
Circuits for Arithmetic Operations 637

At time t0 the control is reset and waiting for a start signal. At time tl, the start

signal St = 1, and a Load signal is generated. At time t2, M = 1, so an Ad signal is

generated. When the next clock occurs, the output of the adder is loaded into the

accumulator and the control goes to S2. At t3, an Sh signal is generated, so, shifting

occurs and the counter is incremented at the next clock. At t4, M = 1, so Ad = 1,

and the adder output is loaded into the accumulator at the next clock. At t5 and t6,

shifting and counting occurs. At t7, three shifts have occurred and the counter state

is 11, so K = 1. Because M = 1, addition occurs, and the control goes to S2. At t8,

Sh = K = 1, so at the next clock the final shift occurs, and the counter is incremented

back to state 00. At t9, a Done signal is generated.

The multiplier design given here can easily be expanded to 8, 16, or more bits

simply by increasing the register size and the number of bits in the counter. The

add- shift control would remain unchanged.

18.3 Design of a Binary Divider

We will consider the design of a divider for positive binary numbers. As an example,

we will design a circuit to divide an 8-bit dividend by a 4-bit divisor to obtain a 4-bit

quotient. The following example illustrates the division process:

 1010 quotient

divisor 1101 10000111 dividend

 1101

 0111

 0000

 1111

(135 ÷ 13 = 10 with 1101

a remainder of 5) 0101

 0000

 0101 remainder

TABLE 18-2
Operation of a

Multiplier Using
a Counter

© Cengage Learning 2014

Time State Counter
Product
Register St M K Load Ad Sh Done

t0 S0 00 000000000 0 0 0 0 0 0 0
t1 S0 00 000000000 1 0 0 1 0 0 0
t2 S1 00 000001011 0 1 0 0 1 0 0
t3 S2 00 011011011 0 1 0 0 0 1 0
t4 S1 01 001101101 0 1 0 0 1 0 0
t5 S2 01 100111101 0 1 0 0 0 1 0
t6 S1 10 010011110 0 0 0 0 0 1 0
t7 S1 11 001001111 0 1 1 0 1 0 0
t8 S2 11 100011111 0 1 1 0 0 1 0
t9 S3 00 010001111 0 1 0 0 0 0 1

638 Unit 18

Just as binary multiplication can be carried out as a series of add and shift opera-

tions, division can be carried out by a series of subtraction and shift operations. To

construct the divider, we will use a 9-bit dividend register and a 4-bit divisor register,

as shown in Figure 18-10. During the division process, instead of shifting the divi-

sor to the right before each subtraction as shown in the preceding example, we will

shift the dividend to the left. Note that an extra bit is required on the left end of the

dividend register so that a bit is not lost when the dividend is shifted left. Instead of

using a separate register to store the quotient, we will enter the quotient bit-by-bit

into the right end of the dividend register as the dividend is shifted left. Circuits for

initially loading the dividend into the register will be added later.

The preceding division example (135 divided by 13) is now reworked, showing

the location of the bits in the registers at each clock time. Initially, the dividend and

divisor are entered as follows:

0 0 0 1 1 1 1 1 1 first quotient digit

0 0 1 1 1 1 1 1 0

1 1 0 1

FIGURE 18-10
Block Diagram for

Binary Divider

© Cengage Learning 2014

Sh
LdX8 X7 X6 X5 X4

Y3 Y2 Y1 Y0

C

Su

Sh

St (Start Signal)

V
(Overflow
Indicator)

X3 X2 X1 X0

Subtractor
and

Comparator

Dividend Register

Control

Clock
0

0 1 0 0 0 0 1 1 1

1 1 0 1

Subtraction cannot be carried out without a negative result, so we will shift before

we subtract. Instead of shifting the divisor one place to the right, we will shift the

dividend one place to the left:

1 0 0 0 0 1 1 1 0

 1 1 0 1

Dividing line between dividend and quotient

Note that after the shift, the rightmost position in

the dividend register is “empty”.

Subtraction is now carried out, and the first quotient digit of 1 is stored in the unused

position of the dividend register:

Next, we shift the dividend one place to the left:

Circuits for Arithmetic Operations 639

Because subtraction would yield a negative result, we shift the dividend to the left

again, and the second quotient bit remains 0:

0 1 1 1 1 1 1 0 0

1 1 0 1

0 0 0 1 0 1 1 0 1 third quotient digit

Subtraction is now carried out, and the third quotient digit of 1 is stored in the

unused position of the dividend register:

A final shift is carried out and the fourth quotient bit is set to 0:

0 0 1 0 1

remainder

1 0 1 0

quotient

The final result agrees with that obtained in the first example. Note that in the first

step the leftmost 1 in the dividend is shifted left into the leftmost position (X8) in the

X register. If we did not have a place for this bit, the division operation would have

failed at this step because 0000 < 1101. However, by keeping the leftmost bit in X8,

10000 ≥ 1101, and subtraction can occur.

If as a result of a division operation, the quotient would contain more bits than

are available for storing the quotient, we say that an overflow has occurred. For

the divider of Figure 18-10 an overflow would occur if the quotient is greater than

15, because only 4 bits are provided to store the quotient. It is not actually neces-

sary to carry out the division to determine if an overflow condition exists, because

an initial comparison of the dividend and divisor will tell if the quotient will be

too large. For example, if we attempt to divide 135 by 7, the initial contents of the

 registers would be:

0 1 0 0 0 0 1 1 1

 0 1 1 1

Because subtraction can be carried out with a nonnegative result, we should subtract

the divisor from the dividend and enter a quotient bit of 1 in the rightmost place in

the dividend register. However, we cannot do this because the rightmost place con-

tains the least significant bit of the dividend, and entering a quotient bit here would

destroy that dividend bit. Therefore, the quotient would be too large to store in the 4

bits we have allocated for it, and we have detected an overflow condition. In general,

for Figure 18-10, if initially X8
X7

X6
X5

X4 ≥ Y3
Y2

Y1
Y0 (i.e., if the left five bits of the

dividend register exceed or equal the divisor), the quotient will be greater than 15

and an overflow occurs. Note that if X8
X7

X6
X5

X4 ≥ Y3
Y2

Y1
Y0, the quotient is

X8 X7 X6 X5 X4 X3 X2 X1 X0

Y3 Y2 Y1 Y0

≥ X8 X7 X6 X5 X4 0000

Y3 Y2 Y1 Y0

 =
X8 X7 X6 X5 X4 × 16

Y3 Y2 Y1 Y0

≥ 16

The operation of the divider can be explained in terms of the block diagram of

Figure 18-10. A shift signal (Sh) will shift the dividend one place to the left on the

next rising clock edge. Because the subtracter is a combinational circuit, it computes

640 Unit 18

X8X7X6X5X4 – Y3Y2Y1Y0, and this difference appears at the subtracter output after

a propagation delay. A subtract signal (Su) will load the subtracter output into

X8X7X6X5X4 and set the quotient bit (the rightmost bit in the dividend register)

to 1 on the next rising clock edge. To accomplish this, Su is connected to both the

Ld input on the shift register and the data input on flip-flop X0. If the divisor is

greater than the five leftmost dividend bits, the comparator output is C = 0; other-

wise, C = 1. The control circuit generates the required sequence of shift and subtract

signals. Whenever C = 0, subtraction cannot occur without a negative result, so a

shift signal is generated. Whenever C = 1, a subtract signal is generated, and the

quotient bit is set to one.

Figure 18-11 shows the state graph for the control circuit. When a start signal (St)

occurs, the 8-bit dividend and 4-bit divisor are loaded into the appropriate registers.

Note that this assumes the divisor and dividend are available and stable during the

clock cycle when Load = 1; they may be available before and after this clock cycle, but

they must be available at least during this clock cycle. If C is 1 after the load, the upper

half of the dividend is larger than the divisor and the quotient would require five or

more bits. Because space is only provided for a 4-bit quotient, this condition constitutes

an overflow, so the divider is stopped, and the overflow indicator is set by the V output.

Normally, the initial value of C is 0, so a shift will occur first, and the control circuit will

go to state S2. Then, if C = 1, subtraction occurs. After the subtraction is completed, C

will always be 0, so the next active clock edge will produce a shift. This process contin-

ues until four shifts have occurred, and the control is in state S5. Then, a final subtrac-

tion occurs if C = 1, and no subtraction occurs if C = 0. No further shifting is required,

and the control goes to the stop state. For this example, we will assume that when the

start signal (St) occurs, it will be 1 for one clock time, and, then, it will remain 0 until the

control circuit is back in state S0. Therefore, St will always be 0 in states S1 through S5.

We will now design the control circuit using a one-hot assignment (see Section 15.9)

to implement the state graph. One flip-flop is used for each state with Q0 = 1 in S0,

Q1 = 1 in S1, Q2 = 1 in S2, etc. By inspection, the next-state and output equations are

 Q+
0 = St ′Q0 + CQ1 + Q5 Q

+
1 = StQ0 (18-1)

 Q+
2 = C′Q1 + CQ2 Q

+
3 = C′Q2 + CQ3

 Q+
4 = C′Q3 + CQ4 Q

+
5 = C′Q4

 Load = St Q0 V = CQ1

 Sh = C′(Q1 + Q2 + Q3 + Q4) = C′(Q0 + Q5)′
 Su = C(Q2 + Q3 + Q4 + Q5) = C(Q0 + Q1)′

FIGURE 18-11
State Graph for
Divider Control

Circuit

© Cengage Learning 2014
S5

S0
(stop) S1 S2

S4 S3

St′/0
St/Load

C/V
C/Su
C′/0

C ′/Sh

C/Su

C ′/Sh

C ′/Sh

C′/Sh

C/Su

C/Su

Circuits for Arithmetic Operations 641

Because there are three arrows leading into S0, Q
+
0 has three terms. The equation for

Sh has been simplified by noting that if the circuit is in state S1 or S2 or S3 or S4, it is

not in state S0 or S5.

The subtracter in Figure 18-10 can be constructed using five full subtracters, as

shown in Figure 18-12. Because the subtracter is a combinational circuit, whenever

the numbers in the divisor and dividend registers change, these changes will propa-

gate to the subtracter outputs. The borrow signal will propagate through the full

subtracters before the subtracter output is transferred to the dividend register. If the

last borrow signal (b9) is 1, this means that the result is negative. Hence, if b9 is 1, the

divisor (Y3Y2Y1Y0) is greater than X8X7X6X5X4, and C = 0. Therefore, C = b9′, and a

separate comparator circuit is unnecessary. Under normal operating conditions (no

overflow) for this divider, we can also show that C = d ′8 . At any subtraction step,

because the divisor is only four bits, d8 = 1 would allow a second subtraction without

shifting. However, this can never occur because the quotient digit cannot be greater

than 1. Therefore, if subtraction is possible, d8 will always be 0 after the subtraction,

so d8 = 0 implies X8X7X6X5X4 is greater than Y3Y2Y1Y0 and C = d8′.
The block diagram of Figure 18-10 does not show how the dividend is initially

loaded into the X register. This can be accomplished by adding a MUX at the

X register inputs, as shown in Figure 18-13. This diagram uses bus notation to avoid

drawing multiple wires. When several busses are merged together to form a single

bus, a bus merger is used. For example, the symbol

5

3
1

9

9

5
3

X0

X (3:1)

X (8:4)

FIGURE 18-12
Logic Diagram for

5-Bit Subtracter

© Cengage Learning 2014 Full
Subtracter

d8

b9

b8 b7 b6 b5
b4 = 0

X8 0

Full
Subtracter

d7

X7 Y3

Full
Subtracter

d6

X6 Y2

Full
Subtracter

d5

X5 Y1

Full
Subtracter

d4

X4 Y0

means that the 5-bit subtracter output is merged with bits X3X2X1 and a logic 1 to

form a 9-bit bus. Thus, the MUX output will be d8d7d6d5d4X3X2X11 when Load = 0.

Similarly, the symbol

642 Unit 18

represents a bus splitter that splits the 9 bits from the X register into X8
X7

X6
X5

X4

and X3
X2

X1; X0 is not used. Bus mergers and splitters do not require any actual

hardware; they are just a symbolic way of showing bus connections.

The X register is a left-shift register with parallel load capability, similar to the

register in Figure 12-10. On the rising clock edge, it is loaded when Ld = 1 and

shifted left when Sh = 1. Because the register must be loaded with the dividend

when Load = 1 and with the subtracter output when Su = 1, Load and Su are ORed

together and connected to the Ld input. The MUX selects the dividend (preceded by

a 0) when Load = 1. When Load = 0, it selects the bus merger output which consists

of the subtracter output, X3
X2

X1, and a logic 1. When Su = 1 and the clock rises, this

MUX output is loaded into X. The net result is that X8
X7

X6
X5

X4 gets the subtracter

output, X3
X2

X1 is unchanged, and X0 is set to 1.

Figure 18-14 shows an alternative version of the divider. The primary difference

is the use of a 4-bit subtracter rather than a 5-bit subtracter. The 4-bit subtracter

is shown in Figure 18-12 with the leftmost full subtracter deleted. It can be shown

that the 4 least significant output bits from the 5-bit subtracter of Figure 18-13 do

not depend upon X8. (See Problem 18.32.) Since the most significant bit of the 5-bit

subtracter is discarded by the following shift of the X register, this bit is not needed.

However, now the borrow from the 4-bit subtracter, b8, is not sufficient to determine

whether a subtract operation should be done. The state graph of Figure 18-11 still

applies, but now C depends on both X8 and b8.

FIGURE 18-13
Block Diagram for
Divider Using Bus

Notation

© Cengage Learning 2014

X (8:0)

10

9-Wide
2-to-1 MUX

Ld
Sh

Clock

0

9

9

9

8

Dividend (7:0)

9

5 1

0

Load

Load

Su

Sh

5-bit
Subtracter

0

5

4

3

X (3:1)
X (8:4)

Y (3:0)
(Divisor)

X0

Bus
Merger

Bus
Splitter

9

Circuits for Arithmetic Operations 643

FIGURE 18-14
Alternative Divider

© Cengage Learning 2014

Load

Su
Sh Sh

Clock

Load

X (8:0)

X (3:1)

X (7:4)

b8

Y (3:0)

Dividend (7:0)

(Divisor)

Ld
0

9

8

8 8

4 3
1

4 4

8-wide
2-to-1 MUX

4-bit
Subtracter

0

0 1

FIGURE 18-15
Another

Alternative Divider

© Cengage Learning 2014

Load

Su
Sh Sh

Clock Clock

Load

X (8:4) X (3:0)

X (7:4)

b8

X3 Q

Y (3:0)

Dividend (3:0)

Dividend (7:4)

(Divisor)

Ld

Sh

Ld

0 1

5

4

4 4

4 4

4

0

4-wide
2-to-1 MUX

4-bit
Subtracter

Figure 18-15 shows a second alternative divider. In this version only the upper

part of the X register is loaded when a subtract operation is required. Then, on the

following shift operation, a quotient bit of 1, Q = 1, is shifted into X0. If no sub-

tract operation is required, a quotient bit of 0, Q = 0, is shifted into X0. This simpli-

fies the circuit since only a 4-wide multiplexer is needed. This circuit is analyzed in

Problem 18.33.

644 Unit 18

Programmed Exercise 18.1

Cover the answers with a sheet of paper and slide it down as you check your answers.

Write your answer in the space provided before looking at the correct answers.

This exercise concerns the design of a circuit which forms the 2’s complement

of a 16-bit binary number. The circuit consists of three main components—a 16-bit

shift register which initially holds the number to be complemented, a control circuit,

and a counter which counts the number of shifts. The control circuit processes the

number in the shift register one bit at a time and stores the 2’s complement back in

the shift register. Draw a block diagram of the circuit. Show the necessary inputs and

outputs for the control circuit including a start signal (N) which is used to initiate the

2’s complement operation.

SI

CK

CK

N

Sh

Control
CircuitSh

X

Z

K

Counter
CK

State a rule for forming the 2’s complement which is appropriate for use with the

preceding block diagram.

 Answer Starting with the least significant bit, complement all of the bits to the left of the

first 1.

Draw a state graph for the control circuit (three states) which implements the pre-

ceding rule. The 2’s complement operation should be initiated when N = 1. (Assume

that N will be 1 for only one clock time.) When drawing your graph, do not include

any provision for stopping the circuit. (In the next step you will be asked to add

the signal K to your state graph so that the circuit will stop after 16 shifts.) Explain

the meaning of each state in your graph.

 Answer

Circuits for Arithmetic Operations 645

 Answer

S2S1

S0

N′/0

K ′X /Z ′
K ′X ′/Z

K ′X /Z

 KX /Z
KX ′/Z ′

X′N /Z′

X′X/Z′

XN /Z

XK /Z ′
 X ′K /Z

S0 Reset

S1 No 1 received, do
 not complement X

S2 A 1 has been received,
 complement X

N ′/0

X ′/Z
X /Z ′X ′/Z ′

X /Z

XN /ZX ′N /Z ′

S0

S2S1

The counter will generate a completion signal (K) when it reaches state 15. Modify

your state graph so that when K = 1, the circuit will complete the 2’s complement oper-

ation and return to the initial state. Also, add the Sh output in the appropriate places.

 Answer Check the input labels on all arrows leaving each state of your graph. Make sure that

two of the labels on arrows leaving a given state cannot have the value 1 at the same

time. Make any necessary corrections to your graph, and then check your final answer.

 Final Answer

(Note: Sh should be added to the graph everywhere Z or Z′ appears.)

646 Unit 18

Programmed Exercise 18.2

This exercise concerns the design of a binary divider to divide a 6-bit number by a 3-bit

number to find a 3-bit quotient. The right 3 bits of the dividend register should be used

to store the quotient. Draw a block diagram for the divider. Omit the signals required

to initially load the dividend register and assume the dividend is already loaded.

 Answer

Sh
LdX6 X5 X4 X3 X2

Y2 Y1 Y0

C

Su

Sh

St (Start Signal)

V
(Overflow
Indicator)

X1 X0

Subtracter
and

Comparator

Dividend Register

Control

Clock
0

0 1 0 0 0 1 0 shift

If the contents of the dividend register is initially 0100010 and the divisor is 110,

show the contents of the dividend register after each of the first three rising clock

edges. Also, indicate whether a shift or a subtraction should occur next.

Circuits for Arithmetic Operations 647

 Answer 0 1 0 0 0 1 0 shift

1 0 0 0 1 0 0 subtract

0 0 1 0 1 0 1 shift

0 1 0 1 0 1 0 shift

Now, show the remaining steps in the computation and check your answer by con-

verting to decimal.

 Answer 1 0 1 0 1 0 0 subtract
0 1 0 0 1 0 1 (finished)

If the dividend register initially contained 0011001 and the divisor is 010, can divi-

sion take place? Explain.

 Answer No. Because 011 > 010, subtraction should occur first, but there is no place to store

the quotient bit. In other words, the quotient would be greater than three bits, so an

overflow would occur.

Draw a state graph for the divider which will produce the necessary sequence of Su

and Sh signals. Assume that the comparator output is C = 1 if the upper four bits of

the dividend register is greater than the divisor. Include a stop state in your graph

which is different than the reset state. Assume that the start signal (St) will remain 1

until the division is completed. The circuit should go to the stop state when division is

complete or when an overflow is detected. The circuit should then reset when St = 0.

	Copyright

	Brief Contents
	Contents

