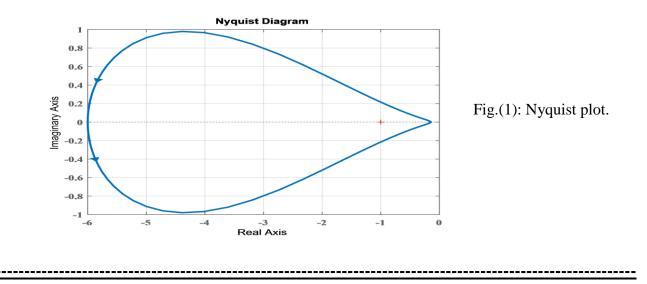


Subject: Control Examination Time: 3 Hours (180 min) Class:3st Date: / / 2018

2017 - 2018

Max.Mark: **\..** mark

NOTE: ANSWER FOUR QUESTIONS


<u>Q1</u>: the O.L.T.F of a closed loop system is $G(s)H(s) = \frac{e^{-as}(s+b)}{s^2 + 0.5s - 1}$,

(25 Marks)

A) Draw the state space diagram for the O.L.T.F.

<u>B</u>) the Nyquist plot for this system is shown in Fig.(1). See this figure then determine:

1. the stability of the C.L.T.F system. **2.** the value of the time delay *a* and the constant *b*, if you know that $\omega = \text{ for } M = 1$ and P.M =

<u>O2</u>: consider a second order unity feedback with plant G(s) and natural frequency=5 rad/sec., if unity impulse input is used to test this closed loop system for two case (critical stable response and critical damped response), then determine:

<u>i)</u> the G(s) equation for the both cases.

<u>ii</u>) the closed loop y(t) equation for the both cases.

<u>iii)</u> depending on point <u>ii)</u> determine the values of $(y(t=t_s), e_{s.s}, time \text{ constant } T, and \sigma)$ for critical damped response case.

<u>Q3</u>: <u>A)</u> consider the unity f/b system with O.L.T.F: (15 Marks)

$$G(s) = \frac{K(s^2 - 2s + 4)}{(s^2 + 2s + 4)}$$

sketch the complete root locus for this system and determine the range of K for stability.

- **<u>B</u>**) If a series PID controller is given by $G_c(s) = 3(s+4)$, then answer <u>two</u> from: (10 Marks)
- i) If the controller parameters are determined by (Z-N) 1^{st} tuning method then determine the approximate $G_r(s)$ equation.

- ii) If the controller parameters are determined by (Z-N) 2^{nd} tuning method then determine k_{cr} and the frequency ω .
- iii) the controller parameters are determined by (P-Z) cancelation tuning method then determine the plant G(s) equation.

<u>Q4</u>: Consider a unity feedback system with open loop D.E given by: (25 Marks) $\ddot{y}(t) + 2\ddot{y}(t) + 5\ddot{y}(t) = k(6\dot{u}(t) + 6u(t))$

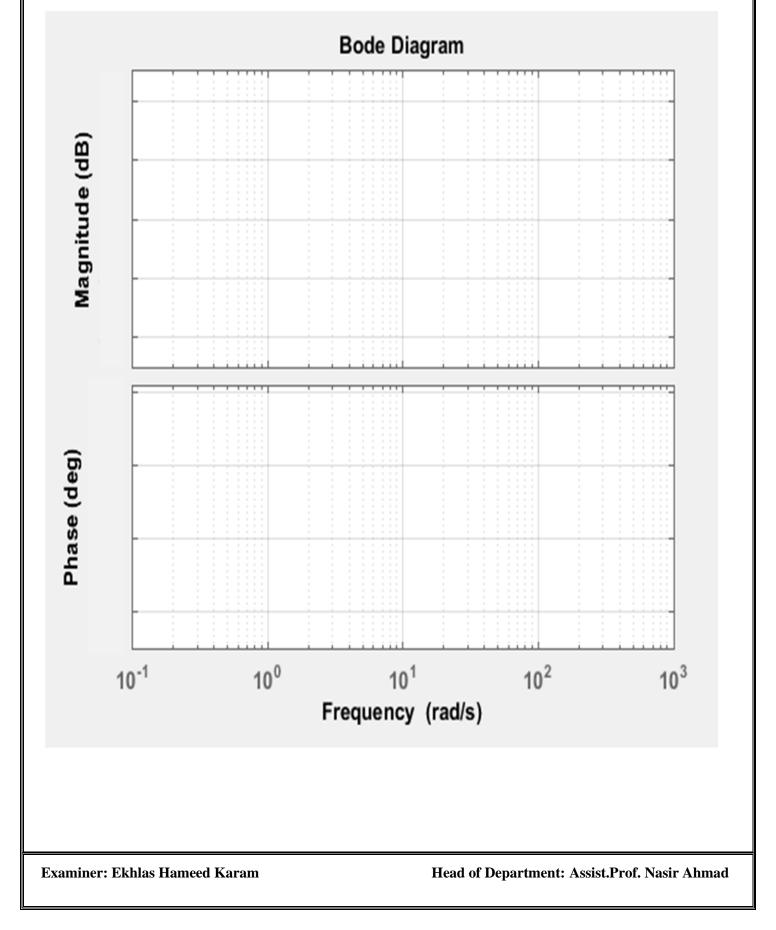
Then select the correct answer for **<u>five</u>** from the following points:

- 1. the O.L.T.F is: **a** (stable 2^{nd} order type 2) **b** (unstable 2^{nd} order type 2) **c** (stable 4^{th} order type 2) **d** (unstable 4^{th} order type 2)
- 2. if the input is unite sine and (k=1, t=2 sec., $\omega=1$ rad/sec.) then the value of $y_{s.s}(t)$ is: **a**- (-0.6625) **b**- (1.8974) **c**- (2.334) **d**- (-4.1127)
- 3. according to Routh stability approach the k_{cr} and the frequency ω at sustained oscillation are: **a**- (k_{cr} =2.34, ω =2.15) **b**- (k_{cr} =3.4, ω =4.2) **c**- (k_{cr} =6.01, ω =2.14) **d**- (k_{cr} =1.33, ω =1.41)
- 4. the value of k for $E_{s,s}=0.2$ and input $r(t) = (4t + 2t^2)/2$ is: **a** (3.861) **b**-(8.334) **c**- (4.645) **d**- (5.861)
- 5. the suitable controller for this system is: **a** (PID) **b** (PD) **c** (PI) **d** (P only)
- 6. the suitable tuning method for controller parameters is:
 a- (robust method) b- (D-S method) c- (P-Z method) d- (C-C method)

<u>Q5</u>: Consider a unity feedback system with $G(s) = \frac{K(s^2 + 0.8s + 0.4)}{s(1 - xs)^2}$ and data given by the

table(1), try to complete this table, determine the value of $\omega_{s,p}$, x, ω_x and sketch the bode plot on Fig.(2) then determine: (25 Marks)

i) the stability of the closed loop system.


<u>ii)</u> the system gain k for gain cross-over frequency to be 0.4 rad/sec.

<u>iii)</u> the system gain k for maximum positive phase margin.

ω	$\omega_{s.p}$	0.635	\mathcal{O}_x	100	1000
Mag.	20	11.2	21.9	7.84	-12
Φ	-437	-335	-185	-102	-91.2

Table(1): bode data.

Fig.(2):Bode plot.

