

Ministry Of Higher Education and Scientific Research AL-Mustansiriyah University/College of Engineering/Mechanical Eng.

Department

Course Plan

Course No.: 50603502	Course Name: Advanced thermodynamics

Academic Year: 2018-2019 Time Division: 3hr. Theoretical.

Prerequisites: 50603502 – Advanced thermodynamics **Course Description** Advanced thermodynamics.

Course Intended Outcomes:

At the end of the course, students are expected to learn:

- Understand the basics of thermodynamics •
- Understand the thermodynamics Laws •
- Understand the relations •
- Understand the thermodynamics application •

Course Outline:

Week	Topics Covered	Notes
1	Review of basic Concepts of Thermodynamics a. Microscopic Approaches & Macroscopic	
	b. thermodynamics System	
	c. Processes and state	
	d. Equilibrium	
2&3	Review of basic Thermodynamics Laws	
	a. Zeroth law of thermodynamics	
	b. First Law of thermodynamics	
	c. Second Law of thermodynamics	
	d. Third law of thermodynamics (Nernst Law)	
	Entropy	
Λ	a. Entropy is a state function	
-	b. Entropy changes and reversibility	
	c. Entropy calculations	
5&6	Thermodynamics Relations	
	a. Entropy equations (T.ds Equations)	
	b. Equations for Internal energy and Enthalpy	
	c. Coefficients of expansion and compression and	
	compressibility charts	
	d. Specific Heat Capacities	

	e. Joule-Thomson Coefficient	
	Gases and vapour Mixtures	
7&8	a. Mixing laws (Gibbs - Dalton laws)b. Volumetric analysis of gas mixture	
	c. Mixture relationships ,specific heats enthalpy ,entropy of mixtures	
	d. Gas and vapor mixture	
	e. Real gases mixture (Kay's rule)	
9	Reacting gases mixture	
	Ideal and Real Gases	
	a. Equation of state for perfect gas	
	b- Real gases	
10& 11	c. Van der Wall's (VW) equation of state	
	d. Limitation of VW equation	
	e. Virial Equation of state f. RedlichKwong (RK) equation of state	
	g. Beattie Bridgeman equation of state	
	h. Law of corresponding	
12 & 13	 Exergy Analysis a. Introducing Exergy b. Evaluating Exergy and Exergy aspects c. Closed system Exergy balance. d. Flow Exergy e. Exergy rate balance for control volume f. Exergetic efficiency (second law efficiency) 	
14	Thermocouple Applications a. Heat flow and electricity flow b. See- beck coefficient c. Palter coefficient d. Thomson coefficient e. Thermocouple applications	
13	introduction to statistical thermodynamics	

References :

- 1- "Advanced Thermodynamics Engineering", Kalyan Annamalai and I. K. Puri, CRC press, 2008, Washington D.C.
- 2- "Engineering Thermodynamics", "Advanced Thermodynamics", etc....)

Marking:

First Semester			Final Exam	
Activity	1st exam	2nd exam	3 d exam	70%
5%	5%	7.5%	7.5%	

Assignments and/or Projects:

Assignment/Project	Description	Due Date	Marking
Case study	There are 2 case studies in the	During the	5
	semesters	course	

Instructor information:

Lecture Room: [Group Msc.01] <u>Time</u>: Sun., 8:30-11:20 Instructor's Name: Dr.Maathe A.Theeb <u>Office No.</u>: **13** <u>E-Mail</u>:maathe_a@yahoo.com <u>NOTES</u>:] Office Hours: Other office hours are available by appointment.

The content of this syllabus not be changed during the current semester.

Lecturer Signature

Chairman Signature