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2.2.2. HEAT CONDUCTION IN CYLINDERS AND SPHERES 

Consider steady heat conduction through a hot-water pipe. Heat is continuously lost to 

the outdoors through the wall of the pipe, and we intuitively feel that heat transfer 

through the pipe is in the normal direction to the pipe surface and no significant heat 

transfer takes place in the pipe in other directions figure 2–11. 

 

Figure 2-11 Heat is lost from a hot-water pipe to the air outside in the radial direction, 

and thus heat transfer from a long pipe is one-dimensional 

 

The wall of the pipe, whose thickness is rather small, separates two fluids at different 

temperatures, and thus the temperature gradient in the radial direction will be relatively 

large. Further, if the fluid temperatures inside and outside the pipe remain constant, 

then heat transfer through the pipe is steady. Thus heat transfer through the pipe can be 

modeled as steady and one-dimensional. The temperature of the pipe in this case will 

depend on one direction only (the radial r-direction) and can be expressed as T= T(r). 

Consider a long cylindrical layer (such as a circular pipe) of inner radius 𝑟1, outer radius 

𝑟2, length L, and average thermal conductivity (k) figure 2–12. The two surfaces of the 

cylindrical layer are maintained at constant temperatures 𝑇1 and 𝑇2.  

 

Figure 2-12 A long cylindrical pipe (or spherical shell) with specified inner and outer 

surface temperatures T1 and T2. 
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There is no heat generation in the layer and the thermal conductivity is constant. For 

one-dimensional heat conduction through the cylindrical layer, we have 𝑇(𝑟). Then 

Fourier’s law of heat conduction for heat transfer through the cylindrical layer can be 

expressed as 

𝑄𝑐𝑜𝑛𝑑,𝑐𝑦𝑙 = −𝑘𝐴
𝑑𝑇

𝑑𝑟
   (W)                         2-24 

where A=2𝜋rL is the heat transfer area at location r. Note that A depends on r, and thus 

it varies in the direction of heat transfer. Separating the variables in the above equation 

and integrating from r = 𝑟1, where 𝑇(𝑟1)= 𝑇1, to r = 𝑟2, where 𝑇(𝑟2) = 𝑇2, gives 

∫
𝑄𝑐𝑜𝑛𝑑,𝑐𝑦𝑙

𝐴

𝑟2

𝑟=𝑟1
𝑑𝑟 = ∫ 𝑘𝑑𝑇

𝑇2

𝑇=𝑇1
                    2-25 

Substituting A=2𝜋rL and performing the integrations give 

𝑄𝑐𝑜𝑛𝑑,𝑐𝑦𝑙 = 2𝜋𝐿k
𝑇1−𝑇2

ln(
𝑟2

𝑟1
⁄ )

     (W)             2-26 

since 𝑄𝑐𝑜𝑛𝑑,𝑐𝑦𝑙 = constant. This equation can be rearranged as 

𝑄𝑐𝑜𝑛𝑑,𝑐𝑦𝑙 =
𝑇1−𝑇2

𝑅𝑐𝑦𝑙
      (W)                        2-27 

Where  

𝑅𝑐𝑦𝑙 =
ln(

𝑟2
𝑟1

⁄ )

2𝜋𝐿k
=

ln(𝑜𝑢𝑡𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠
𝑖𝑛𝑛𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠⁄ )

2𝜋(𝑙𝑒𝑛𝑔𝑡ℎ)(𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
               2-28 

 

𝑅𝑐𝑦𝑙 is the thermal resistance of the cylindrical layer against heat conduction, or 

simply the conduction resistance of the cylinder layer. 

We can repeat the analysis for a spherical layer by taking A=4𝜋𝑟2 and performing 

the integrations in Eq. 2–25. The result can be expressed as 

𝑄𝑐𝑜𝑛𝑑,𝑠𝑝ℎ =
𝑇1−𝑇2

𝑅𝑠𝑝ℎ
                                  2-29 

Where  
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𝑅𝑠𝑝ℎ =
𝑟2−𝑟1

4𝜋𝑟1𝑟2k
=

𝑜𝑢𝑡𝑒𝑟 𝑟𝑎𝑑𝑢𝑖𝑠−𝑖𝑛𝑛𝑒𝑟 𝑟𝑎𝑑𝑢𝑖𝑠

4𝜋(𝑖𝑛𝑛𝑒𝑟 𝑟𝑎𝑑𝑢𝑖𝑠)(𝑜𝑢𝑡𝑒𝑟 𝑟𝑎𝑑𝑢𝑖𝑠)(𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
    2-30 

 

𝑅𝑠𝑝ℎ is the thermal resistance of the spherical layer against heat conduction, or 

simply the conduction resistance of the spherical layer. 

Now consider steady one-dimensional heat flow through a cylindrical or spherical layer 

that is exposed to convection on both sides to fluids at temperatures 𝑇∞1 and 𝑇∞2 with 

heat transfer coefficients ℎ1 and ℎ2, respectively, as shown in figure 2–13. 

 

Figure 2-13 The thermal resistance network for a cylindrical (or spherical) shell 

subjected to convection from both the inner and the outer sides 

 

The thermal resistance network in this case consists of one conduction and two 

convection resistances in series, just like the one for the plane wall, and the rate of heat 

transfer under steady conditions can be expressed as 

𝑄 =
𝑇∞1−𝑇∞2

𝑅𝑡𝑜𝑡𝑎𝑙
                              2-31 

Where 

 𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑐𝑜𝑛𝑣,1 + 𝑅𝑐𝑦𝑙 + 𝑅𝑐𝑜𝑛𝑣,2   

                                           =
1

(2𝜋𝑟1𝐿)ℎ1
+

ln(
𝑟2

𝑟1
⁄ )

2𝜋𝐿k
+

1

(2𝜋𝑟2𝐿)ℎ2
               2-32 

 

Eq. (2-32) for a cylindrical layer, and 

 𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑐𝑜𝑛𝑣,1 + 𝑅𝑠𝑝ℎ + 𝑅𝑐𝑜𝑛𝑣,2 
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                                           =
1

(4𝜋𝑟1
2)ℎ1

+
(𝑟2−𝑟1)

4𝜋𝑟1𝑟2k
+

1

(4𝜋𝑟2
2)ℎ2

               2-33 

Eq. (2-33) for a spherical layer, 

Note that A in the convection resistance relation 𝑅𝑐𝑜𝑛𝑣 = 1/hA is the surface area at 

which convection occurs. It is equal to A=2𝜋rL for a cylindrical surface and A = 4𝜋𝑟1
2 

for a spherical surface of radius r. Also note that the thermal resistances are in series, 

and thus the total thermal resistance is determined by simply adding the individual 

resistances, just like the electrical resistances connected in series. 

 

 Multilayered Cylinders and Spheres 

Steady heat transfer through multilayered cylindrical or spherical shells can be handled 

just like multilayered plane walls discussed earlier by simply adding an additional 

resistance in series for each additional layer. For example, the steady heat transfer rate 

through the three-layered composite cylinder of length L shown in Fig. 2–14 with 

convection on both sides can be expressed as 

𝑄 =
𝑇∞1−𝑇∞2

𝑅𝑡𝑜𝑡𝑎𝑙
                                                           2-34 

 

Figure 2-14 The thermal resistance network for heat transfer through a three-layered 

composite cylinder subjected to convection on both sides 
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where 𝑅𝑡𝑜𝑡𝑎𝑙  is the total thermal resistance, expressed as 

 

 𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑐𝑜𝑛𝑣,1 + 𝑅𝑐𝑦𝑙,1 + 𝑅𝑐𝑦𝑙,2 + 𝑅𝑐𝑦𝑙,3 + 𝑅𝑐𝑜𝑛𝑣,2 

=
1

ℎ1𝐴1
+

ln(
𝑟2

𝑟1
⁄ )

2𝜋𝐿𝑘1
+

ln(
𝑟3

𝑟2
⁄ )

2𝜋𝐿𝑘2
+

ln(
𝑟4

𝑟3
⁄ )

2𝜋𝐿𝑘3
+

1

ℎ2𝐴4
       2-35 

where 𝐴1 =2𝜋rL and   𝐴4 = 4𝜋𝑟1
2 

Equation 2–35 can also be used for a three-layered spherical shell by replacing the 

thermal resistances of cylindrical layers by the corresponding spherical ones. 

Example 3/  

 

 
Figure 2-15  Schematic for Example 3 

Solution: 

 

The thermal resistance network for this problem is given in figure 2–15. Noting that the 

inner diameter of the tank is D1 = 3 m and the outer diameter is D2 = 3.04 m, the inner 

and the outer surface areas of the tank are 
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2.2.3. CRITICAL RADIUS OF INSULATION 

We know that adding more insulation to a wall or to the attic always decreases heat 

transfer. The thicker the insulation, the lower the heat transfer rate. This is expected, 

since the heat transfer area A is constant, and adding insulation always increases the 

thermal resistance of the wall without increasing the convection resistance. 

Adding insulation to a cylindrical pipe or a spherical shell, however, is a different 

matter. The additional insulation increases the conduction resistance of the insulation 

layer but decreases the convection resistance of the surface because of the increase in 

the outer surface area for convection. The heat transfer from the pipe may increase or 

decrease, depending on which effect dominates. 

 

Figure 2-16 An insulated cylindrical pipe exposed to convection from the outer 

surface and the thermal resistance network associated with it. 

 

Consider a cylindrical pipe of outer radius 𝒓𝟏 whose outer surface temperature 𝑻𝟏 is 

maintained constant figure 2–16. The pipe is now insulated with a material whose 

thermal conductivity is k and outer radius is 𝒓𝟐. Heat is lost from the pipe to the 

surrounding medium at temperature 𝑻∞, with a convection heat transfer coefficient h. 

The rate of heat transfer from the insulated pipe to the surrounding air can be expressed 

as figure 2–17. 

 

𝑄 =
𝑇1−𝑇∞

𝑅𝑖𝑛𝑠+𝑅𝑐𝑜𝑛𝑣
=

𝑇1−𝑇∞

ln(
𝑟2

𝑟1⁄ )

2𝜋𝐿𝑘
+

1

ℎ(2𝜋𝑟2𝐿)

   (W)                  2-36  
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 Figure 2-17  

The variation of with the outer radius of the insulation 𝒓𝟐 is plotted in Fig. 2–17. The 

value of 𝒓𝟐 at which reaches a maximum is determined from the requirement that 

d/dr2=0 (zero slope). Performing the differentiation and solving for 𝒓𝟐 yields the 

critical radius of insulation for a cylindrical body to be 

𝑟𝑐𝑟,𝑐𝑙𝑖𝑛𝑑𝑒𝑟 =
𝑘

ℎ
     (m)            2-37 

Note that the critical radius of insulation depends on the thermal conductivity of the 

insulation k and the external convection heat transfer coefficient h. 

 

The discussions above can be repeated for a sphere, and it can be shown in a similar 

manner that the critical radius of insulation for a spherical shell is 

𝑟𝑐𝑟,𝑐𝑙𝑖𝑛𝑑𝑒𝑟 =
2𝑘

ℎ
    (m)         2-38 

where k is the thermal conductivity of the insulation and h is the convection heat transfer 

coefficient on the outer surface. 
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Example 4/  

 
Figure 2-18 Schematic for Example 4 

 

Solution: 

 

 


