Lec. 3

Digital Signals and Systems

3.1 Digital Signals

1- Digital unit-impulse function

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

3- Sinusoidal sequence

2- Digital unit-step function

$$u(n) = \begin{cases} 1 & n \ge 0\\ 0 & n < 0 \end{cases}$$

4- Exponential sequence

 $0 \le n \le \infty$

$$\mathbf{x}(\mathbf{n}) = \cos \mathbf{w} \mathbf{n}$$
, $0 \le \mathbf{n} \le \infty$ $\mathbf{x}(\mathbf{n}) = \mathbf{e}^{-\mathbf{j}\mathbf{w}\mathbf{n}}$,

Fig. (3.1) Some digital signals

3.2 Generation of Digital Signals

To develop the digital sequence from its analog signal function is by applying:

$$x(n) = x(t)|_{t=nT} = x(nT).$$
 (3.1)

Example(1): assuming a DSP system with a sampling time interval of 125 microseconds, Convert each of the following analog signals x(t) to the digital signal x(n).

1.
$$x(t) = 10e^{-5000t}u(t)$$

2. $x(t) = 10 \sin(2000\pi t)u(t)$

Solution:

- 1. $x(n) = x(nT) = 10e^{-5000 \times 0.000125n}u(nT) = 10e^{-0.625n}u(n)$.
- 2. $x(n) = x(nT) = 10 \sin(2000\pi \times 0.000125n)u(nT) = 10 \sin(0.25\pi n)u(n).$

3.3 Power Signals:

Periodic signals are power signals because their energy per cycle is finite.

$$power = \frac{1}{T} \int_{0}^{T} |f(t)|^{2} dt = \sum_{n = -\infty}^{\infty} |C_{n}|^{2} = \varphi(\tau)$$
(3.2)

Where:

$$C_n = \frac{1}{T} \int_0^T f(t) e^{-jnw_o t} dt \qquad , w_o = 2 \pi f_o \qquad (3.3)$$

$$f(t) = \sum_{n=-\infty}^{\infty} C_n \ e^{jnw_o t}$$
(3.4)

$$\varphi(\tau) = \frac{1}{T} \int_0^T f(t) f(t \pm \tau) dt$$
(3.5)

3.4 Energy Signals:

Non-periodic signals are called an energy signals because their power $\rightarrow 0$

$$energy = \int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(W)|^2 dW = \lambda(\tau)$$
(3.6)

Where:

$$F(W) = \int_{-\infty}^{\infty} f(t) e^{-jwt} dt$$
(3.7)

$$\lambda(\tau) = \int_{-\infty}^{\infty} f(t) f(t \pm \tau) dt$$
(3.8)

3.5 Classification of Systems

3.5.1 Linear System

Figure 3.2 illustrates that the system output due to the weighted sum inputs $\alpha x_1(n) \pm \beta x_2(n)$ is equal to the same weighted sum of the individual outputs obtained from their corresponding inputs, that is, $y(n) = \alpha y_1(n) \pm \beta y_2(n)$, where α and β are constants. Here, the principle of "superposition" is applied.

Fig. (3.2) Digital linear system

3.5.2 Time-Invariant System

A time-invariant system is illustrated in Figure 3.3. If the system is time invariant and $y_1(n)$ is the system output due to the input $x_1(n)$, then the shifted system input $x_1(n - n_0)$ will produce a shifted system output $y_1(n - n_0)$.

Fig. 3.3 Illustration of linear time-invariant system

Example 2: Given the linear systems:

a.
$$y(n) = 2x(n-5)$$

b. y(n) = 2x(3n),

Determine whether each of the following systems is time invariant.

Solution:

a) Let the input and output be $x_1(n)$ and $y_1(n)$, respectively; then the system output is $y_1(n) = 2x_1(n - 5)$. Again, let $x_2(n) = x_1(n - n_0)$ be the shifted input and $y_2(n)$ be the output due to the shifted input. We determine the system output using the shifted input as

 $y_2(n) = 2x_2(n-5) = 2x_1(n-n_0-5)$:

Meanwhile, shifting $y_1(n) = 2x_1(n-5)$ by n_0 samples leads to

 $y_1(n - n_0) = 2x_1(n - 5 - n_0)$

We can verify that $y_2(n) = y_1(n - n_0)$. Thus the shifted input of n_0 samples causes the system output to be shifted by the same n_0 samples, thus the system is *time invariant*.

b) Let the input and output be $x_1(n)$ and $y_1(n)$, respectively; then the system output is $y_1(n) = 2x_1(3n)$. Again, let the input and output be $x_2(n)$ and $y_2(n)$, where $x_2(n) = x_1(n - n_0)$, a shifted version, and the corresponding output is $y_2(n)$. We get the output due to the shifted input

$$x_2(n) = x_1(n - n_0)$$
 and note that $x_2(3n) = x_1(3n - n_0)$:

$$y_2(n) = 2x_2(3n) = 2x_1(3n - n_0)$$
:

On the other hand, if we shift $y_1(n)$ by n_0 samples, which replaces n in

 $y_1(n) = 2x_1(3n)$ by $n - n_0$, it yield

 $y_1(n - n_0) = 2x_1(3(n - n_0)) = 2x_1(3n - 3n_0)$:

Clearly, we know that $y_2(n) \neq y_1(n - n_0)$. Since the system output $y_2(n)$ using the input shifted by n_0 samples is not equal to the system output $y_1(n)$ shifted by the same n_0 samples, the system is *not time invariant*.

3.5.3 Causal System:

A causal system is one in which the output y(n) at time n depends only on the current input x(n) at time n, its past input sample values such as x(n - 1), x(n - 2), ...: Otherwise, if a system output depends on the future input values, such as x(n + 1), x(n + 2), ..., the system is noncausal. The noncausal system cannot be realized in real time.

Example 3: Given the following linear systems,

a. y(n) = 0.5x(n) + 2.5x(n-2), for $n \ge 0$

b.
$$y(n) = 0.25x(n-1) + 0.5x(n+1) - 0.4y(n-1)$$
, for $n \ge 0$,

Determine whether each is causal.

Solution:

- a) Since for n ≥ 0, the output y(n) depends on the current input x(n) and its past value x(n 2), the system is causal.
- b) Since for $n \ge 0$, the output y(n) depends on the current input x(n) and its future value x(n + 2), the system is noncausal.

3.5.4. Stability:

A stable system is one for which every bounded input produces a bounded output (BIBO). The system is stable, if its transfer function vanishes after a sufficiently long time. For a stable system:

$$S = \sum_{k=-\infty}^{\infty} |h(k)| \langle \infty$$
(3.9)

Where h(k) = unit impulse response

3.6 Difference Equations and Impulse Responses

A causal, linear, time-invariant system can be described by a difference equation having the following general form:

$$y(n) + a_1 y(n-1) + \ldots + a_N y(n-N)$$

= $b_0 x(n) + b_1 x(n-1) + \ldots + b_M x(n-M),$ (3.10)

DSP I

Where a_1, \ldots, a_N and b_0, b_1, \ldots, b_M are the coefficients of the difference equation. Equation (3.10) can further be written as:

$$y(n) = -a_1 y(n-1) - \dots - a_N y(n-N) + b_0 x(n) + b_1 x(n-1) + \dots + b_M x(n-M)$$

$$y(n) = -\sum_{i=1}^{N} a_i y(n-i) + \sum_{j=0}^{M} b_j x(n-j).$$
(3.11)

Notice that y(n) is the current output, which depends on the past output samples y(n - 1),

..., y(n - N), the current input sample x(n), and the past input samples, x(n-1), ..., x(n - M).

Example4: Given a linear system described by the difference equation

y(n) = x(n) + 0.5x(n - 1), Determine the nonzero system coefficients.

Solution: a. By comparing Equation (3.11), we have, $b_0 = 1$, and $b_1 = 0.5$

3.7 System Representation Using Its Impulse Response

A linear time-invariant system can be completely described by its unit-impulse response, which is defined as the system response due to the impulse input $\delta(n)$ with zero initial conditions, depicted in Figure 3.3. Here $x(n) = \delta(n)$ and y(n) = h(n).

Fig. 3.4 Representation of a linear time-invariant system using the impulse response.

Example 5: Given the linear time-invariant system

$$y(n) = 0.5x(n) + 0.25x(n-1)$$
 with an initial condition $x(-1) = 0$

a. Determine the unit-impulse response h(n).

b. Draw the system block diagram.

c. Write the output using the obtained impulse response.

Solution:

a. $h(n) = 0.5 \delta(n) + 0.25 \delta(n-1)$, where h(0)=0.5, h(1) = 0.25 and h(n) = 0 elsewhere.

b.

$$x(n)$$

 \rightarrow $h(n)=0.5\delta(n)+0.25\delta(n-1)$

c. y(n) = h(0) x(n) + h(1) x(n-1)

From this result, it is noted that if the difference equation without the past output terms, y(n - 1), ..., y(n - N), that is, the corresponding coefficients a_1, \ldots, a_N , are zeros, the impulse response h(n) has a finite number of terms. We call this a finite impulse response (FIR) system.

In general, we can express the output sequence of a linear time-invariant system from its impulse response and inputs as:

 $y(n) = \dots + h(-1) x(n+1) + h(0) x(n) + h(1) x(n-1) + h(2) x(n-2) + \dots$ (3.12) Equation (3.12) is called the *digital convolution sum*.

Example 6: Given the difference equation

y(n)=0.25 y(n-1) + x(n) for $n \ge 0$ and y(-1) = 0,

- a. Determine the unit-impulse response h(n).
- b. Draw the system block diagram.
- c. Write the output using the obtained impulse response.
- d. For a step input x(n) = u(n), verify and compare the output responses for the first three output samples using the difference equation and digital convolution sum (Equation 3.12).

Solution:

a. Let $x(n) = \delta(n)$, then $h(n) = 0.25 h(n-1) + \delta(n)$

To solve for h(n), we evaluate

$$\begin{aligned} h(0) &= 0.25 h(-1) + \delta(0) = 0.25 (0) + 1 = 1 \\ h(1) &= 0.25 h(0) + \delta(1) = 0.25 (1) + 0 = 0.25 \\ h(2) &= 0.25 h(1) + \delta(2) = 0.25 (0.5) + 0 = 0.0625 \end{aligned}$$

. . .

With the calculated results, we can predict the impulse response as:

$$h(n) = (0.25)^{n} u(n) = \delta(n) + 0.25 \delta(n-1) + 0.0625 \delta(n-2) + \dots$$

b. The system block diagram is given below

c. The output sequence is a sum of infinite terms expressed as

$$y(n) = h(0) x(n) + h(1) x(n-1) + h(2)x(n-2) + \dots$$

= x(n) + 0.25x(n-1) + 0.0625x(n-2) + \dots

d. From the difference equation and using the zero-initial condition, we have

$$y(n) = 0.25y(n-1) + x(n) \text{ for } n \ge 0 \text{ and } y(-1) = 0$$

$$n = 0, y(0) = 0.25y(-1) + x(0) = u(0) = 1$$

$$n = 1, y(1) = 0.25y(0) + x(1) = 0.25 \times u(0) + u(1) = 1.25$$

$$n = 2, y(2) = 0.25y(1) + x(2) = 0.25 \times 1.25 + u(2) = 1.3125$$

....

Applying the convolution sum in Equation (3.12) yields:

$$y(n) = x(n) + 0.25x(n-1) + 0.0625x(n-2) + \dots$$

$$n = 0, \ y(0) = x(0) + 0.25x(-1) + 0.0625x(-2) + \dots$$

$$= u(0) + 0.25 \times u(-1) + 0.125 \times u(-2) + \dots = 1$$

$$n = 1, \ y(1) = x(1) + 0.25x(0) + 0.0625x(-1) + \dots$$

$$= u(1) + 0.25 \times u(0) + 0.125 \times u(-1) + \dots = 1.25$$

$$n = 2, \ y(2) = x(2) + 0.25x(1) + 0.0625x(0) + \dots$$

$$= u(2) + 0.25 \times u(1) + 0.0625 \times u(0) + \dots = 1.3125$$

$$\dots$$

Notice that this impulse response h(n) contains an infinite number of terms in its duration due to the past output term y(n - 1). Such a system as described in the preceding example is called an infinite impulse response (IIR) system.

3.8 Digital Convolution

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
(3.13)

 $N = N_1 + N_2 - 1$. Where N_1 = number of samples of x(n), N_2 = number of samples of h(n), and N = total number of samples.

3.8.1 Graphical method:

<u>Example7</u>: Find $y(n) = x(n) \otimes h(n)$ using graphical method

$$\begin{split} n &= 0, \ y(0) = x(0)h(0) + x(1)h(-1) + x(2)h(-2) = 3 \times 3 + 1 \times 0 + 2 \times 0 = 9, \\ n &= 1, \ y(1) = x(0)h(1) + x(1)h(0) + x(2)h(-1) = 3 \times 2 + 1 \times 3 + 2 \times 0 = 9, \\ n &= 2, \ y(2) = x(0)h(2) + x(1)h(1) + x(2)h(0) = 3 \times 1 + 1 \times 2 + 2 \times 3 = 11, \\ n &= 3, \ y(3) = x(0)h(3) + x(1)h(2) + x(2)h(1) = 3 \times 0 + 1 \times 1 + 2 \times 2 = 5. \\ n &= 4, \ y(4) = x(0)h(4) + x(1)h(3) + x(2)h(2) = 3 \times 0 + 1 \times 0 + 2 \times 1 = 2, \\ n &\geq 5, \ y(n) = x(0)h(n) + x(1)h(n-1) + x(2)h(n-2) = 3 \times 0 + 1 \times 0 + 2 \times 0 = 0. \end{split}$$

1

3

1

2

2

6

2

4

DSP I

3.8.2	Table	lookup	method

y(0) = 9

y(1) = 9y(2) = 11

y(3) = 5

y(4) = 2

3.8.3 Matrix by Vector method

Example7: If $x(n) = [0.5 \ 0.5 \ 0.5]$, and $h(n) = [3 \ 2 \ 1]$

0.5	0	0		1.5		$\begin{bmatrix} y(0) \end{bmatrix}$	
0.5	0.5	0	[3]	2.5		y(1)	
0.5	0.5	0.5	2 =	3	=	y(2)	
0	0.5	0.5	1	1.5		y(3)	
0	0	0.5		0.5		_y(4)]	

3.8.4 Linear convolution and circular convolution

Linear convolution:

$$x_1(n) \otimes x_2(n) = \sum_{k=-\infty}^{\infty} x_1(n-k) x_2(k) = \sum_{k=-\infty}^{\infty} x_1(k) x_2(n-k)$$
(3.14)

3

9

3

6

3

1

2

Circular convolution:

$$x_1(n) \otimes_N x_2(n) = \sum_{k=0}^{N-1} x_1((n-k) \mod N) x_2(k) = \sum_{k=0}^{N-1} x_1(k) x_2((n-k) \mod N)$$
(3.15)

If both $x_1(n)$ and $x_2(n)$ are of *finite length* N_1 and N_2 and defined on $\begin{bmatrix} 0 & N_1-1 \end{bmatrix}$, and $\begin{bmatrix} 0 & N_2-1 \end{bmatrix}$ respectively, the value of N needed so that circular and linear convolution are the same on $\begin{bmatrix} 0 & N-1 \end{bmatrix}$ is : $N \ge N_1 + N_2 - 1$

Example 8: If $x(n) = \begin{bmatrix} 1 & 2 & 3 & 2 \end{bmatrix}$, and $h(n) = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$. Find y(n) such that linear and circular convolution are the same.

Solution:

N = 4 + 3 - 1 = 6Then x(n) = [1 2 3 2 0 0] and h(n) = [1 1 2 0 0 0] x(n) is arranged in clockwise direction (italic numbers), while h(n) is arranged in the opposite clockwise direction (bold numbers). Each time, <u>only</u> h(n) will be shifted with the *clockwise direction* to find y(n). <u>Note</u>: the reference point is * and, the arrows represent multiplication process. Finally, addition process is performed.

▲ 2 ▲1 ▲1*			0	0	2*	
0 0 1*	0 0 1*		0	0	1*	
			2	3	2	
40 40 40	$\downarrow 0 \mid \downarrow 0 \mid \downarrow 1$		0	1	1	
y(0) = 1(1) = 1	y(1)=1(1)+2(1)=3	y	(2)=2	(1)+2	(1)+3(1)=7

0	0	0*	1	0	0*		1	1
	0	1*	0	0	1*		0	0
	3	2	2	3	2		2	3
	1	2	1	2	0		2	0

Using table lookup method:

y(0)= 1		1	1	2
y(1)= 3	1	1	1	2
y(2)= 7	2	2	2	4
y(3)=9	3	3	3	6
y(4)= 8	2	2	2	4
y(5) = 4				

Example(9): Use graphical method to find circular convolution $x_1(n) \otimes_N x_2(n)$, if N = 4, $x_1(n)$ =

[1 2 2 0] and $x_2(n) = [0 1 2 3]$

Solution: Applying eq. (3.15), then

$$y(n) = \sum_{k=0}^{3} x_1(k) \quad x_2((n-k) \mod 4))$$

$$y(0) = \sum_{k=0}^{3} x_1(k) \quad x_2((-k) \mod 4))$$

$$y(0) = x_1(0) \quad x_2(-0 \bullet 4) + x_1(1) \quad x_2(-1 \bullet 4) + x_1(2) \quad x_2(-2 \bullet 4) + x_1(3) \quad x_2(-3 \bullet 4))$$

• = mod addition

 $y(0) = x_{1}(0) x_{2}(0) + x_{1}(1) x_{2}(3) + x_{1}(2) x_{2}(2) + x_{1}(3) x_{2}(1) = 1(0) + 2(3) + 2(2) + 0 (1) = 10$ And so on $x_{1}(k) = 10$ $x_{1}(k) = 10$ $x_{2}(-k) = 10$ $y_{2}(0) + x_{1}(1) x_{2}(3) + x_{1}(2) x_{2}(2) + x_{1}(3) x_{2}(1) = 1(0) + 2(3) + 2(2) + 0 (1) = 10$ $x_{1}(k) = 10$ $x_{2}(-k) = 10$ $y_{2}(0) + x_{1}(1) x_{2}(3) + x_{1}(2) x_{2}(2) + x_{1}(3) x_{2}(1) = 1(0) + 2(3) + 2(2) + 0 (1) = 10$ $y_{2}(0) + x_{1}(1) x_{2}(3) + x_{1}(2) x_{2}(2) + x_{1}(3) x_{2}(1) = 1(0) + 2(3) + 2(2) + 0 (1) = 10$ $y_{2}(0) + x_{1}(1) x_{2}(3) + x_{1}(2) x_{2}(2) + x_{1}(3) x_{2}(1) = 1(0) + 2(3) + 2(2) + 0 (1) = 10$ $y_{2}(0) + x_{1}(1) x_{2}(3) + x_{1}(2) x_{2}(2) + x_{1}(3) x_{2}(1) = 1(0) + 2(3) + 2(2) + 0 (1) = 10$ $y_{2}(0) + x_{1}(1) x_{2}(3) + x_{1}(2) x_{2}(2) + x_{1}(3) x_{2}(1) = 1(0) + 2(3) + 2(3) + 2(2) + 0 (1) = 10$ $y_{2}(0) + x_{1}(1) x_{2}(3) + x_{1}(2) x_{2}(2) + x_{1}(3) x_{2}(1) = 1(0) + 2(3) + 2(3) + 2(2) + 0 (1) = 10$ $y_{2}(0) + x_{1}(1) x_{2}(3) + x_{1}(2) x_{2}(2) + x_{1}(3) x_{2}(1) = 1(0) + 2(3) + 2($

3.9 Deconvolution:

3.9.1 Iterative approach

Using equation (3.14) and assuming causal system (started at k =0), then:

y(0) = x(0) h(0), then x(0) = y(0) / h(0)

y(1) = h(1) x(0) + h(0) x(1), then x(1) = (y(1) - h(1) x(0)) / h(0)

3.9.2 Polynomial Approach:

A long division process is applied between two polynomials. For causal system, the remainder is always *zero*.

If $y(n) = [12 \ 10 \ 14 \ 6]$ and $h(n) = [4 \ 2]$ Then $y = 12 + 10 \ x + 14 \ x^2 + 6 \ x^3$, and $h = 4 + 2 \ x$. Applying long division, we obtain $i/p = 3 \ + x \ + 3 \ x^2$. Then $x(n) = [3 \ 1 \ 3]$

3.9.3 Graphical method

 $\begin{vmatrix} 4 & \times & b_1 & 12 \\ 2 & \times & 3 & 10 \\ & & & 14 \end{vmatrix} \qquad \begin{bmatrix} 4 & \times & b_2 & 12 \\ 2 & \times & 1 & 10 \\ 0 & \times & 3 & 14 \end{vmatrix}$ $4 \times b_0$ 12 \times b_3 12 $\begin{vmatrix} 2 & \times & 3 & 10 \\ 0 & \times & 1 & 14 \end{vmatrix}$ 10 2 14 6 6 0×3 6 $4 b_0 = 12$ $4 b_1 + 2(3) = 10$ $4 b_2 + 2(1) + 0(3) = 14$ $4 b_3 + 6 + 0 + 0 = 6$ $b_0 = 3$ $b_1 = 1$ $b_2 = 3$ $b_3 = 0$ So, $x(n) = [3 \ 1 \ 3]$