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Chapter Two
Steady Heat Conduction

o INTRODUCTION

in heat transfer analysis, we are often interested in the rate of heat transfer through a
medium under steady conditions and surface temperatures. Such problems can be
solved easily without involving any differential equations by the introduction of
thermal resistance concepts in an analogous manner to electrical circuit problems. In
this case, the thermal resistance corresponds to electrical resistance, temperature
difference corresponds to voltage, and the heat transfer rate corresponds to electric

current.

o ONE-DIMENSIONAL STEADY HEAT CONDUCTION IN A
PLANE WALL, A CYLINDER, AND A SPHERE
o A PLANE WALL

Consider steady heat conduction through the walls of a house during a winter day. We
know that heat is continuously lost to the outdoors through the wall. We intuitively
feel that heat transfer through the wall is in the normal direction to the wall surface,

and no significant heat transfer takes place in the wall in other directions (Fig. 2-1).
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Figure 2-1 Heat flow through a wall is one dimensional when the temperature of the
wall varies in one direction only
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Recall that heat transfer in a certain direction is driven by the temperature gradient in
that direction. The small thickness of the wall causes the temperature gradient in that
direction to be large. Further, if the air temperatures in and outside the house remain
constant, then heat transfer through the wall of a house can be modeled as steady and
one-dimensional. The temperature of the wall in this case will depend on one
direction only (say the x-direction) and can be expressed as T(x).

The energy balance for the wall can be expressed as

(Rate of heat transfer into the wall) — (Rate of heat transfer out of the wall)
= (Rate of change of the energy of the wall)

Or

_ dEwall
Qin - Qout - ;Ita 2-1

But dEW“”/dt = 0 for steady operation, since there is no change in the temperature

of the wall with time at any point. Hence, the rate of heat transfer into the wall must
be equal to the rate of heat transfer out of it. In other words, the rate of heat transfer

through the wall must be constant, Qconq wqu= cONstant.

Consider a plane wall of thickness L and average thermal conductivity k. The two
surfaces of the wall are maintained at constant temperatures of T; and T,. For one-

dimensional steady heat conduction through the wall, we have T(x). Then Fourier’s

law of heat conduction for the wall can be expressed as
dr
Qcond,wall = —kA E 2-2

where the rate of conduction heat transfer Q.ongwaqu and the wall area A are
constant. Thus we have dT/dx = constant, which means that the temperature through
the wall varies linearly with x. That is, the temperature distribution in the wall under

steady conditions is a straight line (Fig. 2-2).
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Figure 2-2 Under steady conditions, the temperature distribution in a plane wall is a
straight line.

Separating the variables in the preceding equation and integrating from x = 0, where

T(0)=T;,tox =L, where T(L) = T,, we get

L T
fx=0 Qcond,walldx = fTiTl kAdT 2-3
Performing the integrations and rearranging gives
T,-T
Qcond,wall = kA 1L 2 (W) 2-4

Note:- The rate of heat conduction is available, the temperature T(x) at any location x
can be determined by replacing T2 in Eq. 2-4 by T, and L by x.

o The Thermal Resistance Concept

e For heat conduction

Equation 2—4 for heat conduction through a plane wall can be rearranged as
T, -T,

Qcond,wall = Rl (W) 2-5
Where
L o
Ryau = %A (°C/w) 2-6

is the thermal resistance of the wall against heat conduction or simply the
conduction resistance of the wall. Note that the thermal resistance of a medium

depends on the geometry and the thermal properties of the medium.
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Equation 2-6 for heat flow is analogous to the relation for electric current flow I,
expressed as

[ =4 2-7

Relc

where R, = L/o,.A is the electric resistance and V; —V, is the voltage
difference across the resistance (o,;. is the electrical conductivity). Thus, the rate of
heat transfer through a layer corresponds to the electric current, the thermal
resistance corresponds to electrical resistance, and the temperature difference

corresponds to voltage difference across the layer (Fig. 2-3).

rn-T
=1 "2
¢= R
?’; - '-."-._,-".-JL\"-,."-..-\"-...-".-*.."-_-"-l“-.."-u".r...-\";-' - TZ
iy
(a) Heat flow
vV, -V
=1 "2
Rele
v, ANAAAN—— .V,
Rele

(A) Electric current flow

Figure 2-3 Analogy between thermal and electrical resistance concepts.

e For heat convection
Consider convection heat transfer from a solid surface of area A and temperature T

to a fluid whose temperature sufficiently far from the surface is T, with a convection
heat transfer coefficient h. Newton’s law of cooling for convection heat transfer rate

Qconv = hAs(Ts — T, ) can be rearranged as

(Ts_Too)
Qconv = Reom (W) 2-8
Where
1 o
Rconv == h_AS ( C/W) 2-9

is the thermal resistance of the surface against heat convection, or simply the

convection resistance of the surface (Fig. 2-4).
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Figure 2-4 Schematic for convection resistance at a surface.

Note:- Equation 2-9 for convection resistance is valid for surfaces of any shape

° Thermal Resistance Network

Now consider steady one-dimensional heat flow through a plane wall of thickness L,

area A, and thermal conductivity k that is exposed to convection on both sides to
fluids at temperatures T, and T, with heat transfer coefficients h; and h,,
respectively, as shown in Fig. 2-5. Assuming Twq > Ty, the variation of
temperature will be as shown in the figure. Note that the temperature varies linearly in

the wall, and asymptotically approaches T,1 and T, in the fluids as we move away

from the wall.
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Figure 2-5 The thermal resistance network for heat transfer through a plane wall
subjected to convection on both sides, and the electrical analogy.



Chapter Two Steady Heat Conduction

Under steady conditions we have

Rate of heat Rate of heat Rate of heat
( convection ) = ( conductio ) = ( convection )
into the wall through the wall from the wall

Or

T, —T,
L

Q = hA(Tey —T1) = kA = h A(T; — Teo2) 2-10

which can be rearranged as
_ (Tooy — T1) _ =T, _ (T2 — Toz)

Q = = =
1 L 1
/n,A /ka /h,A
:(Too1—T1) — T1—T, — (T2 —Too2) 211
Reonvi Ryaii Reonv2

Adding the numerators and denominators yields

Q — (Tool_Tooz) (W) 2_12

Reotal

Where

Riotal = Reonvi + Rwanl + Reonvz = 1/h1A + L/kA + 1/h2A (°C/w) 2-13

Note that the heat transfer area A is constant for a plane wall, and the rate of heat
transfer through a wall separating two mediums is equal to the temperature difference
divided by the total thermal resistance between the mediums.
We can rewrite equation (2-12 ) as below:

AT = QR (°C) 2-14

which indicates that the temperature drop across any layer is equal to the rate of heat

transfer times the thermal resistance across that layer.

o Overall Heat Transfer Coefficient

It is sometimes convenient to express heat transfer through a medium in an analogous

manner to Newton’s law of cooling as

Q = UAAT (W) 2-15
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where U is the overall heat transfer coefficient

A comparison of Egs. (2-12) and (2-15) reveals that

1

UA = 2-16

Rtotal
Therefore, for a unit area, the overall heat transfer coefficient is equal to the inverse of

the total thermal resistance.

o Multilayer Plane Walls

In practice we often encounter plane walls that consist of several layers of different materials. The
thermal resistance concept can still be used to determine the rate of steady heat transfer through
such composite walls. As you may have already guessed, this is done by simply noting that the

conduction resistance of each wall is L/kA connected in series, and using the electrical analogy.
That is, by dividing the temperature difference between two surfaces at known
temperatures by the total thermal resistance between them.

Consider a plane wall that consists of two layers (such as a brick wall with a layer of
insulation). The rate of steady heat transfer through this two-layer composite wall can
be expressed as Fig. 2-6.
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Figure 2-6 The thermal resistance network for heat transfer through a two-layer plane wall subjected to
convection on both sides

— (Tool - Tooz)

R total

Q

where R;,:q:1 1S the total thermal resistance, expressed as

Rtotal = Rcon,l + Rwall,l + Rwall,z + Rcon,z
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= Vot et oat Yia 2-11

The Ryqu1 and Ryqy 2 in relations above indicate the first and the second layers,
respectively.

This result for the two-layer case is analogous to the single-layer case, except that an
additional resistance is added for the additional layer. This result can be extended to
plane walls that consist of three or more layers by adding an additional resistance for
each additional layer.

Note:- The thermal resistance concept is widely used in practice because it is
intuitively easy to understand and it has proven to be a powerful tool in the solution of
a wide range of heat transfer problems. But its use is limited to systems through which
the rate of heat transfer remains constant; that is, to systems involving steady heat
transfer with no heat generation (such as resistance heating or chemical reactions)
within the medium.

Example 1/

Consider a 0.8-m-high and 1.5-m-wide double-pane window consisting of two
A-mm-thick layers of glass (k = 0.78 W/m - °C) separated by a 10-mm-wide
stagnant air space (k = 0.026 W/m - °C). Determine the steady rate of heat
transfer through this double-pane window and the temperature of its inner sur-
face for a day during which the room is maintained at 20°C while the tempera-
ture of the outdoors is —10°C. Take the convection heat transfer coefficients on
the inner and outer surfaces of the window to be h; = 10 W/m? - °C and h, =
40 W/m? - °C, which includes the effects of radiation.

Glass Glass
| |
Alr

20°C

4 mm 10 mm 4 mm

Figure 2-7 Schematic for Example 1
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Solution:
A=08mx15m=12m?

_ _ 1 1 _ .
R=Kow1 = 37 = HoWimz - Oy (1.2 m7) ~ 08333 C/W
_p_ _ L 0.004 m _ .
R = R = Ry = 31~ 078 Wi - Oy (2 — 0-00427°C/W
L, 0.01 m .
Re= R =1, A~ 0026 Wim —~O)12mp _ (-3205°C/W

1

1 o
= lmp = m - {40 W/mZ - OC)(I.Z I'I'lz) = 0.02083°C/W

MNoting that all three resistances are in series, the total resistance isj

Eolal = }Ecnn\'.l + Ji"E'gl:iss,l + J!?zlir + Rg]ass.? + Rconv,z
= 0.08333 + 0.00427 + 0.3205 + 0.00427 + 0.02083

= 0.4332°C/W

Then the steady rate of heat transfer through the window becomes

. Tu— T [20— (=10)]°C
=" Rom ~ 04332°C/W

=69.2 W

The inner surface temperature of the window in this case will be

T,= T, — OR..,, = 20°C — (69.2 W)(0.08333°C/W) = 14.2°C

o GENERALIZED THERMAL RESISTANCE NETWORKS
The thermal resistance concept or the electrical analogy can also be used to solve
steady heat transfer problems that involve parallel layers or combined series-parallel
arrangements. Consider the composite wall shown in figure 2-8, which consists of

two parallel layers.

Insulation
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QZ——-
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Q S Ql + Qg

Figure 2-8 Thermal resistance network for two parallel layers
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The thermal resistance network, which consists of two parallel resistances, can be
represented as shown in the figure. Noting that the total heat transfer is the sum of the

heat transfers through each layer, we have

_ _ Th-T, | T1-Ty _ 1,1 )
Q=Q+ Q=" 22 (1 —T) (- +5) 218
Utilizing electrical analogy, we get
Q=25 2-19
Rtotal
Where
t .1 — RiRy -
Reotal  R1 T Ry ~ Reotar = R1+R; 2-20

since the resistances are in parallel.

Now consider the combined series-parallel arrangement shown in figure 2-9.
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Figure 2-9 Thermal resistance network for combined series-parallel arrangement
The total rate of heat transfer through this composite system can again be expressed as

_ T1 _Too

Q 2-21

Reotal

Where



Chapter Two Steady Heat Conduction

R{R
Riotar = R12 + R3 + Reony = R 1_{_}:2 + R3 + Reony 2-22
And
Ly y” L _ 1 ]
Ry = kiAq' R, = koA, Ry = k3As' Reony = hAs 2-23

Once the individual thermal resistances are evaluated, the total resistance and the total
rate of heat transfer can easily be determined from the relations above.

Note:- there are two assumptions commonly wused in solving complex
multidimensional heat transfer problems by treating them as one-dimensional (say, in
the x-direction)

1- Any plane wall normal to the x-axis is isothermal (i.e., to assume the temperature
to vary in the x-direction only)

2- Any plane parallel to the x-axis is adiabatic (i.e., to assume heat transfer to occur in
the x-direction only).

Example 2/

A 17-m-high and 5-m-wide wall consists of long 16-cm x 22-cm cross section
horizontal bricks (k = 0.72 W/m - °C) separated by 1/-cm-thick plaster layers
(k = 0.22 W/m - °C). There are also 2-cm-thick plaster layers on each side of
the brick and a 17-cm-thick rigid foam (k = 0.026 W/m - “C) on the inner side
of the wall, as shown in Fig. 17-21. The indoor and the outdoor temperatures
are 20°C and —10°C, respectively, and the convection heat transfer coefficients
on the inner and the outer sides are h; = 10 W/m? - °C and h, = 25 W/m? - °C,
respectively. Assuming one-dimensional heat transfer and disregarding radia-
tion, determine the rate of heat transfer through the wall.

Foam Plaster
’i\”’?é’ﬁ“‘—"’x\:’ h,

7o
| 1.5 cm
.
Brick
i1y
T 22 cm
r
. —_
I 1.5 cm
L o |

I—" A
|~ 3 *|+2*|—-— 16 cm —-|-‘2+|

Figure 2-10 Schematic for Example 2




Chapter Two Steady Heat Conduction

Solution:
Rﬂ
R R R R g R
1 1 2 q G
Tx ] . .~_|,i\._.~_‘.-. .n...h_‘.ﬂ._.'. .~_‘.ﬂ.'.'.~.\ .~.'_ﬂ.'.'\.~.\. a-,'_'.l_.\‘.\ "',"'..'"-.f: a Tﬁz
Rﬁ
\'.'rJ'\'
_ _ 1 _ 1 e
B = Reonv1 = A (10 W/m? - °C)(0.25 % 1 m?) Ly
_ _ L _ 0.03 m .
Ry = Ruoam = 34 = (0,026 Wim - °C) (0.2 x 1)~ TEC/W
I 0.02 m

RZ — Rﬁ = Rplaster. side — E = (0_22 ij . DC] {[]25 x 1 mE}

= 0.36°C/W

B 3 _ L _ 0.16 m
R:; — Rs - Rplaster. center kA [022 w,lrm . OC:I {00‘15 x ]- mZ)

= 48.48°C/W
. _L_ 0.16 m o
Ry = R = 14 = 072 Wim - <0 022 x 1)~ -OE/W
R =R 1 L = 0.16°C/W

conv, 2 fIZ—A - (25 W/m? - °C)(0.25 < 1 m?)

The three resistances K3, R4, and Rs in the middle are parallel, and their equiv-
alent resistance is determined from

11,1 ,1_ 1 1 1 _ o
Ru R R TR 1848 101 a8ag  BWTC

which gives

Ry = 0.97°C/W

Now all the resistances are in series, and the total resistance is

Rom=R+R + R+ Ry + B+ R,
=04 +46 +0.36 + 097 +0.36 + 0.16
= 6.85°C/W

Then the steady rate of heat transfer through the wall becomes

T-T. (20— (C10)°C
==& = 685C/W

=438W (per 0.25 m? surface area)

or 4.38/0.25 = 17.5 W per m? area. The total area of thewallis A =3 m x5
m = 15 m2. Then the rate of heat transfer through the entire wall becomes

O = (17.5 Wim?) (15 md) = 263 W




