

8085 Microprocessor Laboratory

Third Year

 1-1

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

Experiment 1

An Introduction to (8085) Microprocessor Principles with Simple Programs

Object:

To introduce the basic principles of microprocessor systems and to
explain the fundamental structure of a typical microcomputer system and to be
familiar with the MAT385 monitor facilities for loading & executing a program.
Theory:

The word Microprocessor (P) in general means that part of the
microcomputer which is responsible for the main processes such as Arithmetic
processes like (Adding, Subtracting, ….etc), logical processes like (ANDing,
ORing, …etc) and others processes such as storing temporarily data.

The 8085 is an 8-bit microprocessor, it means that it deals with 8-bits
bytes (i.e. every data byte contains 8-bits).

The address which contains 16-bit is used to identify the data source or
the destination or both for the transmission of data.

Basic Computer Architecture:

A digital computer executes a list of basic binary machine instructions (a
program) which have been selected and ordered by the user to solve his
particular task; the program is stored within the computer. A basic digital
computer comprises a memory which is primarily used to hold or store the
program, a processor (often referred to as the central processor unit or CPU)
which executes the individual machine instructions, and some input and output
(I/O) ports. These ports form the interface between the computer and the source
of the input data and the subsequent output data when the processor is a single
integrated circuit it is called a microprocessor. The complete combination of
microprocessor, memory and input and output ports is referred to as
microcomputer.

The memory consists of a number of locations each individually identified

by a number called it's address. Each location contains a binary pattern. The
binary pattern stored at an address is referred to as the contents of that address.

In a microprocessor system the memory usually comprises two types,
Random Access Memory (RAM) which is a volatile memory and Read Only
Memory (ROM) which is a non volatile memory. Basically RAM has the capability
of having information both written into and read out of each location and is often

Microprocessor

Or

Central Processor

Unit CPU

Input/Output

Unit

Memory

Unit

Figure 1-1 Microcomputer Block Diagram

Computer Highway (Buses)

Input

Output

 1-2

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

used for storing intermediate results (data) during a computation. ROM has
information fixed into it during its manufacture and consequently can only be
operated a read only mode.

The computer highway consists of three separate buses. This is shown in
the figure below.

The data bus is used to carry the data associated with a memory or

input/output transfer. The data bus in many computers is bidirectional. Hence
data can be transferred from the processor to a device or from a device to the
processor over a single set of data lines.

The address bus is used to specify the memory location or input/output
port involved in a transfer. The address bus consists of 16 lines on which a
binary coded address can be presented to a memory or input/output ports. The
range of possible memory addresses are from 0000H to FFFFH.

The control bus is made up of lines carrying various control signals
generated by the microprocessor and other system components to synchronize
transfer. The memory map for the MAT385 are listed on it that the student should
be noted, and write in a paper the range of memory that could use for the main or
sub program to help him through the course lab experiments progress.

Addressing mode

The way of specifying data to be operated by an instruction is called
addressing mode. In 8085 microprocessor there are 5 types of addressing
modes

1. Immediate addressing mode

In this mode, the 8/16-bit data is specified in the instruction itself as one of

its operand. For example: MVI K, 20F: means 20F is copied into register K.

2. Register addressing mode

In this mode, the data is copied from one register to another. For

example:MOV K, B: means data in register B is copied to register K.

3. Direct addressing mode

In this mode, the data is directly copied from the given address to the

register. For example: LDB 5000K: means the data at address 5000K is

Micro-

processor

Or

CPU

ROM

Figure 1-2 Microcomputer Highway Buses

RAM I/O

Address Bus

Data Bus

Control Bus

 1-3

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

copied to register B.

4. Indirect addressing mode

In this mode, the data is transferred from one register to another by using

the address pointed by the register. For example: MOV K, B: means data is

transferred from the memory address pointed by the register to the register

K.

5. Implied addressing mode

This mode doesn’t require any operand; the data is specified by the opcode

itself. For example: CMP.

The 8085 instruction set:

The 8085 instruction set includes five different types of instructions.

1. Data Transfer Group:
 Move data between registers or between memory and registers.
2. Arithmetic Group:
 Add, subtract, increment, or decrement data in registers or in memory.
3. Logical Group:
 AND, OR, EXCLUSIVE-OR, Compare, Rotate or complement data in registers
or in memory.
4. Branch Group:

 Conditional and Unconditional jump instructions subroutine call instructions
and return instructions.
5. Stacks I/O and Machine Control Group:
 This group includes I/O instructions, as well as instructions for maintaining the
stack memory and internal control flags.

The 8085 can operate either on the internal CPU registers (A, B, C, D, E,
F, H & L) or on the system memory (RAM or ROM).

1. Data Transfer Instructions:

The basic machine instructions are those from the data transfer group
these are generally referred to as the move or load instructions and the main
instructions are as follows:

Instruction Description

MOV B,A Move the data between the internal processor

reg., is expressed (B)  (A)
MVI A,8-bit data Move immediate 8-bit data value to transfer to

accumulator (A)  8-bit
XCHG Exchange the contents of reg. pair HL & DE with

(DE)  (HL)

 1-4

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

LXI reg. pair, 16-bit
 (BC, DE or HL)

The reg. pair being loaded with immediate 16-bit
data or address.

LDA 16-bits memory
 location (address)

This results in the A reg. being loaded with the
contents of memory location. e.g. LDA 28EA

(A)  (28EA)
STA 16-bits memory
 location (address)

Similar the contents of the A reg. may be stored
in a specified memory location. e.g. STA 28F2

(28F2)  (A)
LHLD 16-bit memory
 address

Load the reg. pair H&L a 16-bit memory address
using an direct addressing, e.g. LHLD 28A2H ,

i.e. (L)  (28A2) & (H)  (28A3)
SHLD 16-bit memory
 Address

SPHL

Similar, store the reg. Pair H&L a 16-bit memory
address using an direct addressing, e.g. SHLD

28A2H , i.e. (28A2)  (L) & (28A3)  (H)
The content of registers pair HL copied into
stack pointer SP

Procedure:

1- write a program, which exchange of the contents of (B reg.) to the contents of

the accumulator (A reg.)

2- Implement the following programs

a- LDA 2850H : Get a byte from monitor ROM

 MOV D, A : Store it in register D

 STA 2880H : AND 2880H in RAM

 HLT : Stop

b- LHLD 2850H : Load H and L from monitor ROM

 SHLD 2870H : Store H and L in RAM

 HLT : Stop

c- LXI H, 1234H : Put 12H into register H, & 34H into register L

 LXI D, 5678H : Put 56H into register D, & 78H into register E

 XCHG : Swap DE with HL

 HLT : Stop

 MOV M,A : Store the MS sum byte

 HLT : Stop

Note: LS=Least significant & MS=Most Significant

3- write 3 different program segments to store (05)H in memory location (2850)Hri

 1-5

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

Discussion:

1. What is the difference between (ROM) and (RAM) memory types?

2. How do the data retention characteristics of RAM and ROM storage devices

differ?

3. What is the purpose and use of the Program Counter (PC), Stack Pointer

(SP), and Memory Address Register (MAR) registers?

4. How many bytes of RAM are available to the MAT-8085 user? What range of

addresses is occupied by this RAM?

5. Write an 8085 program to store 4EH in memory location 2840H and store 3EH

in memory location 2841H, exchange them and store the result in memory

locations 2842H and 2843H respectively. Solve this problem using three

different methods.

6. Wrie a program to exchange the content of memory locations [2801][2800]

with [2803][2802]

 2-1

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

Experiment 2

Binary Arithmetic

Object

The instruction set of the 8085 microprocessor includes instructions to add
and subtract 8-bits binary quantities. Arithmetic operations are performed on
multibyte quantities by cascading these simple 8-bits operations.
. Add or Subtract 8-bits binary quantities.
. Add or Subtract multibyte binary quantities.
. Inspect and interpret the contents of the flag register.
Theory

The majority of machine instructions available with a microprocessor
operates on or affects the state of various internal registers which make up the

P. The main registers for the Intel 8085 are as follows:

A F

B C

D E

H L

F IM

Stack Pointer SP

Program Counter PC

The letters have the following meanings:
Register Meaning
A

: 8-bit accumulator.

B, C, D,
E, H, L

: Four 8-bit general purpose registers.

F : 8-bit flags register (modified by ALU operations).
IM : 8-bit interrupt control register.
HL : Two 8-bit registers which are normally used to form a 16-bit

memory pointer.
SP : Stack pointer a 16-bit memory address which always points to

the top of a system stack.
PC : Program counter a 16-bit memory address which always points

to the next sequential instruction to be executed.

8085 Arithmetic Instructions:

The main 8085 arithmetic instructions are as follows:
Instruction Description
ADD B Add contents of reg. B to accumulator. (All flags affected)
ACI 8-bit data Add immediate with carry 8-bit data to accumulator. (All

flags affected)
ADI 8-bit data Add immediate 8-bit data value to accumulator. (All flags

affected)
ADC B Add contents of reg. B with carry to accumulator. (All flags

affected)
ADD M

Add contents of the memory location whose address is
contained in the H&L regs. to the current contents of A reg.
(All flags affected)

 2-2

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

ADC M Add contents of the memory location whose address is
contained in the H&L regs. With carry to the current
contents of A reg. (All flags affected

DAD B Add BC reg. pair contents to reg. pair HL. (carry only
affected)

SUB B Subtract contents of reg. B from accumulator. (All flags
affected) Add contents of the memory location whose
address is contained in the H&L regs. to the current contents
of A reg. (All flags affected)

SBI 8-bit data Subtract immediate with borrow 8-bit data from accumulator.
(All flags affected)

SUI 8-bit data

SUB M

Subtract immediate 8-bit data from accumulator. (All flags
affected)
Subtract contents of the memory location whose address is
contained in the H&L regs. to the current contents of A reg
(All flags affected)

Subtract contents of the memory location whose address is
contained in the H&L regs. with carry to the current contents
of A reg.

SBB M

INR reg, Increment the contents of reg. by unity. All flags
except the carry flag are affected.

INX H or D Increment the combined contents of a pair of
registers (i.e. increment regs. Pair H&L by unity).

(H)(L)  (H)(L)+1 (Nol flags affected)

INR M Increment the memory location whose address

is contained in H&L regs. [(H)(L)]  [(H)(L)+1]
All flags except the carry flag are affected.

DCR reg.

DCX H or D

DCR M

These instructions are identical to the increment
but at it decrement by unity. All flags except the
carry flag are affected.
Decrement the combined contents of a pair of
registers (i.e. increment regs. Pair H&L by unity).

(H)(L)  (H)(L)-1 (Nol flags affected)

decrement the memory location whose address

is contained in H&L regs. [(H)(L)]  [(H)(L)-1]
All flags except the carry flag are affected.

 2-3

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

Each of these instructions affects one or more flags in the processor
status reg. The carry (CY) and zero (Z) flags are of particular interest in
arithmetic processing. Figure (2-1) illustrates the position of each flags in the F
reg. of the MAT385 using the Examine Register function.

Multibyte Addition and Subtraction:

Addition of multibyte quantities must be performed one byte at a time
using the 8-bit addition instructions, as an example, the following program adds
the 16-bits contents of register pairs BC and DE and places the sum in register
pair HL.

MOV A,C : Get least significant byte of first operand.
ADD E : Add it to LS byte of second operand.
MOV L,A : Then store the LS sum byte.
MOV A,B : Get MS byte of first operand.
ADC D : Add it with CY to MS byte of second operand.
MOV H,A : Then store the MS sum byte.
HLT : Stop.

This example program could be expanded to handle operands containing
three or more bytes. When doing multibyte addition with operands larger than
two bytes, add the two least significant bytes first with the ADD instruction. Add
all more significant pairs of bytes using ADC instructions.

The individual flag bits are grouped together to form the flag register “F”
and for the Intel 8085 it is made up as follows:

MS LS

S Z x AC x P x CY

D7 D6 D5 D4 D3 D2 D1 D0
Figure (2-1) Position of Each Flag in the Flag Register.

Flag Bit Description
S = Sign This flag is intended for use when signed numbers are

being used, it is set when the result of an arithmetic
operation is negative (i.e. the MS bit of the A reg. is 1,
otherwise it is cleared.

Z = Zero This flag is set if the result of an arithmetic operation in
the A reg. is zero, otherwise it is cleared.

AC = Auxiliary Carry This flag is intended for use when BCD number
representation is being used, it is set when the result of
an arithmetic operation produces a carry out from the
fourth bit of the A reg., and cleared otherwise.

P = Parity This is used with the logical operations. The flag is set
if the result of a logical operation (AND, OR, XOR)
produces an even number of 1's and cleared otherwise.

CY = Carry This flag is the carry out from the MS bit of the A reg.

 2-4

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

Program Debugging:

The MAT385 provides a debugging feature that allows the user to execute

a program one instruction at a time. This technique, known as single stepping, it

is accomplished on the MAT 385 using this procedure:-

1. Press the SINGLE STEP key on the MAT385.

2. Enter the 4-digits address of the first program instruction.

3. Press the NEXT key to execute the first instruction. The MAT385 display

shows the program counter contents and the data contained at that

address. You may press the NEXT key repeatedly to a SINGLE-STEP

through several instructions.

4. Press EXEC key to terminate the SINGLE-STEP mode. You may now

examine or modify the contents of memory and registers.

5. You may resume single-stepping the program by pressing the SINGLE-

STEP key again, followed by the next key. You do not need to enter an

address before resuming; the PC is still pointing to the next instruction in

the program.

6. Instead of resuming program execution in the SINGLE-STEP mode, you

may choose to EXEC the remaining instructions at full speed. Do this by

pressing the GO key followed by the EXEC key.

Procedure:

1. Write an 8085 program to perform the following tasks:

 (B)  87H

 (A)  (2B)

 (C)  (3D)

 (D)  2FH

 (E)  (D)

 (H)  3EH

 (L)  (H)

Code your program then list it on a form and load it into memory starting at

address 2800H. Use the “SUBSTITUTE MEMORY” command and finally

SINGLE-STEP through it to verify correct operation of each instruction.

2-Write a program to find (6F2E3D +2B1A6C). Store the result in BDE registers

3-Write a program to find (6F2E3D - 2B1A6C). Store the result in BDE registers

4- write a program to add 3 bytes number stored in memory locations

[2802][2801][2800] to the 3 bytes number stored in memory locations

[2805][2804][2803] store the results in [2808][2807][2806]

 2-5

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

5- write a program to subtract 3 bytes number stored in memory locations

[2802][2801][2800] from 3 bytes number stored in memory locations

[2805][2804][2803] store the results in [2808][2807][2806]

6. Write an 8085 program to subtract the contents of memory location 2850H from

the contents of memory location 2851H, and store the difference in location

2852H. Try your program for each of the following cases; record the difference

and the status of the CY and Z flags for each case.

a. (2850)H=47H , (2851)H=8EH

b. (2850)H=8EH , (2851)H=47H

c. (2850)H=F7H , (2851)H=F7H

Code your program, then list it on a coding form, then examine the contents of

the appropriate processor register memory location to verify correct execution of

each program instruction.

6. Write an 8085 program to perform the following multi byte addition operation:

Store the result in memory [2802][2801][2800]

 91986FH

+ 2E6794H

Test the program by manually placing the two 3-byte numbers into consecutive

memory locations. Design your program to add the values together and store the

sum in three other memory locations. Record the sum and the CY flag and Z flag

values after the program adds each pair of bytes verify these observations with

manual computations.

Discussion:

1. The following program is supposed to add the contents of memory location

2050H to the Accumulator. The program works correctly only part of the time.

Show that it is wrong to execute the program and how to correct it.

MOV B,A

LDA 2050H

ADC B

HLT

2. In a multibyte addition program, when you must use the ADD instruction?

When you must use the ADC instruction?

 2-6

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

3. Assume that regs. pair HL contains the value 1234H, what does it contain after

executing the instruction DAD H?

4. Write a program to add the following 32-bit numbers. Use the DAD, LHLD and

SHLD instructions.(first store the first number in [2800]-[2803] and the second

number [2804]-[2807] store the result in memory [2808] –[280B]

 1F2CD43AH

+ B724BD6CH

6. Write an 8085 program to perform the following subtraction. Store the result in

memory [2802][2801][2800]

 910B6FH

- 2E3714H

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi, Ammar A. Sohrab & Gregor A. Armice

Experiment 3

Bit Manipulation

Object:

Bit manipulation techniques are used in a variety of microprocessor
applications. Bit manipulation tasks include setting, resetting and complementing
individual bits of information and also shifting and rotating groups of bits, you will
be able to:
. Use the 8085 logical instructions to set, clear, or complement individual bits.
. Use the 8085 rotate instructions to manipulate groups of bits.
. Multiply two binary values using a shift-and-add technique.
Theory:

The data within the microcomputer is always representing a numerical
value. In many applications, however, the data may simply be indicating the state
of, say, a controlled state of a controlled system. For example, a single binary bit
may indicate the state of a control value: 0 = value open, 1= value closed. Thus
the 8-bit binary value 01100111 may mean control values 1,2,3,6 and 7 are
closed whilst control values 4, 5 and 8 are open. In addition to the arithmetic
instructions already available a microprocessor has a number of data
manipulation instructions which are primarily included to manipulate non-numeric
data of this kind.
8085 Bit Manipulation Instructions:

The logical instruction that can be used for bit manipulation:

Instruction Description

ANA r And contents of register r with accumulator

ANA M And contents of memory with accumulator

ANI 8-bit data And immediate data with accumulator

ORA r OR contents of reg. r with accumulator

ORA M OR contents of memory with accumulator

ORI 8-bit data OR immediate data with accumulator

XRA r Exclusive-OR contents of reg. r with accumulator

XRA M Exclusive-OR contents of memory with accumulator

XRI 8-bit data Exclusive-OR immediate data with accumulator

CMA Complement accumulator contents

CMC Complement carry

STC Set carry

CMP r Compare contents of reg. r with accumulator the flags are

 CY Z S

1. A > r 0 0 0

2. A=r 0 1 0

3. A< r 1 0 1

 affected.

CMP M Compare contents of memory location with accumulator,

 CY Z S

1. A > M 0 0 0

2. A=M 0 1 0

3. A< M 1 0 1

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi, Ammar A. Sohrab & Gregor A. Armice

CPI 8-bit data Compare immediate with accumulator:
If (A) < data , CY=1, Z=0
If (A) = data , CY=0, Z=1
If (A) > data , CY=0, Z=0

The rotate instructions are often used to test the status of an individual bit. This is
useful, for example, when performing binary multiplication and division a left shift
(rotate) is a *2 operation (multiplication) and a right shift is a /2 operation
(division). This is done by rotating the bit into the CY flag, then using the JC or
JNC instruction to jump, for example:-
RLC Rotate Accumulator left with carry

RAL Rotate All Accumulator left through carry

RRC Rotate All Accumulator right with carry

RAR Rotate All Accumulator right through carry

CY 7 6 5 4 3 2 1 0

CY 7 6 5 4 3 2 1 0

CY 7 6 5 4 3 2 1 0

CY 7 6 5 4 3 2 1 0

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi, Ammar A. Sohrab & Gregor A. Armice

Procedure:

1. Write a program to compare between content of registers A and B, show

the content flags CY, Z, S for the following cases

a. A=05, B=04

b. A=05 ,B= 05

c. A=05, B= 06

2- Write an 8085 program to compare the contents of two regs. A and B (load

immediate data into two regs.), and then rotate the contents of reg. A, the new

contents of A are then AND-ed with a constant and finally the resulting contents

of A are OR-ed with the contents of B. Code your program then list it on a coding

form and load it into memory starting at address 2800. Check the contents of the

A reg. to verify its correct operation.

Note: the data is F0, 0F

3- write an 8085 program to divide the contents of memory location 2840 into two

4-bit sections and store them in memory location 2841 and 2842; place the four

most significant bits of memory location 2840 in the four least significant bits

positions of memory location 2841; place the four least significant bits of memory

location 2840 in the four least significant bits position of memory location 2842.

Note: 2840=3F, Result=2841=03; 2842=0F

4- Write an 8085 program to place the four most significant bits of the contents of

memory location 2850 into memory location 2851, clear the four least significant

bits of memory location 2851.

Note: 2850=C4, Result=2851=C0

5- Write an 8085 program that will manipulate the bits in the accumulator as

follows: if bit 7 is logic 1, complement the remaining seven bits. If bit 7 is low,

clear bits 0and 1, set bit 2, and complement bits 3-6. test your program for each

of these values:

80 h, 00 h, 55 h and AA h

Discussion:

1- The 8085 instruction set does not include a clear accumulator instruction.

Which single-byte logical instruction can perform this task?

2- The 8085 instruction set does not include a clear carry instruction. Which

single-byte logical instruction can clear the carry without modifying the contents

of the accumulator?

3- Write a program to set b0,b1, reset b2,b3 and complement b6,b7 for the

content of memory location [2800], store the result in [2801]. Note ([2800]= (6C)]

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi, Ammar A. Sohrab & Gregor A. Armice

4- What value will remain in the accumulator after executing each of the following

program segments? What will be the status of the CY and Z flags?

a-

MVI A,0F

MVI B,55

XRA B

b-

MVI A,AA

ANI 0F

ORI B0

c-

MVI A,96

XRI FF

d-

MVI B,12

MVI C,34

MOV A,C

ORA A

RLC

MOV C,A

MOV A,B

RAL

MOV B,A

 4-1

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

Experiment 4

Branching & Decision Masking

Object:

To see how the normal sequential execution of the machine instructions

can be broken and to further investigate the conditional and unconditional branch

instructions.

Theory:

The microprocessor can read and interpret thousands of pieces of

information every second. This high-speed decision masking capability is the key

element in many microprocessor applications.

The program loop is the basic structures which force the CPU to repeat a

sequence of instructions.

Loop has four sections:

1- The initialization section which establishes the storing values of counters,

address, registers (pointers) and other-variables.

2- The processing section where the actual data manipulation occurs. This is

the section which dose the work.

3- The loop control section which updates counters and pointers for the next

iteration.

4- The concluding section which analyzes and store the results.

Note that the computer performs sections 1 and 4 only once, while it may

perform sections 2 and 3 many times. Thus the execution time of the loop will be

mainly dependent on the execution time of sections 2 and 3.

A typical program loop can be flowchart as shown in figure 4-1 or the

positions of the processing and loop control sections may be reversed as shown

in figure 4-2.

The processing section in figure 4-1 is always executed at least once,

while the processing section in figure 4-2 may not be executed at all.

Figure 4-1 seems more natural, but figure 4-2 is more efficient and avoids

the problem of what to do when there is no data.

 4-2

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

Simple Looping Structures:

Program loops are designed to repeat a group of instructions. In addition

to the body of the loop (the instructions that are repeated), each loop includes a

loop counter to control the number of repetitions and a flag to indicate when to

stop the looping process.

The following program implements a simple repeated-addition

multiplication technique to multiply two 8-bit numbers. The flowchart for this

program is given in figure 4-3. In this algorithm, the multiplier (register B) serves

as the loop counter, the multiplicand resides in register C, and the product is

contained in register pair HL.

Start

Initialization
Section

Processing
Section

Loop Control
Section

Concluding

Section

End

Has

Task Been
Completed

?

Yes

No

Figure 4-1 Flowchart of a

Program Loop

Start

Initialization
Section

Processing

Section

Loop Control
Section

Concluding

Section

End

Has

Task Been
Completed

?

Yes

No

Figure 4-2 Flowchart of a Program Loop

which Allows Zero Iterations

 4-3

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

8085 Decision Instruction:

Instruction Description

OP-Code Address Condition Flag Status

JMP 16-bit address Jump to specified address.

JC 16-bit address Jump on carry. CY=1

JNC 16-bit address Jump on no carry. CY=0

JZ 16-bit address Jump on zero. Z=1

JNZ 16-bit address Jump on no zero. Z=0

JPO 16-bit address Jump on Odd Parity. P=0

JPE 16-bit address Jump on Even Parity. P=1

JP 16-bit address Jump on Plus. S=0

JM 16-bit address Jump on Minus. S=1

NOP No operation instruction used to

provide some time delay depends on

its T-state value with clock.

RST 1 This instruction to stooping the main

program & returning control to the

monitor program of machine and the

monitor program would write “-8085”.

All conditional jump instructions result in the status of a processor flag being

examined to see if the branch is to be executed.

Start

Product=0

Product=Product
+Multiplicand

Multiplier=
Multiplier-1

End

Is

Multiplier=0
?

Yes

No

Figure 4-3 Flowchart for Multiplication

Using Repeated Addition

 4-4

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

Bit Masking:

Bit masking involves isolating one or more bits in a binary quantity while hiding,

or masking, the unwanted bits. Masking is usually done with the logical AND

instructions. In this program, if bit 5 of location (2050)H is 1 the program jumps to

location (2020)H, if bit 5 is 0, the program jumps to location (2040)H.

 LDA 2050H : Retrieve byte to be tested.

 ANI 20H : Mask all bits, except bit 5.

 JNZ 2020H : Jump to location (2020)H if bit 5 is 1.

 JMP 2040H : Else, go to location (2040)H.

 LXI H,0000H : Clear product register pair.

LOOP: MOV A,B : Get multiplier.

 CPI 00H : Compare multiplier with zero.

 JNZ OVER : If not zero, continue.

 RST 1 : Else, quit (return to monitor).

OVER: MOV A,L : Get LS (least significant) byte of product.

 ADD C : Add multiplicand.

 MOV L,A : Save the LS product byte.

MOV A,H : Add carry AND MS (most significant) product byte.

ACI 00H

MOV H,A : Save MS product byte.

DCR B : Decrement multiplier.

JMP LOOP : Repeat.

Procedure:

1- Write an 8085 program that will

perform the tasks described by the

flowchart in figure 4-4. Document your

program by including appropriate

comments in the program listing.

Coding your program and execute it.

Begin

Load Desired Delay
Time Parameter Into C

Execute Delay Instructions
Decrement Reg. C

Continue on
to Other

Are the

Contents of
Reg. C Zero

?

Yes

No

Figure 4-4

 4-5

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

2- Write an 8085 program to calculate the sum of a series of numbers (16-bits

data). The length of the series is in memory location (2842)H, and the series itself

begins in memory location (2843)H. Store the sum in memory locations (2840)H

and (2841)H (eight most significant bits in memory location (2841)H).

Sample Problem:

2842=03 2844=FA

2843=C8 2845=96

Result: C8+FA+96 = 0258  2840=58 & 2841=02

3- Write an 8085 program to find the largest element in a block of data. The

length of the block is in memory location (2821)H and the block itself begins in

memory location (2822)H. Store the maximum in memory location (2820)H.

Assume that the numbers in the block are all 8-bit unsigned binary numbers.

Sample Problem:

2821=05 2824=15

2822=67 2825=E3

2823=79 2826=72

Result: 2820=E3

5- Write a program to multiply memory locations [2800] x [2801]. Store the

result in DE registers

[2800] =3C , [2801] = 32

The result (DE = 0BB8)

Discussion:

1- Calculate the check sum of a series of numbers, the length of the series is in

memory location (2841)H and the series itself begins in memory location (2842)H.

Store the check sum in memory location (2840)H. The check sum is formed by

Exclusive-ORing all the numbers in the series into the accumulator.

Sample Problem:

2841=03

2842=28

2843=55

 2844=26

Result:

2840=(2842)+(2843)+(2844)=28+55+26=5B

2- Write an 8085 program to find the smallest element in a block of data. The

length of the block is in memory location (2841)H and the block itself begins in

memory location (2842)H. Store the minimum in memory location (2840)H.

Assume the numbers in the block are 8-bit unsigned binary numbers.

Sample Problem:

 2841=05 2844=15

 0 0 1 0 1 0 0 0 =28
+ 0 1 0 1 0 1 0 1 =55

 0 1 1 1 1 1 0 1
+ 0 0 1 0 0 1 1 0 =26

 0 1 0 1 1 0 1 1 =5B

 4-6

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

 2842=67 2845=E3

 2843=79 2846=72

Results: 2840=15

3- Write an 8085 program to determine the number of negative elements (most

significant bit is 1) in a block of data. The length of the block is in memory

location (2851)H and the block itself begins in memory location (2852)H. Store the

number of negative elements in memory location (2850)H.

Sample Problem:

 2851=06

 2852=68 2855=30

 2853=F2 2856=59

 2854=87 2857=2A

Results: 2850=02 ,Since 2853 & 2854 are negative numbers

4- Write an 8085 program to shift the contents of memory location (2830)H left

until the most significant bit of the number is 1. Store the result in memory

location (2831)H and the number of left shifts required in memory location

(2832)H. If the contents of memory location (2830)H are zero, clear both (2831)H

and (2832)H.

Sample Problem:

a- 2830=22

 Result: 2831=88 & 2832=02

b- 2830=01

 Result: 2831=80 & 2832=07

c- 2830=CB

 Result: 2831=CB & 2832=00

d- 2830=00

 Result: 2831=00 & 2832=00

5- What value remains in the accumulator after executing each of the following

program segments? What are the states of the CY and Z flags?

a- MVI A,57 b- MVI A,FF

ANI 08 INR A

c- MVI A,FF d- MVI A,80

ADI 01 CPI F0

e- MVI A,F0

CPI 80

6- Write an 8085 program to produce a delay time of 0.5 sec.

 4-7

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

7- Write a program to divide the content of memory [2800] by the content of

memory [2801] store the result in register D and the remainder in register

E

[2800]= 09 , [2801] = 02. The result must be (D=04, E=01)

 5-1

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi, Ammar A. Sohrab & Gregor A. Armice

Experiment 5

Character Coded Data

Object:

To obtain the ASCII (American Standard Code for International

Interchange) code for the keyboard keys function.

Theory:

Microprocessor often handle character-coded data not only do keyboards,

telltale writers, communications devices, displays, and computer terminals expect

or provide character-coded data (in binary form) that represented by ASCII. Many

instruments and control systems do also. For example, character 10 represents

the LF (Line Feed) function that causes a printer to advance its paper, and

character 8 represents BS (Back Space). We will assume all of our character-

coded data to be 7-bit ASCII with the most significant bit zero (see table (6-1).

 0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P  P

1 SOH DC1 ! 1 A Q a Q

2 STX DC2 “ 2 B R b R

3 ETX DC3 # 3 C S c S

4 EOT DC4 $ 4 D T d T

5 ENQ NAK % 5 E U e U

6 ACK SYN & 6 F V f V

7 BEL ETB ‘ 7 G W g W

8 BS CAN (8 H X h X

9 HT EM) 9 I Y i Y

A LF SUB * : J Z j Z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

Table (6-1) Hex-ASCII Table of keyboard.

Length of a String of Characters:

To determine the length of a string of ASCII characters (7-bits binary with

the most significant bit is zero). The string starts in memory location (2841)H; the

end of string is marked by a carriage return character (“CR”, hex=0D). Place the

length of the string (excluding the carriage return) in memory location (2840)H,

then use the following data in executing the program for each case.

a- 2841=0D CR

b-

2841=43 C 2846=54 T

2842=4F O 2847=45 E

2843=4D M 2848=52 R

 5-2

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi, Ammar A. Sohrab & Gregor A. Armice

2844=50 P 2849=0D ‘CR’

2845=55 U

c- Enter the string=your name.

LXI H, 2841H : Pointer=start of the string

 MVI B, 0H : Length=0

 MVI A, 0DH : get ASCII ‘CR’ to compare

CHK CR: CMP (HL) : Is character ‘CR’

JZ DONE : Yes, end of string

INR B : No, add 1 to length

INX H : Increment the memory address

JP CHK CR : Examine next character

DONE: MOV A, B : Get string length

 MOV M, A : Save string length

 HLT

The compare instruction sets the flags but leaves the carriage return character in

the accumulator for later comparison. The zero flag is set as follows:

Z=1 if the character in the string is a carriage return.

Z=0 if it is not a carriage return.

The instruction INR B adds 1 to the string length counter in register B. MVI B,0H

initializes this counter to zero before the loop. Remember to initialize variables

before using them in a loop.

Procedure:

1- Write an 8085 program to search a string of ASCII characters (7-bits with the

most significant bit is zero) for a non-blank character, the string starts in memory

location (2842)H. Place the address of the first non-blank character in memory

location (2840, 2641)H most significant four bits in memory location (2841)H. A

blank character is hex 20 in ASCII.

Note:

Use the following data: in execution and write the result in each case.

a- 2842=37 (ASCII 7)

b- 2842=20 SP

 2843=20 SP

2844=20 SP

2845=46 F

2- Write an 8085 program to replace all leading zeros with blanks in edit as string

of ASCII character. The string starts in memory location (2851)H, assume that it

consists entirely of ASCII-coded decimal digits. The length of the string is in the

location (2850)H.

 5-3

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi, Ammar A. Sohrab & Gregor A. Armice

Note:

Use the following data in execution and write the result in each case:

a- 2850=02 STX

 2851=36 ASCII 6

 2852=30 ASCII 0

b- 2850=03 ETX

 2851=30 ASCII 0

 2852=30 ASCII 0

 2853=38 ASCII 8

3- Write an 8085 program to add even parity to a string of 7-bit ASCII characters.

The length of the string is in memory location (2860)H and the string itself begins

in memory location (2861)H. Place even parity in the most significant bit of each

character by setting the most significant bit to 1 if that makes the total number of

1 bits in the word an even number.

Note:

Use the following data in execution and write the result:

2860=06

2861=31

2862=32

2863=33

2864=34

2865=35

2866=36

4- Write an 8085 program to determine the length of an ASCII message (length

of A Teletype writer message). All characters are 7-bits ASCII with MSB 0. The

string of characters in which the message is embedded starts in memory location

(2841)H. The message itself starts with an ASCII STX character (02)H and ends

with ETX (03)H. Place the length of the message (the number of character

between the STX and the ETX but including neither) in memory location (2840)H.

Sample problem:

 2841=42

 2842=02

 2843=47

 2844=4F

 2845=03

Result: 2840=02 , since there are two characters between the STX and ETX.

 5-4

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi, Ammar A. Sohrab & Gregor A. Armice

Discussion:

1- Write an 8085 program to compare two strings of ASCII characters to see if

they are the same. The length of the string is in memory location (2861)H; one

string starts in memory location (2862)H; while the other starts at (2882)H. If both

strings are equal set (2860)H to the value of”00H” otherwise set (2860)H to ”FFH”.

Note:

Use the following data in execution and write the result in location (2860)H:

a- 2861=03 b- 2861=03

 2862=43 C 2862=52 R

 2863=50 P 2863=41 A

 2864=55 U 2864=4D M

 2882=43 C 2882=52 R

 2883=50 P 2883=4F O

 2884=55 U 2884=4D M

2- Write an 8085 program to compare two strings of ASCII characters to see

which is larger (i.e. which follows the other in ‘alphabetical’ ordering). The length

of the strings is in memory location (2841)H; one string starts from memory

location (2842)H and the other starts at memory location (2862)H. If the string in

location (2842)H is larger than or equal to the other string clear memory location

(2840)H ; otherwise, set location (2840)H to ”FFH” (all ones).

 2841=03

 2842=43 C

 2843=41 A

 2844=54 T

 2862=42 B

 2863=41 A

2864=54 T

Results: 2840=00 since CAT is “larger” than BAT.

3- Check Even Parity in ASCII Character:

Check even parity in a string of ACII characters. The length of the string is in

memory location (2841)H and the string itself begins in memory location (2842)H.

if the parity of all characters in the string is correct, clear memory location

(2840)H; otherwise, set the contents of memory location (2840)H to FFH (all ones).

2841=03

2842=B1

2843=B2

2844=33

 5-5

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi, Ammar A. Sohrab & Gregor A. Armice

4- Truncate Decimal String to Integer Form:

Edit a string of ACII decimal characters so as replace all digits to the right of the

decimal point with ASCII blanks (20)H; the string starts in memory location

(2801)H and is assumed to consist entirely of ASCII-coded decimal digits and a

possible decimal point (2E)H. The length of the string is in memory location

(2800)H. if no decimal point appears in the string, assume that all digits are whole

numbers with the decimal point (implicit) at the far right.

Sample Problem:

2800=04

2801=37 7

2802=2E .

2803=38 8

2804=31 1

Result:

2801=37 7

2802=2E .

2803=20 'SP'

2804=20 'SP'

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

Experiment -6

Subroutines and the Stack

Object: to examine the machine instructions associated with subroutines can be use in a

simple application example.

Theory: 8085 subroutines are called from user program to perform a variety of task. In

program it may be necessary to perform a sub task many times over. Subroutines provide

an efficient means of repeating a series of instructions in a program. Subroutines are

linked with the main program through the use of the stack. Subroutines not only safe

program memory because repetition of instructors is avoided; they also provide the

opportunity to construct a program in convenient sections which can be written and tested

independently, and then collected together to perform the overall task.

The Stack: Stack is a special memory area that is used to “remember” where to return

after a subroutine is executed. The stack is also used for temporary data storage. A stack

is simply a last – in – first – out queue. It is implemented as a set of successive read/write

memory locations, together with a register called a (Stack Pointer) which holds the

address of the entry at the top of the stack, and this use the stack pointer the register SP.

SP may be initially set at any arbitrary value, although usually on the MAT385 it is set to

2oc2 by the instruction initialize stack pointer.

A byte is entered into the stack by first decrementing the stack pointer, so that it contains

the next address beyond the head of the stack, and then placing the byte in the location at

the new address. This operation is some times referred to as “pushing” the byte onto the

stack. When a byte is no longer required to remain on the stack the converse process,

“popping” the byte from the stack, must first transfer the byte to whenever it is next

required, and then increment the stack pointer so that it still points to the head of the

reduced stack.

8085 stack control & subroutine instructions:

Here are some of the 8085 instructions used in stack and subroutine applications:

Instruction Description

LXI sp,16-bit data Load stack pointer with 16-bit value

CALL 16-bit address call subroutine at address

specified

CC 16-bit address call subroutine if cy=1

CNC 16-bit address call subroutine if cy=0

CZ 16-bit address call subroutine if z=1

CNZ 16-bit address call subroutine if z=0

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

RET Return to calling program

RC Return if cy=1

RNC Return if cy=0

RZ Return if z=1

RNZ Return if z=0

PUSH rp Push register pair onto stack

POP rp Pop register pair from stack

XTHL Exchange top of stack with HL contents

SPHL Move HL contents to stack pointer

DAD sp Add stack pointer contents of HL

Instructions in the CALL and RETURN instruction group automatically use the stack to

create the linkage between a main program and a subroutine. Is a subroutine modifies the

contents of certain registers, and if you must use these values later in the program, then

place the contents of the registers in a safe place before calling the subroutine. Either

copy the contents of the registers to memory using data transfer instructions, or place the

values temporarily on the stack. Store data on the stack using the PUSH instructions;

later, retrieve the data using POP instructions.

Operation of Subroutine Instructions:

 Stack

Address Contents Instruction Address Contents

2810 CD Call 2848 20C0 xx

2811 48 20C1 xx

2812 28 20C2 xx

2813 2813 pc

 20C2 sp

i) Instruction CALL just started to be executed PC updated

Address Contents Instructions Address Contents

2810 CD

2811 48 20C0 13

2812 28 2813 pc 20C1 28

2813 20C0 sp 20C2 xx

ii) PC contents saved on stack and SP decremented to point to last entry

2810 CD

2811 48 20C0 13

2812 28 2848 pc 20C1 28

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

 20C0 sp 20C0 xx

iii) Control transferred to subroutine start address 2848.

Whenever a RETURN instruction is executed, the process illustrated is reversed. The

program counter is loaded (least significant byte first) with the contents at the top of the

stack, the stack pointer is incremented by two and control returns to the instruction

following the subroutine call. Subroutine call and return instructions are available that are

conditional in just the same way and for the same range of conditional jump instructions.

Example (1)

The following program segment saves H and L on the stack

LXI Sp,20C2H ;initialize stack pointer

PUSH H ;Save HL on stack

Call SUB1 ;Call subroutine SUB1

POP H ;Restore HL to original

value

When saving several register pairs on the stack, the order of pushing and popping is very

important, consider the following example, which demonstrates the last-in-first-out

nature of the stack:

PUSH H ;save HL

PUSH D ;save DE

CALL SUB1 ;CALL subroutine sub1

POP D ;Restore DE

POP H ;Restore HL

If the registers are restored in the wrong sequence problems may arise:

PUSH H ;save HL

PUSH D ;save DE

CALL SUB1 ;CALL subroutine sub1

POP H ;Restore HL to old DE value

POP D ;Restore DE to old HL value

In this program, the contents of register pairs D and H are exchanged, which may not be

intended result. The instruction PUSH PSW is used to place the processor status word, or

PSW, on the stack. The PSW consists of the Accumulator register in the most significant

byte and the flag register in the least significant byte. This instruction provides a useful

way to access the contents of the flag register. For example, the program segment

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

PUSH PSW

POP H

Place the flag register contents into register H and moves the accumulator contents to

register L.

The DAD SP instruction provides the only way to transfer the stack pointer contents to

another register. For examination, the following program segment demonstrates this

application:

LXI H, 0000 H ; clear HL

DAD SP ; ADD stack pointer contents to HL

Register pair HL now contains a copy of the stack pointer contents.

Monitor Subroutines

The monitor ROM contains several subroutines that can be used to simplify information

processing. The UPDAD and UPDDT subroutines are used to disply information on the

LED digits.

Procedure

1. The following program manipulates stack data. Study the program and predict what

will happen to memory locations 2050H-205F H.

 LXI SP,205F(H) ;initialize stack pointer

 XRA A ;Clear Accumulator

 LXI H, 21050 H ;point to start of array

 MVI B, 10(H) ;Loop counter

Loop: MOV M, A ;clear M location

 INX H

 DCR B

 JNZ Loop ;Repeat until done

 LXI H, 1234(H)

 LXI

LXI

D, 5678(H)

SP, 20C2

 CALL SUB1

 ;put SP here before quieting so the

monitor program will not bother it

 RST 1 ;quit

SUB1: PUSH H ;subroutine starts here

 PUSH D

 LXI H, 0000(H) ;do this to capture SP value

 DAD SP

 SHLD 2050 H ;save it in memory

 POP D

 POP H

 RET

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

Assemble and execute the program – examine memory locations 2050H – 205H to see if

those values were manipulated as you predicted. Observe the contents of DE and HL.

Note: (locations 2050H – 205F H were cleared before doing any stack operations

normally the stack is not cleared before used.

2. Write an 8085 subroutine to generate a precise time delay where the delay time

parameter is passed to subroutine in register B. Use this calling program to test your

subroutine

LXI SP, 20C2 (H)

MVI B, XX (H)

CALL DELAY

RST 1

Test your subroutine by producing delay times of 1, 10, 30 and 60 sec. verify the result

using a stopwatch.

3. Write an 8085 subroutine program to determine the length of a string of ASCII

characters. The starting address of the string is in register pair HL. The end of the string

is marked by a carriage return character (CR: hex 0D). Place the length of the string

(excluding the carriage return) into the Accumulator.

Sample program

a- (HL) = 2843

 (2843) = 0D

Result: (A) =00

b-

(HL) =2843

(2843) =52 ‘R’

(2844) =41 ‘A’

(2845) =54 ‘T’

(2846) =48 ‘H’

(2847) =45 ‘E’

(2848) =52 ‘R’

(2849) =0D CR

Result: (A) =60

4. Write an 8085 subroutine program to add even parity to a string of 7-bit ASCII

characters. The length of the string is in the accumulator and the starting address of the

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

string is in register pair HL, place even parity in bit 7 of each character (i.e. set bit 7 to 1

if that makes the total number of 1 bits in the byte even).

Sample problem:

 Result

(A) =06 (2841) =B1

(HL) =2841 (2842) =B2

(2841) =31 (2843) =33

(2842) =32 (2844) =B4

(2843) =33 (2845) =35

(2844) =34 (2846) =36

(2845) =35

(2846) =36

5. Write an 8085 subroutine program to add two multiple-byte binary numbers. The

length of the numbers in bytes is in the accumulator. The starting addresses of the

numbers are in register pair DE and HL. All the numbers begin with the least significant

bits.

Sample problem:

 Result

(A) =04

(DE) =2851 2871 =7B

(HL) =2861 2872 =DD

(2851) =C3 2873 =3A

(2852) =A7 2874 =44

(2853) =5B

(2854) =2F

(2861) =B8

(2862) =35

(2863) =DF

(2864) =14

i.e. 2F5BA7C3

 14DF35B8 +

 443ADD7B

Discussion:

Each of the following program segments uses the stack. For each program segment

specify the resulting contents of any affected registers. Draw a memory map showing the

stack locations used and their final contents.

a)

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

LXI SP, 6000 (H)

LXI H, 1234 (H)

PUSH H

b)

LXI SP, 2050 (H)

LXI H, 1234 (H)

SPHL

PUSH H

c)

LXI SP, 3040 (H)

LXI D, 1234 (H)

PUSH D

LXI H, 5678 (H)

XTHL

d)

ORG 2000 (H)

LXI SP, 3000 (H)

CALL SUB1

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

Experiment -7

Input / Output Ports

Object:

To explore the nature of a programmable input-output device and its use for simple input-

output data transfers.

Or

To study the operation of the input-output (i/o) ports of the MAT 385 trainer with the aid

of the install 8085 i/p-o/p instruction.

Theory:

Computer can monitor the outside world using input ports; they can control it using

output ports. An 8085 microprocessor performs input/output (I/O) tasks using special I/O

instructions and some external hardware.

The MAT 385 contains a set of 8 switches can be used as logical inputs and a set of 8

LEDs which can be used to display logical outputs. A logical 1 corresponds to an LED

being ON and a logical 0 to an LED being OFF.

Input/output operation of the 8085 MPU is achieved through the use of 8-bit

programmable ports. Since this input/output device may be programmed on either input

or output, hence it must be programmed into the required configuration for the

programmable I/O port used (8155), the command word is:

7 6 5 4 3 2 1 0

Port A, 0=input

 1=output

 Port B 0= input
 1= output

Port A interrupt, 1=enable

 0=disable

Port B interrupt,

0=disable , 1= enable

Timer command, 00=do not affect timer

Port C 00=input

 11=output

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

In order to write the command byte to the programmable interface, the proper command

byte should be set to command port (in the MAT 385 it is at address 20h). for example if

it is required to use:

 Port A as input

 Port B as output

 Port C as output

Then we use:

0 0 0 0 1 1 1 0

The 8085 instructions relating the use of the I/O ports are:

OUT (port)

 This instruction is used to send the contents of the accumulator to the required

port. Ports are address on eight bits and hence only 256 I/O locations are addressed by

this location only.

IN (port)

 This instruction is used to read the contents of the required port into the

accumulator.

The locating used to address the I/O ports are:

Port A input

Port B output

Port C output

Disable interrupt on

port A

Disable interrupt

on port B

do not affect timer

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

Address (hex) Use

20 Command register

21 Port A (data)

22 Port B (data)

23 Port C (control)

On the MAT 385, the eight switch input are connected to port A (21) and the eight LED,

output indicators are connected to port 22, port 23 must be set to 00 to enable the switch

inputs.

The single step command provided by the monitor program uses the timer within the

same device to determine when a single instruction has been executed. The monitor

program, therefore; modifies the command byte within the device as each step operation

is performed. It is necessary, when performing input-output operation using the single

step facility, to write in the command register. The monitor program then automatically

transfers the information in this memory location to the command register as each single

step operation is executed.

Example: Transferring data to the LEDs

In the following example port 22 is configured to be an output port and port 21 to be an

input port. An arbitrary data byte is transferred to the LED indicators on port 22.

MVI A, oE ; command byte

STA 20FF ; save command byte to permit single step operation

OUT 20 ; transfer command to 8055

MVI A, 00 ; load control port data

OUT 23 ; set control port

MVI A, 55 ; load LED data

OUT 22 ; transfer data to LEDs

Procedure:

1. Code the example 8-1 and load it into memory starting at address 2800. Use the

“single step” command. Charge the LED data and repeat. Replace the OUT 22

instructions with an in 21 instruction the accumulator should contain the switch

input data; confirm this using the “exam register” command.

2. Write a program to output the number (AA H) to the LEDs on the panel of the

trainer (the LEDs are connected to port 22 of the MAT trainer).

3. modify the above program to read the states of the switches and then display them

using the LEDs on the MAT (the switches are connected to input port 21 of the

MAT).

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

4. write a program to continuously flash the LEDs of the MAT panel (flash the

LEDs by continuously writing (55H) and (AA H) to the LEDs lamp set).

01010101=55(H)

10101010=AA (H)

Discussion:

1. Draw a flowchart illustrating the programs in procedure step 3 and 4.

2. Show how you can modify the flashing ration of the program in step 4.

Illustrating using a flowchart (or a program) how can you modify the above

flashing ration using the states of the switches in the MAT panel.

Switch state value

0000 0000 1

0000 0001 1/2

0000 0010 1/4

0000 0011 1/8

Note:

The value of the accumulator can be displayed on the LED display of the MAT 385 as

two hex digits, by calling the subroutine at address 036E (display).

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

Experiment -8

Practice 1 “Traffic Lights”

Object:

Getting use of the traffic light control model MIC957 microprocessor application board.

Theory:

The crossroads with a pedestrian crossings are drawn on the board. Two sides of the

crossroads are indicated on panel together with their traffic lamps (three lamps for north –

south and three for east – west road, with two lamps for the pedestrian crossings). That

means there are eight lamps to be controlled by the microprocessor, so we need only one

eight bit output port to control all the eight lamps (one bit for each lamp, logic 1 for ON

and 0 for OFF).

It is recommended to use port B (2A) of (PIO) 2 as an output port to control the eight

lamps as follows:

North road East road Pedestrian

Bit 0 RED Bit 3 RED Bit 6 Red

Bit 1 Amber Bit 4 Amber

Bit 2 Green Bit 5 Green Bit 7 Green

Each time a pushbutton is pressed the computer will receive a logic 0 on the

corresponding bit position, yet on normal conditions the computer will read logic 1 on

this bit.

Practice (1)

The sequence used for traffic lights is: red; red and amber together; green; amber; red

again; etc. the controlled read junction is shown in fig. (9.1). it comprises the four roads

labeled North, South, East, West and a set of traffic lights at each corner (RAG).

The two sets of lights seen by traffic approaching the junction from North and South

change in the same sequence, similarly, the two sets seen by traffic approaching from

East and West also change in the same sequence. There are two principal items

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

The first is the matter of getting the input and output ports working and the second is to

establish the sequence of bit-patterns to be associated with each stage of the eventual

sequence.

The example therefore has the following stages:

a. Calculate the number which must be sent to the output port for each stage of the

sequence tabulated in table 9-1.

b. Complete program which enable each of these numbers to be entered by you at

the keyboard and sent to the output port.

(See program 1)

Table (9-1)

south west Pedestrian

Red Red Red

Red Red Green

Red Red/Amber Red

Red Green Red

Red Amber Red

Red/Amber Red Red

Green Red Red

Amber Red Red

The sequencer can be implemented by sorting this state table in memory and stepping

through it. The appropriate states of the lights are then output, writing the appropriate

delay time between steps. This is shown in the flowchart of fig (9-2).

This flowchart assumes that the most significant three bits of port A drive the north/south

lights and the next most significant three bits drive the east/west lights.

Note:

There are two types of delays: long delay between over all direction chanches (2 min.)

short delay between transitional light setting (3sec.)

Example 2: sequence altered by pedestrian request

It is required (in the absence of pedestrians) to allow vehicles to travel alternately along

the north-south and the east-west roads. If however a pedestrian presses the request

button by the crossing, the normal sequence should proceed until the south road lights

return to red, and then the pedestrian crossing should change to green and back to red

before the normal sequence as in those for traffic on each of the two roads, for this reason

table (9-2) shows “dummy” entries in the sequence at lines 0 and 2, in order to make up

the regular pattern of four lines per sub-sequence.

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

Line South West Pedestrian Time Sub-sequence
0 Red Red Red 0 pedestrian

1 Red Red Green 6 Pedestrian

2 Red Red Red 0 Pedestrian

3 Red Red Red 1 Pedestrian

4 Red Red/amber Red 2 West

5 Red Green Red 6 West

6 Red Amber Red 3 West

7 Red Red Red 1 West

8 Red/amber Red Red 1 South

9 Green Red Red 6 South

10 Amber Red Red 3 South

11 Red Red Red 1 South

Time is an arbitrary unit. It will be convenient to make all times a multiple of a single

variable, whose value can then be changed in order to adjust the time scale simply.

Each of the lines of table (9-2) will have associated with it two pieces of data. One is the

bit pattern the other is the required delay time. It is not necessary to make the times very

accurate. It must be recommended however that a pedestrian may press the button to

request a green light on the crossing at any time, he will then expect the system to

remember the request until it has been fulfilled (see program 1).

Program for example 1 and example 2:

Start LXI Sp,20C2(H) Set stack pointer

 MVI A,02(H) Port command byte

 OUT 28(H) To command REGISTER

 MVI A,Q

 OUT 2A(H) Extinguish lamp3

 LXI D,Q Initialize the index in D,E

 CALL OUTP Change the lights

 CALL GPLAY Get delay duration from data table

 CALL Wait Wait, strong any pedestrian

requests which arrive meanwhile

 INX D Increment the index

 MOV A,E Get it (8-bits) into A

 CPI

 JC

 LDA

 ANI

 MVI

 JZ

 MVI

Ministry of Higher Education

& Scientific Research

Al-Mustansiriyah University

College of Engineering

Electrical Eng. Department

Microprocessor Lab

Third Year Class

Hussein A. Abdulnabi , Ammar A. Sohrab & Gregor A. Armice

 SUB

 STA

 NOP

 JMP

 DS

 LXI

 DAD

 MOV

 RET

 SUB

 ORA

 RZ

 PUSH

 PUSH

 MVI

 CALL

 LXI

 CALL

 DCX

 MOV

 ORA

 JNZ

 POP

 POP

 RET

 DS

GREQ PUSH

 LXI

 IN

 CMA

	1. Immediate addressing mode
	2. Register addressing mode
	3. Direct addressing mode
	4. Indirect addressing mode
	5. Implied addressing mode

