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 General review: - 

a) Dot Product 

If θ is the angle between the vectors a and b, then  

a · b = |a||b| cos θ 

NOTE: Two vectors a and b are orthogonal, if and only if a · b = 0. 

 Properties of the Dot Product 

If a, b and c are vectors and d is a scalar then 

1) a · a = |a|2 

2) a · b = b · a  

3) a · (b + c) = a · b + a · c  

4) (d a) · b = d (a · b) = a · (d b)  

5) 0 · a =0 

b) Cross Product  

Theorem: The vector a × b is orthogonal to both a and b.  

If θ is the angle between a and b, then 

|a × b| = |a||b| sin θ 

 

Two nonzero vectors a and b are parallel if and only if a × b = 0 

 Properties of the Cross Product 

 If a and b and c are vectors and d is a scalar, then 

1) a × b = −b × a  

2) (da) × b = d (a × b) = a × (d b)  

3) a × (b + c) = a × b + a × c    

4) (a + b) × c = a × c + b × c      

5) a · (b × c) = (a × b) · c    

6) a × (b × c) = (a · c) b − (a · b) c 
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 c) Vector Analysis 

1) The cylindrical coordinates  

The cylindrical coordinate of a point P in three-space is the ordered triple (r; 

𝜃; z) where (r; 𝜃) is the polar coordinate of the projection of P onto the xy-plane 

and z is the same as in the Cartesian coordinates as shown in Figure below. 

 

 Converting between Cartesian and Cylindrical Coordinates 

To convert from cylindrical coordinates to cartesian coordinates: 

𝑥 = 𝑟 cos(𝜃)       𝑦 = 𝑟 sin(𝜃)        z=z 

To convert from cartesian coordinates to cylindrical coordinates: 

𝑟2 = 𝑥2 + 𝑦2        tan(𝜃) =
𝑦

𝑥
        z=z 

 Rectangular to Cylindrical Vectors (and Vice Versa)   

In the rectangular coordinate system, we express a vector A as 

 

Where �̂�𝑥, �̂�𝑦, �̂�𝑧, are the unit vectors and Ax , Ay , Az are the components of the 

vector A in the rectangular coordinate system. We wish to write A as 

𝐴 = �̂�𝑟  𝐴𝑟 + �̂�𝜃 𝐴𝜃 + �̂�𝑧 𝐴𝑧 

where �̂�𝑟 , �̂�𝜃 , �̂�𝑧 are the unit vectors and  𝐴𝑟 , 𝐴𝜃 , 𝐴𝑧 are the vector components 

in the cylindrical coordinate system. The z-axis is common to both of them. We 

can write the transformation in matrix form  
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(

𝐴𝑟

 𝐴𝜃

𝐴𝑧

) = (
cos(𝜃) sin(𝜃) 0

− sin(𝜃) cos(𝜃) 0
0 0 1

) (

Ax 
 Ay

 Az

) 

we can write the transformation matrix for cylindrical-to-rectangular 

components as 

(

Ax

Ay

 Az

) = (
cos(𝜃) − sin(𝜃) 0
sin(𝜃) cos(𝜃) 0

0 0 1

) (

𝐴𝑟

 𝐴𝜃

𝐴𝑧

) 

2) The spherical coordinates  

The spherical coordinate of a point P in three-space is the ordered triple (r; 

𝜃; ∅), where r is the distance from P to the origin O, 𝜃 is the angle from the 

positive z-axis to the vector OP, and ∅ is the angle from the positive x-axis to the 

project of vector OP as shown in Figure below. 

 

 Converting between Cartesian and Spherical Coordinates 

To convert from spherical coordinates to cartesian coordinates: 

𝑥 = 𝑟 sin(𝜃) cos(∅)       𝑦 = 𝑟 sin(𝜃) sin(∅)        𝑧 = 𝑟 cos(𝜃) 

To convert from cartesian coordinates to spherical coordinates 

𝑟2 = 𝑥2 + 𝑦2 + 𝑧2        cos(𝜃) =
𝑧

√𝑥2+𝑦2+𝑧2
           tan(∅) =

𝑦

𝑥
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  Rectangular to Spherical Vectors (and Vice Versa) 

We wish to write A in spherical components as  

𝐴 = �̂�𝑟  𝐴𝑟 + �̂�𝜃 𝐴𝜃 + �̂�∅ 𝐴∅ 

where �̂�𝑟 , �̂�𝜃 , �̂�∅ are the unit vectors and  𝐴𝑟 , 𝐴𝜃 , 𝐴∅ are the vector components 

in the spherical coordinate system. We can write the transformation in matrix form  

from rectangular to spherical coordinates  

(

𝐴𝑟

 𝐴𝜃

𝐴∅

) = (

sin(𝜃) cos(∅) sin(𝜃) sin(∅) cos(𝜃)

cos(𝜃) cos(∅) cos(𝜃) sin(∅) −sin(𝜃)

−sin(𝜃) cos(∅) 0

) (

Ax 
 Ay

 Az

) 

And the transformation matrix for spherical-to-rectangular components is 

(

Ax

Ay

 Az

) = (

sin(𝜃)  cos(∅) cos(𝜃) 𝑐𝑜𝑠(∅) − sin(∅)

sin(𝜃) sin(∅) cos(𝜃) sin(∅) cos(∅)
cos(𝜃) − sin(𝜃) 0

) (

𝐴𝑟

 𝐴𝜃

𝐴∅

) 

 

d) VECTOR DIFFERENTIAL OPERATORS 

The differential operators of gradient of a scalar (∇ψ), divergence of a vector 

(∇·A), curl of a vector (∇×A), Laplacian of a scalar (∇2ψ), and Laplacian of a 

vector (∇2A) frequently encountered in electromagnetic field analysis will be 

listed in the rectangular and spherical coordinate systems. 

 Rectangular Coordinates 
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  Spherical Coordinates 
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 e) Overview of Electromagnetic fields 

Mainly, electromagnetic fields can be classified into two classes. 

1- Static fields: -  

As the name indicates, these are time-invariant fields. This means that all the 

field quantities are not function of time, i.e., they do not change their state with 

time. They are also called the DC fields since their frequency is zero Hertz. Static 

fields have negligible radiation and hence they do not support wave propagation. 

Therefore, static fields cannot be used for communications. It is interesting to note 

here that the static electric field and the static magnetic field are not coupled; 

therefore, they can be analyzed separately. The static electric field (also called 

electrostatic field) can be generated from time-invariant charge at rest. On the 

other hand, the static magnetic field (also called magnetostatic field) can be 

generated from steady electric current. 

2- Dynamic fields:  

These fields are time-dependent. With the high frequency band, these fields 

support propagating waves and hence they represent the communication waves. 

Dynamic electric field and dynamic magnetic field are coupled. This means that 

they cannot be analyzed separately. Here, the electric field and magnetic field 

generate each other by the mechanism of mutual induction. According to the 

operating frequency, dynamic field can be divided into two types. 

i. Slowly time-varying electromagnetic field (also called quasi-static 

electromagnetic field). This is the low-frequency side of the dynamic 

electromagnetic field. With such a low frequency, this type is not significant when 

characterizing propagating electromagnetic fields. In the quasi-static 

electromagnetic fields, the displacement current is negligible compared to the 

conduction current. 
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 ii. Rapidly time-varying electromagnetic field. This is the high-frequency side 

of the dynamic electromagnetic field. Having an effective radiation, high-

frequency electromagnetic field support propagating waves. Here, the 

displacement current cannot be negligible compared to conduction current. 

Therefore, high-frequency electromagnetic field represents the most general field, 

i.e., all the field parameters are presence in the relevant Maxwell's equations. The 

other types of electromagnetic fields (Static fields and Quasi-static field) can be 

regarded as special cases of this general case. 

f) Which Dynamic Field: Low- or High-Frequency? 

In this section, we will learn how to differentiate between the low- frequency 

(Quasi-static) and the high-frequency dynamic fields. To set the distinction rule, 

it is necessary to be introduced to the retardation effect. 

 The Concept of Retardation Effect 

The mutual induction of time-varying electric and magnetic fields is the basis 

of time retardation in electromagnetic systems. The time- retardation concept 

states that there is a time lag between a change of the field sources, i.e., of time-

varying charges and currents, and the associated change of the fields, so that the 

values of field intensities at a distance from the sources depend on the values of 

charge and current densities at an earlier time. This means, it takes some time for 

the effect of a change of charges and currents to be "sensed" at distant field points. 

The criterion that can distinguish between low- and high-frequency dynamic 

fields can be stated in either of two senses: 
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  In time sense, the criterion states that the dynamic field is a low-frequency 

(Quasi-static) dynamic field if 

                               𝜏 ≪ 𝑇     … (1) 

where 𝜏 is the time lag in free space given by 𝜏 =
𝐷𝑚𝑎𝑥

𝑐
 

and 𝐷𝑚𝑎𝑥 is the maximum dimension of the related domain. The domain can be 

the charge distribution region or the transmitter-to-receiver region. 

c is the speed of light in free space, which can be approximated to 3xl08 m/s 

T is the time of change of source, which is the source wave period given by 

𝑇 =
1

𝑓
 

 In space sense, the criterion depends on the source wavelength. The 

criterion will be derived from equation (1) mentioned above. 

𝜏 ≪ 𝑇 

𝐷𝑚𝑎𝑥

𝑐
≪

1

𝑓
 

𝐷𝑚𝑎𝑥 ≪
𝑐

𝑓
 

                            𝐷𝑚𝑎𝑥 ≪ 𝜆                … (2) 

 

 

If equation (1) or equation (2) does not apply, then the dynamic field is a 

high-frequency (rapidly time-varying) field. 
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Example:  

Check whether the following two fields are Quasi-static or rapidly time-

varying fields. 

1- Distance between transmitter and receiver is 10km and the signal carrier 

frequency is 30kHz 

2- The time lag is 17ps and the frequency is 3GHz 

Solution: 

1- Here the distance is given therefore it is more convenient to use equation (2) 

where we compare Dmax with 𝜆.  Dmax is given as 10km = 104m. The frequency 

is 30kHz = 3xl04 so the wavelength can be found as 

𝜆 =
𝑐

𝑓
=

3 × 108

3 × 104
= 10𝑘𝑚 

 

This means that Dmax is NOT much smaller than the wavelength. Hence, 

equation (2) does NOT apply, which means that this field is a high-frequency 

dynamic field. 

2- The time is given; therefore, it is easier to use equation (1) where 

 𝜏 = 17xl0-12 s and frequency is 3xl09 Hz. The period is 

𝑇 =
1

𝑓
=  

1

3 × 109
= 333.3 𝑝𝑠 

Here equation (1) is verified since the period is much greater than the time 

lag. This means that this is a low-frequency (Quasi-static) field. 

Notice that this example has shown that the low- and high- frequency fields 

do not mean that the source frequency is low or high. The frequency should be 

compared according to any of equations (1) and (2). 
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 g) Review of Electromagnetic Fields 
 

 

The Table shown below introduces the first two constitutive equations.  

Electric field Magnetic field 

�̅� = 𝜀�̅� �̅� = 𝜇�̅� 

�̅� :electric field intensity (V/m) �̅� :magnetic field intensity (A/m) 

�̅� : electric flux density (C/m2) �̅�: magnetic flux density (T=Wb/m2) 

𝜀 : permittivity of medium (F/m) 

where 𝜀 = 𝜀𝑟𝜀𝑜 

𝜇: permeability of medium (H/m) 

where 𝜇 = 𝜇𝑟𝜇𝑜 

𝜀𝑟: medium relative permittivity 𝜇𝑟: medium relative permeability 

𝜀𝑜: permittivity of free space 

𝜀𝑜 = 8.854xl0-12 F/m 

𝜇𝑜: permeability of free space 

𝜇𝑜= 4πxl0-7 H/m 

 

Table 1. Comparison between the first two constitutive equations 

i.Volume Charge Density 

The charge density per unit volume (𝜌𝑣 measured in C/m3) is related to the electric 

flux density by 

𝜌𝑣 = ∇̅ ∙ �̅� 

Thus, the total charge (Q measured in C) can be found by  

𝑄 = ∫ 𝜌𝑣
𝑣

𝑑𝑣 
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 ii.Electric Current Types 

Notice that there is no magnetic current in practical physics; therefore, when using 

the word "current" it means electric current. Electric current density (J measured 

in A/m2) can be seen in different forms as stated below. 

1) Impressed current density or called the source current density (JS). This is 

the density of the current that causes the field. 

2)  Convection current density (Jv). This is the density of the current that is 

generated due to motion of charges in space which is a function of the drift 

velocity (Vd) as given by 

𝐽�̅� = 𝜌𝑣𝑉𝑑
̅̅ ̅ 

3) Induced current density, which is the density of the current that is caused by 

the electric field. There are three types of induced current. 

a) Conduction current density (Jc), which is the density of the current that is 

generated due to the motion of charges in conductors.  

𝐽�̅� = 𝜎�̅� 

where 𝜎 is the conductivity of the conductor measured in S/m. Therefore, 

conduction current exists in conducting materials, i.e., when 𝜎 > 0. 

b) Displacement current density (Jd), which is the density of the current that is 

generated due to the motion of charges in dielectrics. Displacement current is 

taken to be negligible (compared to the conduction current) if 𝜎 >>𝜔𝜀 otherwise, 

displacement current should be taken into account. Notice that the above rule 

depends on the radian frequency 𝜔, which is measured in radians per second. The 

displacement current density is given by 

𝐽�̅� =
𝜕 �̅�

𝜕𝑡
 

This means that the displacement current density per unit area is the rate of change 

of the electric flux density with respect to time. 
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 c) Polarization current density (Jp), which is part of the displacement current 

density that is caused by the non-free space effect as shown below. 

𝐽�̅� =
𝜕 �̅�

𝜕𝑡
=  𝜀

𝜕 �̅�

𝜕𝑡
 

The permittivity is given as 𝜀 = 𝜀𝑜𝜀𝑟 where 𝜀𝑜 is the permittivity of free space. If 

we subtract the free space part from 𝜀𝑟, then we can write the permittivity as  

𝜀 = 𝜀𝑜 + 𝜀 − 𝜀𝑜. Apply the expression of 𝜀 in the displacement current density 

equation to get 

𝐽�̅� = [𝜀𝑜 + 𝜀 − 𝜀𝑜]
𝜕 �̅�

𝜕𝑡
= 𝜀𝑜

𝜕 �̅�

𝜕𝑡
+ (𝜀 − 𝜀𝑜)

𝜕 �̅�

𝜕𝑡
 

= 𝜀𝑜

𝜕 �̅�

𝜕𝑡
+

𝜕 �̅�

𝜕𝑡
 

= 𝐽𝑑𝑜
̅̅ ̅̅ + 𝐽�̅�  

where P is the dielectric polarization vector measured in C/m2 and Jdo is the 

displacement current density in a vacuum, which is measured in A/m2 
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 iii.Power Computations 

Poynting theorem states that for a volume (v) bounded by a closed surface (s), the 

complex power (Ps) delivered by the source in volume v is given by 

−
1

2
(𝐻∗ ∙ 𝑀𝑖 + 𝐸 ∙ 𝐽∗𝑖) =

1

2
∇ ∙ (𝐸 × 𝐻∗) +

1

2
𝜎|𝐸|2 + 2𝑗𝜔 (

1

4
𝜇|𝐻|2 −

1

4
𝜀|𝐸|2) 

where 𝑀 (𝑉 𝑚2⁄ ) magnetic current density, and 𝐽 (𝐴 𝑚2⁄ ) electric current density  

or 

𝑃𝑠 = 𝑃𝑟𝑎𝑑 + 𝑃𝑙𝑜𝑠𝑠 + 𝑗2𝜔(𝑊𝑚 − 𝑊𝑒) 

where 𝑃𝑠 = − (𝐻∗ ∙ 𝑀𝑖 + 𝐸 ∙ 𝐽∗𝑖) 2⁄  is the source complex power density 

(w/m3),  

𝑃𝑟𝑎𝑑 = 𝑃𝑓 = ∇ ∙ (𝐸 × 𝐻∗) 2⁄  is the power flowing out through closed surface s 

(or complex power density entering or leaving the point) (w/m3), given by 

𝑃𝑟𝑎𝑑 = 𝑃𝑓 =
1

2
∯ �̅�

𝑠

 × 𝐻∗̅̅̅̅ ∙ 𝑑𝑠̅̅ ̅, 𝑊  

Note that 𝑑𝑠̅̅ ̅ =  𝑑𝑠�̂�𝑛 , where s is a unit area and �̂�𝑛  is a unit vector normal to s, 

𝑃𝑙𝑜𝑠𝑠 = 𝑃𝑑 = 𝜎|𝐸|2 2⁄  is the time-averaged dissipated power in volume v 

bounded by the closed surface s (the loss power density (real only)) (w/m3), 

given by 

𝑃𝑑 = 𝑃𝑙𝑜𝑠𝑠 =
1

2
∭ 𝜎

𝑣

|�̅�|2 ∙ 𝑑𝑣, 𝑊  

Wm=𝜇|𝐻|2 4⁄  is the time-averaged stored magnetic energy density (J/m3), given 

by 

𝑊𝑚 =
1

2
∭

1

2
𝜇

𝑣

|�̅�|2 ∙ 𝑑𝑣 

We=𝜀|𝐸|2 4⁄  is the time-averaged stored electric energy density (J/m3), given by 

𝑊𝑒 =
1

2
∭

1

2
𝜀

𝑣

|�̅�|2 ∙ 𝑑𝑣 
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 In order to compute the complex impedance of an antenna, we need to 

consider the integral form of Poynting’s theorem. 

 

The vector 𝐸 × 𝐻 has the dimension of power density per unit area 

(expressed in W/m2). It is called the Poynting vector and is designated by S. Thus, 

the instantaneous Poynting vector is expressed as 

𝑆̅ = �̅� × �̅� 

And the average Poynting vector is given by  

𝑆𝑎𝑣
̅̅ ̅̅ =

1

2
𝑅𝑒[�̅� × 𝐻∗̅̅̅̅ ] 



 

 

 


