm+) + ... 00
(Sincex(n—m)=0forn=0, 1, ...... (m-1)).

= zmnz.:o x(N)z"=zM. X(2)

2. If Z{x(n)} = X(2) and misapositive integer then

Z{x(n+m)} = ZZ {x(n)} = x(0) = x(1) z* ...... = x(m—=1) z7 (™
Here the discrete function x(n) is shifted to the | eft.
Proof. By definition

A my= S Ko+ myzo=an Y X m) 7O
n=0 n=0

o0 m-1
=7". nZO x(n).z™ —nZO x(n).z ™"

= 72" [Z{x(n)} = x(0) —x(1) % ...... = x(m=1) z{M™D)]
(c) Damping Rule:
If  Z{x(n)} = X(2 then Z{a™ . x(nN)} = X(a2)
Proof. By definition

00

Z{a"x(n)} = z a"x(n).z"= Z x(n).(az)™"
n=0 n=0
= X(a2)
Similarly, Z{a" x(n)} = X(z/a)
(d) Convolution :
If Z{x(N)} = X(@ and Z{y(n)} = Y(2) then

Z{x(n) Oy(n} = X3 . Y(2)
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Proof. By definition

Z{x(n) Oy} = ¥

[Z x(n = m) y(m)] 7"
n=0 [ m=0

[Z x(n) z'”] [Z y(n) z'”] =X@ . Y2
n=0 n=0

(Using Cauchy product from Calculus)
We see that the ztransform of the convolution of two discrete functions is the product of the z-
transforms of the discrete functions.
(e) Differentiation
It is known that a convergent power series can be differentiated termwise within its region of
convergence. Since X(2) isafunction of z1, it is generally easier to differentiate with respect to z 2.

00

since XQ =3 X027

: - zo X(n).n. ()™

5 zt. dd);(f) =zo (n).z" O Z{nxn}=z". dd’;(j
Similarly, Z{n(n—1)x ()} = 2 3;x§)zg _

16.B.4 INITIAL VALUE AND FINAL VALUE THEOREMS
1. Initial Value Theorem :

If Z{x(M)} = X(2), then x(0) = Lt X(2),

x(1) = Lt {z[X@)-xO)]},
X2 = Lt [Z[X@)-x0)-x1) ]}

and so on.
Proof is obvious.
2. Final Value Theorem :
If Z{x(n)} = X(2), then
Lt x(n)= ZI:t1 (z-1).X(2

n- o

Proof. Here Z{x(n + 1) — x(n)} = i {x(n +1) —x(n)} z"
n=0

00

O ZXx(n+ D} - Z{x(n)} = z {x(n+ 1) —x(n)} z"

n=0
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