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2.3. HEAT TRANSFER FROM FINNED SURFACES 

The rate of heat transfer from a surface at a temperature 𝑇𝑠 to the surround in medium at 

𝑇∞ is given by Newton’s law of cooling as 

𝑄𝑐𝑜𝑛𝑣 = ℎ𝐴𝑠(𝑇𝑠 − 𝑇∞)                                                                     

where 𝑨𝒔 is the heat transfer surface area and h  is the convection heat transfer coefficient.  

When the temperatures 𝑻𝒔 and 𝑻∞ are fixed by design considerations, as is often the case, 

there are two ways to increase the rate of heat transfer: to increase the convection heat 

transfer coefficient 𝒉 or to increase the surface area 𝑨𝒔. Increasing h may require the 

installation of a pump or fan, or replacing the existing one with a larger one, but this 

approach may or may not be practical. Besides, it may not be adequate. The alternative is 

to increase the surface area by attaching to the surface extended surfaces called fins made 

of highly conductive materials such as aluminum. 

Finned surfaces are commonly used in practice to enhance heat transfer, and they often 

increase the rate of heat transfer from a surface several fold. The car radiator shown in Fig. 

2–19 is an example of a finned surface. 

 

Figure 2-19 The thin plate fins of a car radiator greatly increase the rate of heat transfer to 

the air 
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 Fin Equation 

In the analysis of fins, we consider  

1- Steady operation with no heat generation in the fin 

2- The thermal conductivity k of the material to remain constant.  

3- The convection heat transfer coefficient h to be constant and uniform over the 

entire surface of the fin for convenience in the analysis. 

Question: - Adding too many fins on a surface may actually decrease the overall heat 

transfer when the decrease in h offsets any gain resulting from the increase in the 

surface area. 

Consider a volume element of a fin at location x having a length of ∆x, cross sectional area 

of Ac, and a perimeter of p, as shown in figure 2–20.  

 

Figure 2-20 Volume element of a fin at location x having a length of ∆x, cross-sectional 

area of Ac, and perimeter of p. 

 

Under steady conditions, the energy balance on this volume element can be expressed as 

 
 

Or  

𝑄𝑐𝑜𝑛𝑑,𝑥 = 𝑄𝑐𝑜𝑛𝑑,𝑥+∆𝑥 + 𝑄𝑐𝑜𝑛𝑣                                                              
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Where 

   𝑄𝑐𝑜𝑛𝑣 = ℎ(𝑝∆𝑥)(𝑇 − 𝑇∞) 

Substituting and dividing by ∆𝑥, we obtain 

          
𝑄𝑐𝑜𝑛𝑑,𝑥+∆𝑥−𝑄𝑐𝑜𝑛𝑑,𝑥

∆𝑥
+ ℎ𝑝(𝑇 − 𝑇∞) = 0             2-39 

Taking the limit as ∆𝑥         0 gives 

𝑑𝑄𝑐𝑜𝑛𝑑

𝑑𝑥
+ ℎ𝑝(𝑇 − 𝑇∞) = 0                       2-40 

From Fourier’s law of heat conduction, we have 

𝑄𝑐𝑜𝑛𝑑 = −𝑘𝐴𝑐
𝑑𝑇

𝑑𝑥
                                2-41 

where 𝑨𝒄 is the cross-sectional area of the fin at location x. Substitution of this relation 

into Eq. 2–40 gives the differential equation governing heat transfer in fins, 

𝑑

𝑑𝑥
(𝑘𝐴𝑐

𝑑𝑇

𝑑𝑥
) − ℎ𝑝(𝑇 − 𝑇∞) = 0              2-42  

In general, the cross-sectional area 𝑨𝒄 and the perimeter p of a fin vary with x, which 

makes this differential equation difficult to solve. In the special case of constant cross 

section and constant thermal conductivity, the differential equation 2–42 reduces to 

𝑑2𝜃

𝑑𝑥2
− 𝑚2𝜃 = 0                             2-43 

Where  

𝑚2 =
ℎ𝑝

𝑘𝐴𝑐
                                    2-44 

and 𝜃 = 𝑇 − 𝑇∞ is the temperature excess. At the fin base we have 𝜃𝑏 = 𝑇𝑏 - 𝑇∞. 

 

Equation 2-43 is a linear, homogeneous, second-order differential equation with constant 

coefficients. the solution functions of the differential equation above are the exponential 
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functions 𝑒𝑎𝑥 or 𝑒−𝑎𝑥 or constant multiples of them. Therefore, the general solution of 

the differential equation Eq. 2-43 is 

𝜽(𝒙) = 𝑪𝟏𝒆𝒎𝒙 + 𝑪𝟐𝒆−𝒎𝒙
                 2-45 

where 𝐶1 and 𝐶2 are arbitrary constants whose values are to be determined from the 

boundary conditions at the base and at the tip of the fin.  

Note: we need only two conditions to determine 𝐶1 and 𝐶2 uniquely.  

At the fin base we have a specified temperature boundary condition, expressed as 

                             𝜃(0) = 𝜃𝑏 = 𝑇𝑏 - 𝑇∞                  boundary condition at fin base 

 

At the fin tip we have several possibilities, including specified temperature, negligible heat 

loss (idealized as an insulated tip), convection, and combined convection and radiation as 

shown in figure 2–21.  

 

Figure 2-21 Boundary conditions at the fin base and the fin tip 

 

 

 

Now, we consider each case separately 
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1- Infinitely Long Fin (𝑇𝑓𝑖𝑛 𝑡𝑖𝑝 = 𝑇∞) 

For a sufficiently long fin of uniform cross section (Ac = constant), the temperature of the 

fin at the fin tip will approach the environment temperature 𝑇∞ and thus 𝜃 will approach 

zero. That is, 

Boundary conditions are 

at   x= 0                        T = To                                     𝐶1 = 𝜃𝑜               

at   x = ∞                      T = T∞                                      𝐶2 = 0               

  
𝜃

𝜃𝑜
= 𝑒−𝑚𝑥 

𝑇𝑥 − 𝑇∞

𝑇𝑜 − 𝑇∞
= 𝑒−𝑚𝑥 

Note: the temperature along the fin in this case decreases exponentially from Tb to T∞, as 

shown in figure 2–22. The steady rate of heat transfer from the entire fin can be determined 

from Fourier’s law of heat conduction.          

 

Figure 2-22 a long circular fin of uniform cross section and the variation of temperature 

along it 



onductionCeat Hteady S                                                         wo                   TChapter  
 

𝑄 = −𝑘𝐴
0xdx

dT
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0  

   𝑄 = 𝑚𝑘𝐴𝜃𝑜         ,   𝑚2 =
ℎ𝑝

𝑘𝐴
 

   𝑄 = √ℎ𝑝𝑘𝐴𝜃𝑜 

 

2- Negligible Heat Loss from the Fin Tip (Insulated fin tip, 𝑸𝒇𝒊𝒏 𝒕𝒊𝒑= 0) 

Fins are not likely to be so long that their temperature approaches the surrounding 

temperature at the tip. A more realistic situation is for heat transfer from the fin tip to be 

negligible since the heat transfer from the fin is proportional to its surface area, and the 

surface area of the fin tip is usually a negligible fraction of the total fin area. Then the fin 

tip can be assumed to be insulated, and the condition at the fin tip can be expressed as 

Boundary conditions are 

at   x = 0                     T = To                                         

at    x = L                     
𝑑𝑇

𝑑𝑥
= 0   

𝑇𝑥−𝑇∞

𝑇𝑜−𝑇∞
=

𝑐𝑜𝑠ℎ[𝑚(𝐿−𝑥)]

𝑐𝑜𝑠ℎ(𝑚𝐿)
  

          𝑄 = √ℎ𝑝𝑘𝐴𝜃𝑜tanh (𝑚𝐿)         
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3- Convection (or Combined Convection and Radiation) from Fin Tip 

The fin tips, in practice, are exposed to the surroundings, and thus the proper boundary 

condition for the fin tip is convection that also includes the effects of radiation. The fin 

equation can still be solved in this case using the convection at the fin tip as the second 

boundary condition, but the analysis becomes more involved, and it results in rather lengthy 

expressions for the temperature distribution and the heat transfer. Yet, in general, the fin 

tip area is a small fraction of the total fin surface area, and thus the complexities involved 

can hardly justify the improvement in accuracy. 

Note: A practical way of accounting for the heat loss from the fin tip is to replace the fin 

length L in the relation for the insulated tip case by a corrected length defined as (Fig. 2–

20) 

 

Corrected fin length:                       𝐿𝐶 = 𝐿 +
𝐴𝐶

𝑃
 

 

 

Figure 2-20 Corrected fin length Lc is defined such that heat transfer from a fin of length 

Lc with insulated tip is equal to heat transfer from the actual fin of length L with convection 

at the fin tip. 
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Note: Using the proper relations for Ac and p, the corrected lengths for rectangular and 

cylindrical fins are easily determined to be 

𝐿𝐶,𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑖𝑛 = 𝐿 +
𝑡

2
      , 𝐿𝐶,𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟𝑖𝑐𝑎𝑙 𝑓𝑖𝑛 = 𝐿 +

𝐷

4
       

where t is the thickness of the rectangular fins and D is the diameter of the cylindrical 

fins. 

 

Boundary conditions are 

at   x = 0                 T = To                                         

at   x = L                                𝑄𝑐𝑜𝑛𝑑,𝑥=𝐿 = 𝑄𝑐𝑜𝑛𝑣,𝑒𝑛𝑑 𝑓𝑎𝑐𝑒    

−𝑘𝐴
𝑑𝑇

𝑑𝑥
= ℎ𝑒𝑛𝑑𝐴(𝑇 − 𝑇∞) 

𝑇𝑥 − 𝑇∞

𝑇𝑜 − 𝑇∞
=

𝑐𝑜𝑠ℎ[𝑚(𝐿 − 𝑥)] +
ℎ𝑒𝑛𝑑

𝑚𝑘
𝑠𝑖𝑛ℎ[𝑚(𝐿 − 𝑥)]

𝑐𝑜𝑠ℎ(𝑚𝐿) +
ℎ𝑒𝑛𝑑

𝑚𝑘
𝑠𝑖𝑛ℎ[𝑚𝐿]
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 Fin Efficiency 

In reality, the temperature of the fin will drop along the fin, and thus the heat transfer from 

the fin will be less because of the decreasing temperature difference 𝑇𝑥 − 𝑇∞ toward the 

fin tip, as shown in Fig. 2–21.  

 

Figure 2-21 Ideal and actual temperature distribution in a fin 

 

To account for the effect of this decrease in temperature on heat transfer, we define                  

a fin efficiency as 

𝑓𝑖𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
Actual heat transfer rate from the fin

Ideal heat transfer rate from the fin 
if the entire fin were at base temperature

 

𝜂𝑓𝑖𝑛 =
𝑄𝑓𝑖𝑛

𝑄𝑓𝑖𝑛,𝑚𝑎𝑥
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Case I: Infinitely Long Fin 

                  𝜂𝑓𝑖𝑛 =
√ℎ𝑝𝑘𝐴 (𝑇𝑜−𝑇∞)

ℎ(𝑃𝐿) (𝑇𝑜−𝑇∞)
 

                            = √
ℎ𝑃𝑘𝐴

ℎ2𝑃2  
1

𝐿
 

        𝜂𝑓𝑖𝑛 =
1

𝑚𝐿
 

Case2: Negligible Heat Loss from the Fin Tip (Insulated fin tip) 

𝜂𝑓𝑖𝑛 =
√ℎ𝑝𝑘𝐴 (𝑇𝑜 − 𝑇∞)tanh (𝑚𝐿)

ℎ(𝑃𝐿) (𝑇𝑜 − 𝑇∞)
 

𝜂𝑓𝑖𝑛 =
tanh (𝑚𝐿)

𝑚𝐿
 

 

Case3: Convection (or Combined Convection and Radiation) from Fin Tip 

𝜂𝑓𝑖𝑛 =
tanh (𝑚𝐿𝑐)

𝑚𝐿𝑐
 

 

 Fins Efficiency from Chart 

Fin efficiency relations are developed for fins of various profiles and are plotted in figure 

2–22 for fins on a plain surface and in figure 2–23 for circular fins of constant thickness. 

The fin surface area associated with each profile is also given on each figure. For most fins 

of constant thickness encountered in practice, the fin thickness t is too small relative to the 

fin length L, and thus the fin tip area is negligible. 
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Figure 2-22 Efficiency of circular, rectangular, and triangular fins on a plain surface of width w (from Gardner). 

 
Figure 2-23 Efficiency of circular fins of length L and constant thickness t (from Gardner). 
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 Fin Effectiveness 

Fins are used to enhance heat transfer, and the use of fins on a surface cannot be 

recommended unless the enhancement in heat transfer justifies the added cost and 

complexity associated with the fins. In fact, there is no assurance that adding fins on a 

surface will enhance heat transfer. The performance of the fins is judged on the basis of 

the enhancement in heat transfer relative to the no-fin case see figure 2-24.  

 

Figure 2-24 The effectiveness of a fin 

 

The performance of fins expressed in terms of the fin effectiveness (𝜀𝑓𝑖𝑛) is defined as  

 

𝜀𝑓𝑖𝑛 =
𝑄𝑤𝑖𝑡ℎ 𝑓𝑖𝑛

𝑄𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑓𝑖𝑛
=

𝑄𝑤𝑖𝑡ℎ 𝑓𝑖𝑛

ℎ𝐴𝑏(𝑇𝑏 − 𝑇∞)
 

 

Here, 𝐴𝑏 is the cross-sectional area of the fin at the base and 𝑄𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑓𝑖𝑛 represents the 

rate of heat transfer from this area if no fins are attached to the surface. 

 

 


