
Electrical Network Transfer Functions



Simple Circuits via Mesh Analysis

We are to treat the capacitor voltage as the output and the applied voltage 
as the input.

Summing the voltages around the loop, assuming zero initial conditions,

yields the integro-differential equation for this network as

Changing variables from current to charge using yields



From the voltage-charge relationship for a capacitor in the Table from 
previous slide, Substituting this in the previous Eq.

Taking the Laplace transform assuming zero initial conditions, 
rearranging terms, and simplifying yields

Solving for the transfer function, , we obtain



Let us now develop a technique for simplifying the solution for future 
problems. First, take the Laplace transform of the equations in the 
voltage-current column of the Table in the first slide assuming zero 
initial conditions.

For the capacitor,

For the resistor,

For the inductor,



Now define the following transfer function: We call this particular transfer 
function impedance.

The Laplace transform of Eq

assuming zero initial conditions, is

Notice that the above Eq. , which is in the form

[Sum of impedances] = [Sum of applied voltages]



1)Redraw the original network showing all time variables, such as      ,       and

as Laplace transforms        respectively.

2) Replace the component values with their impedance values. This replacement 
is similar to the case of dc circuits, where we represent resistors with their 
resistance values.

We now redo the previous Example.

Solving for 



But the voltage across the capacitor, VQ (S), is the product of the 
current and the impedance of the capacitor. Thus,

Solving the Eq. for 𝐼 𝑠 ,
𝐼 𝑠 = 𝑉𝑐 𝑠 ∗ 𝐶𝑠

substituting I(s) into Eq. in the previous slide.
𝑉𝑐 𝑠 ∗ 𝐶𝑠

𝑉 𝑠
=

1

𝐿𝑠 + 𝑅 +
1
𝐶𝑠

𝑉𝑐 𝑠

𝑉 𝑠
=

1

𝐶𝑠(𝐿𝑠 + 𝑅 +
1
𝐶𝑠
)
=

1

𝐿𝐶𝑠2 + 𝐶𝑅𝑠 +
𝐶𝑠
𝐶𝑠

=
1

𝐿𝐶𝑠2 + 𝐶𝑅𝑠 + 1
=

1
𝐿𝐶

𝑠2 +
𝑅
𝐿
𝑠 +

1
𝐿𝐶



Simple Circuits via Nodal Analysis

We will Repeat the previous Example using nodal analysis and without 
writing a differential equation.

The transfer function can be obtained by summing currents flowing out 
of the node whose voltage is Vc(s) in Figure below We assume that 
currents leaving the node are positive and currents entering the node 
are negative. The currents consist of the current through the capacitor 
and the current flowing through the series resistor and inductor.



From the impedance function we know that , hence 
𝑉𝑐(𝑠)

 1 𝐶𝑠

+
𝑉𝑐 𝑠 − 𝑉(𝑠)

𝑅 + 𝐿𝑠
= 0

Where 
𝑉𝑐(𝑠)

 1 𝐶𝑠
is the current flowing out of the node through the capacitor,

and 
𝑉𝑐 𝑠 −𝑉(𝑠)

𝑅+𝐿𝑠
is the current flowing out of the node through the series 

resistor and inductor.

Solving the Eq. for the transfer function

Use Matlab to solve the Eq.

syms Vc V R L C s

eq = (((Vc)/(1/(C*s)))+((Vc-V)/(R+(L*s))))==0

sol = solve(eq,Vc)

nsol = sol/V 



Simple Circuits via Voltage Division

Repeat the previous Example using voltage division and the transformed 
circuit.

The voltage across the capacitor is some proportion of the input voltage, 
namely the impedance of the capacitor divided by the sum of the 
impedances. Thus,

Solving for the transfer function yields the same result



Complex Circuits via Mesh Analysis

To solve complex electrical networks—those with multiple loops and 
nodes—using mesh analysis, we can perform the following steps:

1) Replace passive element values with their impedances.

2) Replace all sources and time variables with their Laplace transform.

3) Assume a transform current and a current direction in each mesh.

4) Write Kirchhoffs voltage law around each mesh.

5) Solve the simultaneous equations for the output.

6) Form the transfer function.



• Example: Given the network of the Figure below find the transfer function
𝐼2(𝑠)

𝑉(𝑠)

The first step in the solution is to convert the network into Laplace 
transforms for impedances and circuit variables, assuming zero initial 
conditions. The result is shown in the Figure below



The circuit with which we are dealing requires two simultaneous 
equations to solve for the transfer function. These equations can be 
found by summing voltages around each mesh through which the 
assumed currents, 𝐼1(𝑠)and 𝐼2(𝑠), flow

Around Mesh 1, where 𝐼1(𝑠) flows,
𝑅1𝐼1 𝑠 + 𝐿𝑠𝐼1 𝑠 − 𝐿𝑠𝐼2 𝑠 = 𝑉(𝑠)

Around Mesh 2, where 𝐼2(𝑠) flows,

𝐿𝑠𝐼2 𝑠 + 𝑅2𝐼2 𝑠 +
1

𝐶𝑠
𝐼2 𝑠 − 𝐿𝑠𝐼1 𝑠 = 0

Combining terms
(𝑅1+𝐿𝑠) 𝐼1 𝑠 − 𝐿𝑠𝐼2 𝑠 = 𝑉(𝑠)

−𝐿𝑠𝐼1 𝑠 + 𝐿𝑠 + 𝑅2 +
1

𝐶𝑠
𝐼2 𝑠 = 0



We can use Cramer's rule

𝐼2 𝑠 =

𝑅1 + 𝐿𝑠 𝑉(𝑠)
−𝐿𝑠 0

∆
=

𝐿𝑠 𝑉(𝑠)

∆

Where ∆=
𝑅1 + 𝐿𝑠 −𝐿𝑠

−𝐿𝑠 𝐿𝑠 + 𝑅2 +
1

𝐶𝑠

Forming the transfer function 𝐺(𝑠) yields,

𝐺 𝑠 =
𝐼2(𝑠)

𝑉(𝑠)
=

𝐿𝑠

𝑅1 + 𝐿𝑠 −𝐿𝑠

−𝐿𝑅1𝑠 𝐿𝑠 + 𝑅2 +
1
𝐶𝑠

=
𝐿𝐶𝑠2

(𝑅1+𝑅2)𝐿𝐶𝑠
2 + 𝑅1𝑅2𝐶 + 𝐿 𝑠 + 𝑅1



Matlab Commands

Syms s R1 R2 L c V 

A2=[(R1+L*s) V;-L*s 0] 

A=[(R1+L*s) -L*s;-L*s (L*s+R2+(1/(c*s)))]

I2=det(A2)/det(A); 

I2=simple(I2); 

G=I2/V; 

pretty (G)



Complex Circuits via Nodal Analysis

Find the transfer function, 
𝑉𝑐(𝑠)

𝑉(𝑠)
, for the circuit in Figure below Use nodal 

analysis.

We sum currents at the nodes rather than sum voltages around the meshes. 
From the Figure the sum of currents flowing from the nodes marked 𝑉𝐿 𝑠 and 
𝑉𝐶 𝑠 are, respectively,
𝑉𝐿 𝑠 − 𝑉(𝑠)

𝑅1
−
𝑉𝐿 𝑠

𝐿𝑠
+
𝑉𝐿 𝑠 − 𝑉𝐶 𝑠

𝑅2
= 0

𝐶𝑠𝑉𝐶(𝑠) +
𝑉𝐿 𝑠 − 𝑉𝐶 𝑠

𝑅2
= 0



Rearranging and expressing the resistances as conductance, 𝐺1 = 1/𝑅1and

𝐺2 = 1/𝑅2 we obtain:

(𝐺1+𝐺2 +
1

𝐿𝑠
)𝑉𝐿 𝑠 − 𝐺2𝑉𝐶 𝑠 = 𝐺1𝑉(𝑠)

−𝐺2𝑉𝐿 𝑠 + (𝐺2+𝐶𝑠)𝑉𝐶 𝑠 = 0

Solving for the transfer function 
𝑉𝑐(𝑠)

𝑉(𝑠)
yields

𝑉𝑐(𝑠)

𝑉(𝑠)
=

𝐺1𝐺2
𝐶

𝑠

(𝐺1+𝐺2)𝑠
2 +

𝐺1𝐺2𝐿 + 𝐶
𝐿𝐶

𝑠 +
𝐺2
𝐿𝐶



Matlab Commands

syms C L s V Vc G1 G2

A=[((G1)+(G2)+(1/(L*s))) G1*V;-G2 0]

A2= [((G1)+(G2)+(1/(L*s))) -G2;-G2 ((G2)+(C*s))]

Vc= det(A)/det(A2)

simplify(Vc)

G=Vc/V

pretty(G)



Translational Mechanical System Transfer Functions



Example: Find the transfer function, 
𝑋 (𝑠)

𝐹(𝑠)
, for the system of Figure below

Begin the solution by drawing the free-body diagram shown in Figure 2.16 
above. Place on the mass all forces felt by the mass. We assume the mass is 
traveling toward the right. Thus, only the applied force points to the right; all 
other forces impede the motion and act to oppose it. Hence, the spring, 
viscous damper, and the force due to acceleration point to the left.

We now write the differential equation of motion using Newton's law to sum

to zero all of the forces shown on the mass in Figure



Taking the Laplace transform, assuming zero initial conditions,

or

Solving for the transfer function yields



Taking the Laplace transform of the force-displacement column in Table, we 
obtain for the spring,

For the viscous damper,

and for the mass,

If we define impedance for mechanical components as



Find the transfer function, , 
𝑋2 (𝑠)

𝐹(𝑠)
,for the system of Figure below

The system has two degrees of freedom, since each mass can be moved in the 
horizontal direction while the other is held still. Thus, two simultaneous equations 
of motion will be required to describe the system. The two equations come from 
free-body diagrams of each mass. Superposition is used to draw the free body 
diagrams. For example, the forces on 𝑀1 are due to (1) its own motion and (2) the 
motion of 𝑀2 transmitted to 𝑀1 through the system. We will consider these two 
sources separately.



If we hold 𝑀2 still and move 𝑀1 to the right, we see the forces shown in Figure 
2.18(a). If we hold 𝑀1 still and move 𝑀2 to the right, we see the forces shown 
in Figure 2.18(b). The total force on 𝑀1 is the superposition, or sum, of the 
forces just discussed. This result is shown in Figure 2.18(c).



• For 𝑀2, we proceed in a similar fashion: First we move 𝑀2 to the right while 
holding 𝑀1 still; then we move 𝑀1 to the right and hold 𝑀2 still. For each case 
we evaluate the forces on 𝑀2, The results appear in Figure 2.19.



The Laplace transform of the equations of motion can now be written from

Figures 2.18(c) and 2.19(c) as

[𝑀1𝑠
2 + 𝑓𝑣1 + 𝑓𝑣3 𝑠 + (𝐾1 + 𝐾2)]𝑋1(𝑠) − (𝑓𝑣3𝑠 + 𝐾2)𝑋2(𝑠) = 𝐹(𝑠)

− 𝑓𝑣3𝑠 + 𝐾2 𝑋1 𝑠 + [𝑀2𝑠
2 + 𝑓𝑣2 + 𝑓𝑣3 𝑠 + (𝐾2 + 𝐾3)]𝑋2(𝑠) = 0

From this, the transfer function 
𝑋2 (𝑠)

𝐹(𝑠)
is 

where



Matlab Commands

syms M1 M2 K1 K2 K3 fv1 fv2 fv3 s F

A=[((M1*s^2)+(fv1+fv3)*s)+(K1+K2) F; (-fv3*s)+K2 0]

A2=[((M1*s^2)+(fv1+fv3)*s)+(K1+K2) (-fv3*s)+K2;(-fv3*s)+K2 
((M2*s^2)+((fv2+fv3)*s)+(K2+K3))]

X2 = det(A)/det(A2)

G = X2/F

pretty(G)


