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Lec. 7                                 Windowing and FFT 
 

7.1 Spectral Estimation Using Window Functions 

Consider the pure 1-Hz sine wave with 32 samples shown in Fig. 7.1. As shown in the 

figure, if we use a window size of N =16 samples, which is a multiple of the two waveform 

cycles, the second window repeats with continuity. However, when the window size is chosen to 

be 18 samples, which is not a multiple of the waveform cycles (2.25 cycles), the second window 

repeats the first window with discontinuity. It is this discontinuity that produces harmonic 

frequencies that are not present in the original signal (spectral leakage ). Fig.7.2 shows the 

spectral plots for both cases using the DFT/FFT directly.  

  

 

Fig. 7.1 Sampling a 1-Hz sine wave using 

(top) 16 samples per cycle and (bottom) 

18 samples per cycle. 

The amount of spectral leakage show

discontinuity in time domain. The bigger the dis

the effect of spectral leakage, a window function

and gradually toward zero at both ends. Applyin

x(n) to obtain a windowed sequence xw(n) is bette
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Fig. 7.2 Signal samples and spectra

without and with spectral leakage. 
 in the second plot is due to amplitude 

ontinuity, the more is the leakage. To reduce 

an be used whose amplitude tapers smoothly 

the window function w(n) to a data sequence 

illustrated in Fig. 7.3 using : 

     (7.1) 

 

 

 

Fig. 7.3 Illustration of the

window operation. 
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The common window functions are listed as follows: 

The rectangular window (no window function): 

       (7.2) 

The triangular window: 

      (7.3) 

The Hamming window: 

     (7.4) 

The Hanning window: 

     (7.5) 

Plots for each window function for a size of 20 samples are shown in Figure 7.4. 
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Fig. 7.4 Plots 

of window 

sequences 
  

mple (1): Considering the sequence x(0) = 1, x(1) = 2, x(2) = 3, and x(3) = 4, and given fs = 

 Hz, T = 0.01 seconds, compute the amplitude spectrum, phase spectrum, and power 

ctrum 

sing the triangular window function. 

sing the Hamming window function. 

ution: 

a) Since N = 4, from the triangular window function given in equation (7.3), we have: 

(0) = 0, wtri (1) = 0.6667, wtri (2) = 0.6667, and wtri (3) = 0. 

w, applying eq. (7.1), we have: 

0) = x(0)  wtri(0)  = 0.  Similarly xw(1) = 1.3334, xw(2) = 2, and xw(3) = 0 
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Applying DFT equation (6.3) to xw(n) for K=0, 1, 2, and 3 , we have: 

X(0)= 3.3334, X(1) = −2 − j1.3334 , X(2) = 0.6666, and X(3) = − 2 + j 1.3334 

∆f = 1 / NT = 25 Hz 

Applying equations (6.11), (6.13), and (6.14): 

 
K AK ΦK in degree PK

1 0.6009 − 146.31 0.3611 

2 0.1667 0 0.0278 

3 0.6009 146.31 0.3611 

 

b. Since N = 4, from the Hamming window function given in eq. (7.4), we have: 

whm(0) = 0.08, whm(1) =  0.77,  whm(2) =  0.77, and  whm(3) = 0.08. The windowed sequence is 

computed using eq. (7.1) as: 

xw(0) = x(0)  whm(0)  = 0.08, xw(1) = 1.54, xw(2) = 2.31, and xw(3) = 0.32 

 

Applying DFT equation (6.3) to xw(n) for K=0, 1, 2, and 3 , we have: 

X(0)= 4.25, X(1) = −2.23 − j1.22 , X(2) = 0.53, and X(3) = − 2.23 + j 1.22 

∆f = 1 / NT = 25 Hz 

 

Applying equations (6.11), (6.13), and (6.14): 

 
K AK ΦK in degree PK

1 0.6355 −151.32 0.4308 

2 0.1325 0 0.0176 

3 0.6355 151.32 0.4308 
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7.2 Application to Speech Spectral Estimation 

The following plots show the comparisons of amplitude spectral estimation for speech 

data with 2,001 samples and a sampling rate of 8,000 Hz using the rectangular window (no 

window) function and the Hamming window function. As demonstrated in Fig. 7.5 (two-sided 

spectrum) and Fig. 7.6 (one-sided spectrum), there is little difference between the amplitude 

spectrum using the Hamming window function and the spectrum without using the window 

function. This is due to the fact that when the data length of the sequence (e.g., 2,001 samples) 

increases, the frequency resolution will be improved and spectral leakage will become less 

significant. However, when data length is short, reduction of spectral leakage using a window 

function will come to be prominent. 

   

 

7.3 Fast Fourier Transform  

FFT is a very efficient algorithm in compu

large amount of computational complexity (multipl

Consider the digital sequence x(n) consi

integer—the number of samples of the digital sequ

If x(n) does not contain 2m samples, then we simpl

appended sequence is equal to an integer of a powe

The number of points N = 2m, where the stages m =

In this section, we focus on two formats.

algorithm, while the other is the decimation-in-tim

2 FFT algorithms. 
Fig. 7.6 Comparison of a one-sided 

spectrum without using a window function 

and a one-sided spectrum using the 

Hamming window for speech data. 
Fig. 7.5 Comparison of a spectrum without 

using a window function and a spectrum 

using the Hamming window for speech 

data. 
ting DFT coefficients and can reduce a very 

ications). 

sting of 2m samples, where m is a positive 

ence x(n) is a power of 2, N = 2, 4, 8, 16, etc. 

y append it with zeros until the number of the 

r of 2 data points. 

 log 2 N. 

 One is called the decimation in- frequency 

e algorithm. They are referred to as the radix-
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7.3.1 Method of Decimation-in-Frequency (Reduced DIF FFT)  

Beginning with the definition of DFT : 

    (7.6) 

Where, WN = e−j2π / N is the twiddle factor, and N = 0, 2, 4, 8, 16,  …..Equation (7.6) can be 

expanded as: 

   (7.7) 

If we split equation (7.7): 

   (7.8) 

Then we can rewrite as a sum of the following two parts: 

   (7.9) 

Modifying the second term in Equation (7.9) yields: 

  (7.10) 

 

    (7.11) 

Now letting k = 2m as an even number achieves: 

    (7.12) 

While substituting k = 2m +   1 as an odd number yields: 
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  (7.13) 

(7.14) 

(7.15) 

Where, a(n) and b(n) are introduced and expressed as: 

   (7.16) 

(7.17) 

Figure 7.7(a) illustrates the block diagram of N-point DIF FFT. Fig. 7.7(b) illustrates 

reduced DIF FFT computation for the eight-point DFT, where there are 12 complex 

multiplications as compared with the eight-point DFT with 64 complex multiplications. For a 

data length of N, the number of complex multiplications for DFT and FFT, respectively, are 

determined by: 

Complex multiplications of DFT = N2, and      (7.18a) 

Complex multiplications of FFT (With Reduction) = (N / 2 ) log2 (N)  (7.18b) 
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Fig. 7.7(a) Block diagram of DIF FFT 
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Fig. 7.7(b) The eight-point FFT (total twelve multiplications). 

Reduced DIF FFT 

 

Note: The input sequence is in normal order index and the output frequency bin number is in 

reversal bits order. The Butterfly structure for DIF FFT and DIT FFT is shown below: 

 A      DIF             C                                E            DIT                F 
 
 
B                            D                             G                                 H 
        -1           W                                        W       -1 r

N
r

N

C = A+B, D = (A-B) r
NW   (7.19a) ,  F= E + r

NW G, H= E - r
NW G   (7.19b) 

 

 

 

 

 

The inverse FFT is defined as: 

(7.20) 
 
 
 
 
 
 
 
 
 
 

 

                   

The twiddle

1/N. Hence,

 

 

Fig. 7.8 Block diagram for the inverse of eight-point FFT. 

                                 Reduced DIF IFFT 

 factor   is changed to be , and the sum is multiplied by a factor of 

  the inverse FFT block diagram is achieved as shown in Fig. 7.8  

 49



DSP I                                                                                                By Asst., Prof. Maha George 

Example (2): Given a sequence x(n) for 0 ≤ n ≤ 3, where x(0) = 1, x(1) = 2, x(2) = 3, and 

x(3) = 4, 

a. Evaluate its DFT X(k) using the decimation-in-frequency FFT method. 

b. Determine the number of complex multiplications. 

Solution: 

jeWandeW
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−====
−− )1(

4
2

1
4

)0(
4

2
0

4 1
ππ

 

 

 

 

 

 

 

 

b) Th

(7.18b

 

7.3.2 M

In this

with N

Using

Define

          
e number of complex multiplications is four, which can also be determined from eq. 

), where N=4 

ethod of Decimation-in-Time (Reduced DIT FFT): 

 method, we split the input sequence x(n) into the even indexed x(2m) and x(2m +  1), each 

 data points. Then Equation (7.6) becomes: 

  (7.21) 

 it follows that: 

  (7.22) 

 new functions as: 

 
           

                                                                                    (7.23) 

 50



DSP I                                                                                                By Asst., Prof. Maha George 

Note that: 

    (7.24) 

Substituting Equations (7.24) into Equation (7.22) yields the first half frequency bins 

   (7.25) 

Considering the following fact and using Equations (7.24): 

        (7.26) 

Then the second half of frequency bins can be computed as follows: 

  (7.27) 

The block diagram for the eight-point DIT FFT algorithm is illustrated in Fig.. 7.9 
 
 
 
 

 

 

 

 

 

Fig.7.9 T

multiplica

 

The index

index in a

WN to 

inverse FF

 

 

 

 

he eight-point FFT algorithm using decimation-in-time (twelve complex 

tions). Reduced DIT FFT 

 for each input sequence element can be achieved by bit reversal of the frequency 

 sequential order. Similar to the method of decimation-in-frequency, after we change 

 in Fig. 7.9 and multiply the output sequence by a factor of 1/N, we derive the 

T block diagram for the eight-point inverse FFT in Fig. 7.10. 
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Fig. 7.10 The eight-point IFFT using decimation-in-time (Reduced method). 

e(3): Given a sequence x(n) for 0 ≤ n ≤ 3, where x(0) = 1, x(1) = 2, x(2) = 3, and 

. Evaluate its DFT X(k) using the decimation-in-time FFT method. 

: 
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* means complex conjugate         

For N even: 

∑
−

=
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           (7.27a) 

For N odd: 

∑
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N

K
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N
KXKn

N
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NN
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 (7.27b) 

x(n) X(K) 

Real Real part is even, imaginary part is odd 

Real and even Real and even 

Real and odd Imaginary and odd 

 

Example (4): Find x(n) for   XR(K)    and XI(K)    , then find xa(t) if T = 0.1 sec. 

 

XR(K)                                                                  XI(K) 
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        0      0       0        0                                                                                     -1 
        1  2  3  4   5  6    7              K                                    -1.75      

N=8 , then using eq.(7.27a): 
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7.5 DFT and Fourier transform relations: 

The Fourier transform X(ejW) of an x(n) is given for all W: 

1,...2,1,0,)()()(
1

0

−=== −
−

=

∞

∞−

− ∑∑ NnenxenxeX nWj
N

n

nWjjW
    (7.28) 

From eq. (7.28), X(ejW) is a continuous function of W. 

The DFT (N-point) of an x(n) is given by: 

∑
−

=

− −==
1

0

/2 1....2,1,0,)()(
N

n

NnKj NKenxKX π      (7.29) 

Comparing eq.(7.28) and eq.(7.29), the DFT of x(n) is the sampled version of the Fourier 

transform sequence as shown below 
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