Lec. 3 Digital Signals and Systems

3.1 Digital Signals

1- Digital unit-impulse function

$$
\delta(n)= \begin{cases}1 & n=0 \\ 0 & n \neq 0\end{cases}
$$

3- Sinusoidal sequence

$$
x(n)=\cos w n, \quad 0 \leq n \leq \infty
$$

2- Digital unit-step function

$$
u(n)= \begin{cases}1 & n \geq 0 \\ 0 & n<0\end{cases}
$$

4- Exponential sequence

$x(n)=e^{-\mathrm{jwn}}, \quad 0 \leq \mathrm{n} \leq \infty$

Fig. (3.1) Some digital signals

3.2 Generation of Digital Signals

To develop the digital sequence from its analog signal function is by applying:

$$
\begin{equation*}
x(n)=\left.x(t)\right|_{t=n T}=x(n T) \tag{3.1}
\end{equation*}
$$

Example(1): assuming a DSP system with a sampling time interval of 125 microseconds, Convert each of the following analog signals $\mathrm{x}(\mathrm{t})$ to the digital signal $\mathrm{x}(\mathrm{n})$.

1. $x(t)=10 e^{-5000 t} u(t)$
2. $x(t)=10 \sin (2000 \pi t) u(t)$

Solution:

1. $x(n)=x(n T)=10 e^{-5000 \times 0.000125 n} u(n T)=10 e^{-0.625 n} u(n)$.
2. $x(n)=x(n T)=10 \sin (2000 \pi \times 0.000125 n) u(n T)=10 \sin (0.25 \pi n) u(n)$.

3.3 Power Signals:

Periodic signals are power signals because their energy per cycle is finite.

$$
\begin{equation*}
\text { power }=\frac{1}{T} \int_{0}^{T}|f(t)|^{2} d t=\sum_{n=-\infty}^{\infty}\left|C_{n}\right|^{2}=\varphi(\tau) \tag{3.2}
\end{equation*}
$$

Where:

$$
\begin{align*}
& C_{n}=\frac{1}{T} \int_{0}^{T} f(t) e^{-j n w_{o} t} d t \quad, \mathrm{w}_{0}=2 \pi \mathrm{f}_{\mathrm{o}} \tag{3.3}\\
& f(t)=\sum_{n=-\infty}^{\infty} C_{n} e^{j n w_{o} t} \tag{3.4}\\
& \varphi(\tau)=\frac{1}{T} \int_{0}^{T} f(t) f(t \pm \tau) d t \tag{3.5}
\end{align*}
$$

3.4 Energy Signals:

Non-periodic signals are called an energy signals because their power $\rightarrow 0$

$$
\begin{equation*}
\text { energy }=\int_{-\infty}^{\infty}|f(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|F(W)|^{2} d W=\lambda(\tau) \tag{3.6}
\end{equation*}
$$

Where:

$$
\begin{align*}
& F(W)=\int_{-\infty}^{\infty} f(t) e^{-j w t} d t \tag{3.7}\\
& \lambda(\tau)=\int_{-\infty}^{\infty} f(t) f(t \pm \tau) d t \tag{3.8}
\end{align*}
$$

3.5 Classification of Systems

3.5.1 Linear System

Figure 3.2 illustrates that the system output due to the weighted sum inputs $\alpha x_{1}(n) \pm \beta$ $\mathrm{x}_{2}(\mathrm{n})$ is equal to the same weighted sum of the individual outputs obtained from their corresponding inputs, that is, $y(n)=\alpha y_{1}(n) \pm \beta y_{2}(n)$, where α and β are constants. Here, the principle of "superposition" is applied.

Fig. (3.2) Digital linear system

3.5.2 Time-Invariant System

A time-invariant system is illustrated in Figure 3.3. If the system is time invariant and $y_{1}(n)$ is the system output due to the input $x_{1}(n)$, then the shifted system input $x_{1}\left(n-n_{0}\right)$ will produce a shifted system output $\mathrm{y}_{1}\left(\mathrm{n}-\mathrm{n}_{0}\right)$.

Fig. 3.3 Illustration of linear time-invariant system
Example 2: Given the linear systems:
a. $y(n)=2 x(n-5)$
b. $y(n)=2 x(3 n)$,

Determine whether each of the following systems is time invariant.

Solution:

a) Let the input and output be $\mathrm{x}_{1}(\mathrm{n})$ and $\mathrm{y}_{1}(\mathrm{n})$, respectively; then the system output is $\mathrm{y}_{1}(\mathrm{n})=$ $2 x_{1}(n-5)$. Again, let $x_{2}(n)=x_{1}\left(n-n_{0}\right)$ be the shifted input and $y_{2}(n)$ be the output due to the shifted input. We determine the system output using the shifted input as

$$
\mathrm{y}_{2}(\mathrm{n})=2 \mathrm{x}_{2}(\mathrm{n}-5)=2 \mathrm{x}_{1}\left(\mathrm{n}-\mathrm{n}_{0}-5\right):
$$

Meanwhile, shifting $y_{1}(n)=2 x_{1}(n-5)$ by n_{0} samples leads to

$$
\mathrm{y}_{1}\left(\mathrm{n}-\mathrm{n}_{0}\right)=2 \mathrm{x}_{1}\left(\mathrm{n}-5-\mathrm{n}_{0}\right)
$$

We can verify that $y_{2}(n)=y_{1}\left(n-n_{0}\right)$. Thus the shifted input of n_{0} samples causes the system output to be shifted by the same n_{0} samples, thus the system is time invariant.
b) Let the input and output be $x_{1}(n)$ and $y_{1}(n)$, respectively; then the system output is $y_{1}(n)$ $=2 x_{1}(3 n)$. Again, let the input and output be $x_{2}(n)$ and $y_{2}(n)$, where $x_{2}(n)=x_{1}\left(n-n_{0}\right)$, a shifted version, and the corresponding output is $\mathrm{y}_{2}(\mathrm{n})$. We get the output due to the shifted input $\mathrm{x}_{2}(\mathrm{n})=\mathrm{x}_{1}\left(\mathrm{n}-\mathrm{n}_{0}\right)$ and note that $\mathrm{x}_{2}(3 \mathrm{n})=\mathrm{x}_{1}\left(3 \mathrm{n}-\mathrm{n}_{0}\right)$:
$\mathrm{y}_{2}(\mathrm{n})=2 \mathrm{x}_{2}(3 \mathrm{n})=2 \mathrm{x}_{1}\left(3 \mathrm{n}-\mathrm{n}_{0}\right)$:
On the other hand, if we shift $y_{1}(n)$ by n_{0} samples, which replaces n in $y_{1}(n)=2 x_{1}(3 n)$ by $n-n_{0}$, it yield

$$
\mathrm{y}_{1}\left(\mathrm{n}-\mathrm{n}_{0}\right)=2 \mathrm{x}_{1}\left(3\left(\mathrm{n}-\mathrm{n}_{0}\right)\right)=2 \mathrm{x}_{1}\left(3 \mathrm{n}-3 \mathrm{n}_{0}\right):
$$

Clearly, we know that $y_{2}(n) \neq y_{1}\left(n-n_{0}\right)$. Since the system output $y_{2}(n)$ using the input shifted by n_{0} samples is not equal to the system output $\mathrm{y}_{1}(\mathrm{n})$ shifted by the same n_{0} samples, the system is not time invariant.

3.5.3 Causal System:

A causal system is one in which the output $\mathrm{y}(\mathrm{n})$ at time n depends only on the current input $x(n)$ at time n, its past input sample values such as $x(n-1), x(n-2), \ldots$ Otherwise, if a system output depends on the future input values, such as $x(n+1), x(n+2), \ldots$, the system is noncausal. The noncausal system cannot be realized in real time.
Example 3: Given the following linear systems,
a. $y(n)=0.5 x(n)+2.5 x(n-2)$, for $n \geq 0$
b. $y(n)=0.25 x(n-1)+0.5 x(n+1)-0.4 y(n-1)$, for $n \geq 0$,

Determine whether each is causal.

Solution:

a) Since for $\mathrm{n} \geq 0$, the output $\mathrm{y}(\mathrm{n})$ depends on the current input $\mathrm{x}(\mathrm{n})$ and its past value $\mathrm{x}(\mathrm{n}-2)$, the system is causal.
b) Since for $n \geq 0$, the output $y(n)$ depends on the current input $x(n)$ and its future value $x(n+2)$, the system is noncausal.

3.5.4. Stability:

A stable system is one for which every bounded input produces a bounded output (BIBO). The system is stable, if its transfer function vanishes after a sufficiently long time. For a stable system:

$$
\begin{equation*}
S=\sum_{k=-\infty}^{\infty}|h(k)|\langle\infty \tag{3.9}
\end{equation*}
$$

Where $h(k)=$ unit impulse response

3.6 Difference Equations and Impulse Responses

A causal, linear, time-invariant system can be described by a difference equation having the following general form:

$$
\begin{array}{r}
y(n)+a_{1} y(n-1)+\ldots+a_{N} y(n-N) \\
=b_{0} x(n)+b_{1} x(n-1)+\ldots+b_{M} x(n-M), \tag{3.10}
\end{array}
$$

Where a_{1}, \ldots, a_{N} and $b_{0}, b_{1}, \ldots, b_{M}$ are the coefficients of the difference equation. Equation (3.10) can further be written as:

$$
\begin{align*}
y(n)= & -a_{1} y(n-1)-\ldots-a_{N} y(n-N) \\
& +b_{0} x(n)+b_{1} x(n-1)+\ldots+b_{M} x(n-M) \\
y(n)= & -\sum_{i=1}^{N} a_{i} y(n-i)+\sum_{j=0}^{M} b_{j} x(n-j) . \tag{3.11}
\end{align*}
$$

Notice that $\mathrm{y}(\mathrm{n})$ is the current output, which depends on the past output samples $\mathrm{y}(\mathrm{n}-1)$, $\ldots, y(n-N)$, the current input sample $x(n)$, and the past input samples, $x(n-1), \ldots, x(n-M)$.

Example4: Given a linear system described by the difference equation

$$
y(n)=x(n)+0.5 x(n-1), \text { Determine the nonzero system coefficients. }
$$

Solution: a . By comparing Equation (3.11), we have, $\mathrm{b}_{0}=1$, and $\mathrm{b}_{1}=0.5$

3.7 System Representation Using Its Impulse Response

A linear time-invariant system can be completely described by its unit-impulse response, which is defined as the system response due to the impulse input $\delta(\mathrm{n})$ with zero initial conditions, depicted in Figure 3.3. Here $x(n)=\delta(n) \quad$ and $y(n)=h(n)$.

Fig. 3.4 Representation of a linear time-invariant system using the impulse response.

Example 5: Given the linear time-invariant system

$$
\mathrm{y}(\mathrm{n})=0.5 \mathrm{x}(\mathrm{n})+0.25 \mathrm{x}(\mathrm{n}-1) \text { with an initial condition } \mathrm{x}(-1)=0
$$

a. Determine the unit-impulse response $h(n)$.
b. Draw the system block diagram.
c. Write the output using the obtained impulse response.

Solution:

a. $\mathrm{h}(\mathrm{n})=0.5 \delta(\mathrm{n})+0.25 \delta(\mathrm{n}-1)$, where $\mathrm{h}(0)=0.5, \mathrm{~h}(1)=0.25$ and $\mathrm{h}(\mathrm{n})=0$ elsewhere.
b.

c. $\mathrm{y}(\mathrm{n})=\mathrm{h}(0) \mathrm{x}(\mathrm{n})+\mathrm{h}(1) \mathrm{x}(\mathrm{n}-1)$

From this result, it is noted that if the difference equation without the past output terms, $\mathrm{y}(\mathrm{n}-1)$, $\ldots, y(n-N)$, that is, the corresponding coefficients a_{1}, \ldots, a_{N}, are zeros, the impulse response $h(n)$ has a finite number of terms. We call this a finite impulse response (FIR) system.

In general, we can express the output sequence of a linear time-invariant system from its impulse response and inputs as:

$$
\begin{equation*}
y(n)=\ldots . .+h(-1) x(n+1)+h(0) x(n)+h(1) x(n-1)+h(2) x(n-2)+\ldots . . \tag{3.12}
\end{equation*}
$$

Equation (3.12) is called the digital convolution sum.

Example 6: Given the difference equation

$$
\mathrm{y}(\mathrm{n})=0.25 \mathrm{y}(\mathrm{n}-1)+\mathrm{x}(\mathrm{n}) \text { for } \mathrm{n} \geq 0 \text { and } \mathrm{y}(-1)=0 \text {, }
$$

a. Determine the unit-impulse response $h(n)$.
b. Draw the system block diagram.
c. Write the output using the obtained impulse response.
d. For a step input $x(n)=u(n)$, verify and compare the output responses for the first three output samples using the difference equation and digital convolution sum (Equation 3.12).

Solution:

a. Let $\mathrm{x}(\mathrm{n})=\delta(\mathrm{n})$, then $\mathrm{h}(\mathrm{n})=0.25 \mathrm{~h}(\mathrm{n}-1)+\delta(\mathrm{n})$

To solve for $h(n)$, we evaluate

$$
\begin{aligned}
& \mathrm{h}(0)=0.25 \mathrm{~h}(-1)+\delta(0)=0.25(0)+1=1 \\
& \mathrm{~h}(1)=0.25 \mathrm{~h}(0)+\delta(1)=0.25(1)+0=0.25 \\
& \mathrm{~h}(2)=0.25 \mathrm{~h}(1)+\delta(2)=0.25(0.5)+0=0.0625
\end{aligned}
$$

With the calculated results, we can predict the impulse response as:

$$
\mathrm{h}(\mathrm{n})=(0.25)^{\mathrm{n}} \mathrm{u}(\mathrm{n})=\delta(\mathrm{n})+0.25 \delta(\mathrm{n}-1)+0.0625 \delta(\mathrm{n}-2)+\ldots \ldots .
$$

b. The system block diagram is given below

c. The output sequence is a sum of infinite terms expressed as

$$
\begin{aligned}
\mathrm{y}(\mathrm{n}) & =\mathrm{h}(0) \mathrm{x}(\mathrm{n})+\mathrm{h}(1) \mathrm{x}(\mathrm{n}-1)+\mathrm{h}(2) \mathrm{x}(\mathrm{n}-2)+\ldots \\
& =\mathrm{x}(\mathrm{n})+0.25 \mathrm{x}(\mathrm{n}-1)+0.0625 \mathrm{x}(\mathrm{n}-2)+\ldots
\end{aligned}
$$

d. From the difference equation and using the zero-initial condition, we have

$$
\begin{aligned}
& y(n)=0.25 y(n-1)+x(n) \text { for } n \geq 0 \text { and } y(-1)=0 \\
& n=0, y(0)=0.25 y(-1)+x(0)=u(0)=1 \\
& n=1, y(1)=0.25 y(0)+x(1)=0.25 \times u(0)+u(1)=1.25 \\
& n=2, y(2)=0.25 y(1)+x(2)=0.25 \times 1.25+u(2)=1.3125
\end{aligned}
$$

Applying the convolution sum in Equation (3.12) yields:

$$
\begin{aligned}
y(n) & =x(n)+0.25 x(n-1)+0.0625 x(n-2)+\ldots \\
n=0, y(0) & =x(0)+0.25 x(-1)+0.0625 x(-2)+\ldots \\
& =u(0)+0.25 \times u(-1)+0.125 \times u(-2)+\ldots=1 \\
n=1, y(1) & =x(1)+0.25 x(0)+0.0625 x(-1)+\ldots \\
& =u(1)+0.25 \times u(0)+0.125 \times u(-1)+\ldots=1.25 \\
n=2, y(2) & =x(2)+0.25 x(1)+0.0625 x(0)+\ldots \\
& =u(2)+0.25 \times u(1)+0.0625 \times u(0)+\ldots=1.3125
\end{aligned}
$$

Notice that this impulse response $h(n)$ contains an infinite number of terms in its duration due to the past output term $y(n-1)$. Such a system as described in the preceding example is called an infinite impulse response (IIR) system.

3.8 Digital Convolution

$$
\begin{align*}
& y(n)=\sum_{k=-\infty}^{\infty} h(k) x(n-k) \tag{3.13}\\
& y(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k)
\end{align*}
$$

$\mathrm{N}=\mathrm{N}_{1}+\mathrm{N}_{2}-1$. Where $\mathrm{N}_{1}=$ number of samples of $\mathrm{x}(\mathrm{n}), \mathrm{N}_{2}=$ number of samples of $\mathrm{h}(\mathrm{n})$, and $\mathrm{N}=$ total number of samples.

3.8.1 Graphical method:

Example7: Find $y(n)=x(n) \otimes h(n)$ using graphical method

$n=0, y(0)=x(0) h(0)+x(1) h(-1)+x(2) h(-2)=3 \times 3+1 \times 0+2 \times 0=9$,
$n=1, y(1)=x(0) h(1)+x(1) h(0)+x(2) h(-1)=3 \times 2+1 \times 3+2 \times 0=9$,
$n=2, y(2)=x(0) h(2)+x(1) h(1)+x(2) h(0)=3 \times 1+1 \times 2+2 \times 3=11$,
$n=3, y(3)=x(0) h(3)+x(1) h(2)+x(2) h(1)=3 \times 0+1 \times 1+2 \times 2=5$.
$n=4, y(4)=x(0) h(4)+x(1) h(3)+x(2) h(2)=3 \times 0+1 \times 0+2 \times 1=2$,
$n \geq 5, y(n)=x(0) h(n)+x(1) h(n-1)+x(2) h(n-2)=3 \times 0+1 \times 0+2 \times 0=0$.
$y(0)=9$
$y(1)=9$
$y(2)=11$
$y(3)=5$

	3	2	1
3	9	6	3
1	3	2	1
2	6	4	2

$y(4)=2$

3.8.3 Matrix by Vector method

Example7: If $\mathrm{x}(\mathrm{n})=\left[\begin{array}{lll}0.5 & 0.5 & 0.5\end{array}\right]$, and $\mathrm{h}(\mathrm{n})=\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]$
$\left[\begin{array}{lll}0.5 & 0 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0.5 \\ 0 & 0.5 & 0.5 \\ 0 & 0 & 0.5\end{array}\right]\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{l}1.5 \\ 2.5 \\ 3 \\ 1.5 \\ 0.5\end{array}\right]=\left[\begin{array}{l}y(0) \\ y(1) \\ y(2) \\ y(3) \\ y(4)\end{array}\right]$

3.8.4 Linear convolution and circular convolution

Linear convolution:

$$
\begin{equation*}
x_{1}(n) \otimes x_{2}(n)=\sum_{k=-\infty}^{\infty} x_{1}(n-k) x_{2}(k)=\sum_{k=-\infty}^{\infty} x_{1}(k) x_{2}(n-k) \tag{3.14}
\end{equation*}
$$

Circular convolution:

$$
\begin{equation*}
x_{1}(n) \otimes_{N} x_{2}(n)=\sum_{k=0}^{N-1} x_{1}((n-k) \bmod N) x_{2}(k)=\sum_{k=0}^{N-1} x_{1}(k) x_{2}((n-k) \bmod N) \tag{3.15}
\end{equation*}
$$

If both $\mathrm{x}_{1}(\mathrm{n})$ and $\mathrm{x}_{2}(\mathrm{n})$ are of finite length N_{1} and N_{2} and defined on [$0 \quad \mathrm{~N}_{1}-1$], and [0 $\mathrm{N}_{2}-1$] respectively, the value of N needed so that circular and linear convolution are the same on [0 N-1] is: $\mathrm{N} \geq \mathrm{N}_{1}+\mathrm{N}_{2}-1$

Example 8: If $x(n)=\left[\begin{array}{llll}1 & 2 & 3 & 2\end{array}\right]$, and $h(n)=\left[\begin{array}{lll}1 & 1 & 2\end{array}\right]$. Find $y(n)$ such that linear and circular convolution are the same.

Solution:

$\mathrm{N}=4+3-1=6$
Then $\mathrm{x}(\mathrm{n})=\left[\begin{array}{llllll}1 & 2 & 3 & 2 & 0 & 0\end{array}\right]$ and $\mathrm{h}(\mathrm{n})=\left[\begin{array}{lllll}1 & 1 & 2 & 0 & 0\end{array}\right]$
$\mathrm{x}(\mathrm{n})$ is arranged in clockwise direction (italic numbers), while $\mathrm{h}(\mathrm{n})$ is arranged in the opposite clockwise direction (bold numbers). Each time, only h(n) will be shifted with the clockwise direction to find $\mathrm{y}(\mathrm{n})$. Note: the reference point is * and, the arrows represent multiplication process. Finally, addition process is performed.

42	± 1	A1*
10	0	1*
${ }^{2}$	3	2
$\checkmark 0$	$\checkmark 0$	$\checkmark 0$

$y(0)=1(1)=1$

$y(1)=1(1)+2(1)=3$

$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}^{*}$
0	0	1^{*}
2	3	2
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$

$y(2)=2(1)+2(1)+3(1)=7$

$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}^{*}$
0	0	1^{*}
2	3	2
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$

$y(3)=2(2)+3(1)+2(1)=9$

$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}^{*}$
0	0	1^{*}
2	3	2
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0}$

$y(4)=3(2)+2(1)=8$

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}^{*}$
0	0	1^{*}
2	3	2
$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$

$y(5)=2(2)=4$

Using table lookup method:

$$
\begin{aligned}
& y(0)=1 \\
& y(1)=3 \\
& y(2)=7 \\
& y(3)=9 \\
& y(4)=8 \\
& y(5)=4
\end{aligned}
$$

	1	1	2
1	1	1	2
2	2	2	4
3	3	3	6
2	2	2	4

Example(9): Use graphical method to find circular convolution $x_{1}(n) \otimes_{N} x_{2}(n)$, if $\mathrm{N}=4, \mathrm{x}_{1}(\mathrm{n})=$
$\left[\begin{array}{llll}1 & 2 & 2 & 0\end{array}\right]$ and $\mathrm{x}_{2}(\mathrm{n})=\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right]$
Solution: Applying eq. (3.15), then
$y(n)=\sum_{k=0}^{3} x_{1}(k) x_{2}(\quad(n-k) \bmod 4)$
$y(0)=\sum_{k=0}^{3} x_{1}(k) x_{2}(\quad(-k) \bmod 4)$
$\mathrm{y}(0)=\mathrm{x}_{1}(0) \mathrm{x}_{2}(-0 \bullet 4)+\mathrm{x}_{1}(1) \mathrm{x}_{2}(-1 \bullet 4)+\mathrm{x}_{1}(2) \mathrm{x}_{2}(-2 \bullet 4)+\mathrm{x}_{1}(3) \mathrm{x}_{2}(-3 \bullet 4)$
$\bullet=\bmod$ addition
$\mathrm{y}(0)=\mathrm{x}_{1}(0) \mathrm{x}_{2}(0)+\mathrm{x}_{1}(1) \mathrm{x}_{2}(3)+\mathrm{x}_{1}(2) \mathrm{x}_{2}(2)+\mathrm{x}_{1}(3) \mathrm{x}_{2}(1)=1(0)+2(3)+2(2)+0(1)=10$
And so on

3.9 Deconvolution:

3.9.1 Iterative approach

Using equation (3.14) and assuming causal system (started at $\mathrm{k}=0$), then:
$y(0)=x(0) h(0), \quad$ then $x(0)=y(0) / h(0)$
$y(1)=h(1) x(0)+h(0) x(1)$, then $x(1)=(y(1)-h(1) x(0)) / h(0)$

3.9.2 Polynomial Approach:

A long division process is applied between two polynomials. For causal system, the remainder is always zero.
If $\mathrm{y}(\mathrm{n})=\left[\begin{array}{llll}12 & 10 & 14 & 6\end{array}\right]$ and $\mathrm{h}(\mathrm{n})=\left[\begin{array}{ll}4 & 2\end{array}\right]$
Then $\mathrm{y}=12+10 x+14 x^{2}+6 x^{3}$, and $\mathrm{h}=4+2 x$. Applying long division, we obtain $\mathrm{i} / \mathrm{p}=3+x+3 x^{2} . \quad$ Then $\mathrm{x}(\mathrm{n})=\left[\begin{array}{lll}3 & 1 & 3\end{array}\right]$

3.9.3 Graphical method

$\left[\begin{array}{cccc}4 & \times & b_{0} & 12 \\ 2 & & 10 \\ & & 6\end{array}\right]\left[\begin{array}{cccc}4 & \times & b_{1} & 12 \\ 2 & \times & 3 & 10 \\ & & & 14 \\ & & & 6\end{array}\right] \quad\left[\begin{array}{cccc}4 & \times & b_{2} & 12 \\ 2 & \times & 1 & 10 \\ 0 & \times & 3 & 14 \\ & & & 6\end{array}\right] \quad\left[\begin{array}{cccc}4 & \times & b_{3} & 12 \\ 2 & \times & 3 & 10 \\ 0 & \times & 1 & 14 \\ 0 & \times & 3 & 6\end{array}\right]$
$4 \mathrm{~b}_{0}=12$
$4 b_{1}+2(3)=10$
$4 b_{2}+2(1)+0(3)=14$
$4 b_{3}+6+0+0=6$
$\mathrm{b}_{0}=3$
$\mathrm{b}_{1}=1$
$\mathrm{b}_{2}=3$
$\mathrm{b}_{3}=0$
So, $x(n)=\left[\begin{array}{lll}3 & 1 & 3\end{array}\right]$

