Experiment No. (1)

lmage Types

Aim:

The four image kinds are demonstrated and a conversion from one image type to others is applied using a suitable conversion formula(s).

Theory:
Image could be classified into four categories,

1. True colour or Red Green Blue (RGB) image. This kind of image consists of three colored planes, each one represent a 2D matrix. The data class for this kind of image might be unsigned integer (0 $255)$, double, or scaled double ($0-1$), e.g; the jpg or png image
2. Indexed image. It consists of one main matrix with a color map associated for each pixel value. The data class might be a scaled double value, e.g; tif image
3. Gray-scale or intensity image which consist of one matrix. The data class for this image type might be uint $(0-255)$ or scaled double $(0-1)$. These values represents the intensity of gray level values
4. Binary image, consists of one matrix with $0 / 1$ data-class value

- The RGB to Gray-scale Conversion

There are four algorithms for converting color to gray-scale. If each color pixel is described by a triple ($\mathrm{r}, \mathrm{g}, \mathrm{b}$) of intensities for red, green, and blue. These formulas could be applied separately to map the colored pixel to its equivalent gray level value::

1. The lightness method which averages the most prominent and least prominent colors: $(\max (\mathbf{R}, \mathbf{G}, \mathbf{B})+\boldsymbol{\operatorname { m i n }}(\mathbf{R}, \mathbf{G}, \mathbf{B})) / 2$.
2. The average method, simply averages the values: $(\mathbf{R}+\mathbf{G}+\mathbf{B}) / \mathbf{3}$.
3. The luminosity method is a more sophisticated version of the average method. It also averages the values, but it forms a weighted average to account for human perception. We're more sensitive to green than other colors, so green is weighted most heavily. The formula for luminosity is: $0.21 \mathrm{R}+\mathbf{0 . 7 1 G}+\mathbf{0 . 0 7} \mathrm{B}$.
4. The weighted average method is given by the formula.

$$
\text { Gray }=0.299 R+0.587 G+0.114 B
$$

Example: A shade of dark purple has an $(\mathrm{r}, \mathrm{g}, \mathrm{b})$ value of $(100,0,150)$. The weighted average is: gray $=0.299(100)+0.587(0)+0.114(150)$,

Converting lmage Types

Matlab also contains many built-in functions for converting different image types. See table below;

Function	Use	Format
Ind2gray	Indexed to grayscale	$\mathrm{y}=\mathrm{ind} 2$ gray(x,map);
Gray2ind	Grayscale to indexed	[y,map]=gray2ind(x);
Rgb2gray	RGB to grayscale	$\mathrm{y}=\mathrm{rgb2gray}(\mathrm{x}) ;$
Rgb2ind	RGB to indexed	[y,map]=rgb2ind;
Ind2rgb	Indexed to RGB	$\mathrm{y}=$ ind2rgb(x,map);
Mat2gray	Matrix to grayscale	$\mathrm{Y}=$ mat2gray(x);

Example : The green and red color plane of image rgbimage.jpg are swapped
$\mathrm{f}=$ imread('rgbimage.jpg');
red $=f(:,:, 1)$;
$\mathrm{g}(:, \cdot, 1)=\mathrm{f}(:,, ; 2)$;
g(:.;,2) = red;
$\mathrm{g}(:, \cdot, 3)=\mathrm{f}(\cdot,, ; 3)$;
imshow(g);

Requirements:

1. Read and display your stored images " 1 rgb.jpg" and " 1 ind.tif"
2. Find the equivalent gray (intensity) image for " 1 rgb.jpg" and " 1 ind.tif" using the built-in MATLAB functions
3. Repeat step 2 using for-Loop statement and four conversion formulas. Which formula is better (use subplot ($\mathrm{m}, \mathrm{n}, \mathrm{p}$) function for displaying)
4. Can you re-convert a gray value back to its equivalent RGB color code?
5. Fill the following table:

image	$\begin{gathered} \hline \text { Size } \\ (\text { row } \times \text { col. } \times \mathrm{dim}) \\ \hline \end{gathered}$	Plane Size			$\begin{gathered} \hline \text { Gray-level size } \\ (\text { row } \times \text { col. } \times \mathrm{dim}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Binary size } \\ (\text { row } \times \text { col } . \times \mathrm{dim} \text {) } \\ \hline \end{gathered}$
		Red	Green	Blue		
1rgb.jpj						
1ind.tif						

6. Write a program to display the individual red, green, and blue channels of "1rgb.jpg" colour image. Use subplot() function for displaying
