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15.1 INTRODUCTION

In this chapter, phasor algebra will be used to develop a quick, direct
method for solving both the series and the parallel ac circuits. The close
relationship that exists between this method for solving for unknown
quantities and the approach used for dc circuits will become apparent
after a few simple examples are considered. Once this association is
established, many of the rules (current divider rule, voltage divider rule,
and so on) for dc circuits can be readily applied to ac circuits.

SERIES ac CIRCUITS

15.2 IMPEDANCE AND THE PHASOR DIAGRAM

Resistive Elements

In Chapter 14, we found, for the purely resistive circuit of Fig. 15.1,
that v and i were in phase, and the magnitude

Im � �
V
R

m� or Vm � ImR

a c

R v  =  Vm sin qt

+

–

i  =  Im sin qt

FIG. 15.1

Resistive ac circuit.

Series and Parallel 
ac Circuits



a c

In phasor form,

v � Vm sin qt ⇒ V � V �0°

where V � 0.707Vm.
Applying Ohm’s law and using phasor algebra, we have

I � � /0° � vR

Since i and v are in phase, the angle associated with i also must be 0°.
To satisfy this condition, vR must equal 0°. Substituting vR � 0°, we
find

I � � /0° � 0° � �0°

so that in the time domain,

i � �2�� � sin qt

The fact that vR � 0° will now be employed in the following polar
format to ensure the proper phase relationship between the voltage and
current of a resistor:

(15.1)

The boldface roman quantity ZR, having both magnitude and an
associated angle, is referred to as the impedance of a resistive element.
It is measured in ohms and is a measure of how much the element will
“impede” the flow of charge through the network. The above format
will prove to be a useful “tool” when the networks become more com-
plex and phase relationships become less obvious. It is important to
realize, however, that ZR is not a phasor, even though the format R�0°
is very similar to the phasor notation for sinusoidal currents and volt-
ages. The term phasor is reserved for quantities that vary with time, and
R and its associated angle of 0° are fixed, nonvarying quantities.

EXAMPLE 15.1 Using complex algebra, find the current i for the cir-
cuit of Fig. 15.2. Sketch the waveforms of v and i.

Solution: Note Fig. 15.3:

ZR � R �0°

V
�
R

V
�
R

V
�
R

V �0°
�
R �0°

V
�
R

V �0°
�
R �vR
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5 � v  =  100 sin qt

+

–

i

FIG. 15.2

Example 15.1.
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�

FIG. 15.3

Waveforms for Example 15.1.
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j

I

V

(b)

5.565 V

2.828 A

30°
+

j

14.14 A
70.7 V

I V

(a)
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v � 100 sin qt ⇒ phasor form V � 70.71 V �0°

I � � � � 14.14 A �0°

and i � �2�(14.14) sin qt � 20 sin qt

EXAMPLE 15.2 Using complex algebra, find the voltage v for the cir-
cuit of Fig. 15.4. Sketch the waveforms of v and i.

Solution: Note Fig. 15.5:

i � 4 sin(qt � 30°) ⇒ phasor form I � 2.828 A �30°

V � IZR � (I �v)(R �0°) � (2.828 A �30°)(2 � �0°)
� 5.656 V �30°

and v � �2�(5.656) sin(qt � 30°) � 8.0 sin(qt � 30°)

70.71 V �0°
��

5 � �0°
V �v
�
R �0°

V
�
ZR

a c

v

+

–
2 �

i  =  4 sin(qt + 30°)

FIG. 15.4

Example 15.2.
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It is often helpful in the analysis of networks to have a phasor dia-
gram, which shows at a glance the magnitudes and phase relations
among the various quantities within the network. For example, the pha-
sor diagrams of the circuits considered in the two preceding examples
would be as shown in Fig. 15.6. In both cases, it is immediately obvi-
ous that v and i are in phase since they both have the same phase angle.

FIG. 15.5

Waveforms for Example 15.2.

FIG. 15.6

Phasor diagrams for Examples 15.1 and 15.2.
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Inductive Reactance

It was learned in Chapter 13 that for the pure inductor of Fig. 15.7, the
voltage leads the current by 90° and that the reactance of the coil XL is
determined by qL.

v � Vm sin qt ⇒ phasor form V � V �0°

By Ohm’s law,

I � � /0° � vL

Since v leads i by 90°, i must have an angle of �90° associated with it.
To satisfy this condition, vL must equal �90°. Substituting vL � 90°, we
obtain

I � � /0° � 90° � ��90°

so that in the time domain,

i � �2�� � sin(qt � 90°)

The fact that vL � 90° will now be employed in the following polar
format for inductive reactance to ensure the proper phase relationship
between the voltage and current of an inductor.

ZL � XL �90° (15.2)

The boldface roman quantity ZL, having both magnitude and an
associated angle, is referred to as the impedance of an inductive ele-
ment. It is measured in ohms and is a measure of how much the induc-
tive element will “control or impede” the level of current through the
network (always keep in mind that inductive elements are storage
devices and do not dissipate like resistors). The above format, like that
defined for the resistive element, will prove to be a useful “tool” in the
analysis of ac networks. Again, be aware that ZL is not a phasor quan-
tity, for the same reasons indicated for a resistive element.

EXAMPLE 15.3 Using complex algebra, find the current i for the cir-
cuit of Fig. 15.8. Sketch the v and i curves.

Solution: Note Fig. 15.9:

V
�
XL

V
�
XL

V
�
XL

V �0°
�
XL �90°

V
�
XL

V �0°
�
XL �vL

a c

v  =  24 sin qt

+

–

i

XL  =  3 �

FIG. 15.8

Example 15.3.

24 V
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2
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i

90°
2
5�   t�

FIG. 15.9

Waveforms for Example 15.3.

XL  =  qL v  =  Vm sin qt

+

–

i

FIG. 15.7

Inductive ac circuit.
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Leading
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v � 24 sin qt ⇒ phasor form V � 16.968 V �0°

I � � �
XL

V
�

�

9
v

0°
� � � 5.656 A ��90°

and i � �2�(5.656) sin(qt � 90°) � 8.0 sin(qt � 90°)

EXAMPLE 15.4 Using complex algebra, find the voltage v for the cir-
cuit of Fig. 15.10. Sketch the v and i curves.

Solution: Note Fig. 15.11:

i � 5 sin(qt � 30°) ⇒ phasor form I � 3.535 A �30°

V � IZL � (I �v)(XL �90°) � (3.535 A �30°)(4 � ��90°)
� 14.140 V �120°

and v ��2�(14.140) sin(qt � 120°) � 20 sin(qt � 120°)

16.968 V �0°
��

3 � �90°
V
�
ZL

a c

v

+

–

i  =  5 sin(qt  +  30°)

XL  =  4 �

FIG. 15.10

Example 15.4.
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FIG. 15.11

Waveforms for Example 15.4.

The phasor diagrams for the two circuits of the two preceding exam-
ples are shown in Fig. 15.12. Both indicate quite clearly that the volt-
age leads the current by 90°.

FIG. 15.12

Phasor diagrams for Examples 15.3 and 15.4.
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Capacitive Reactance

It was learned in Chapter 13 that for the pure capacitor of Fig. 15.13,
the current leads the voltage by 90° and that the reactance of the capac-
itor XC is determined by 1/qC.

v � Vm sin qt ⇒ phasor form V � V �0°

Applying Ohm’s law and using phasor algebra, we find

I � � /0° � vC

Since i leads v by 90°, i must have an angle of �90° associated with it.
To satisfy this condition, vC must equal �90°. Substituting vC � �90°
yields

I � � /0° � (�90°) � �90°

so, in the time domain,

i � �2�� � sin(qt � 90°)

The fact that vC � �90° will now be employed in the following
polar format for capacitive reactance to ensure the proper phase rela-
tionship between the voltage and current of a capacitor.

(15.3)

The boldface roman quantity ZC, having both magnitude and an
associated angle, is referred to as the impedance of a capacitive ele-
ment. It is measured in ohms and is a measure of how much the capac-
itive element will “control or impede” the level of current through the
network (always keep in mind that capacitive elements are storage
devices and do not dissipate like resistors). The above format, like that
defined for the resistive element, will prove a very useful “tool” in the
analysis of ac networks. Again, be aware that ZC is not a phasor quan-
tity, for the same reasons indicated for a resistive element.

EXAMPLE 15.5 Using complex algebra, find the current i for the cir-
cuit of Fig. 15.14. Sketch the v and i curves.

Solution: Note Fig. 15.15:

ZC � XC ��90°

V
�
XC

V
�
XC

V
�
XC

V �0°
��
XC ��90°

V
�
XC

V �0°
�
XC �vC

a c

v  =  15 sin qt

+

–
XC  =  2 �

i

FIG. 15.14

Example 15.5.

15 V

0

7.5 A

2
� � 3� 2�

v

i

90°
2
�–

2
  t�

FIG. 15.15

Waveforms for Example 15.5.

v  =  Vm sin qt

+

–

i

XC  =  1/qC

FIG. 15.13

Capacitive ac circuit.



The phasor diagrams for the two circuits of the two preceding exam-
ples are shown in Fig. 15.18. Both indicate quite clearly that the current
i leads the voltage v by 90°.

+

j

I

V

10.605 V

Leading
5.303 A

+

j

Leading

V

I

60°2.121 V

4.242 A

(a) (b)
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v � 15 sin qt ⇒ phasor notation V � 10.605 V �0°

I � � � � 5.303 A �90°

and i � �2�(5.303) sin(qt � 90°) � 7.5 sin(qt � 90°)

EXAMPLE 15.6 Using complex algebra, find the voltage v for the cir-
cuit of Fig. 15.16. Sketch the v and i curves.

Solution: Note Fig. 15.17:

i � 6 sin(qt � 60°) ⇒ phasor notation I � 4.242 A ��60°

V� IZC � (I �v)(XC ��90°) � (4.242 A ��60°)(0.5 � ��90°)
� 2.121 V ��150°

and v � �2�(2.121) sin(qt � 150°) � 3.0 sin(qt � 150°)

10.605 V �0°
��

2 � ��90°
V �v

��
XC ��90°

V
�
ZC

a c

v

+

–
XC  =  0.5 �

i  =  6 sin(qt  –  60°)

FIG. 15.16

Example 15.6.

3 V

0

6 A

�

v

i

90°
60°

  t�3�5�
2

2�
2
� 3�

2

FIG. 15.18

Phasor diagrams for Examples 15.5 and 15.6.

Impedance Diagram

Now that an angle is associated with resistance, inductive reactance,
and capacitive reactance, each can be placed on a complex plane dia-

FIG. 15.17

Waveforms for Example 15.6.
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gram, as shown in Fig. 15.19. For any network, the resistance will
always appear on the positive real axis, the inductive reactance on the
positive imaginary axis, and the capacitive reactance on the negative
imaginary axis. The result is an impedance diagram that can reflect
the individual and total impedance levels of an ac network.

We will find in the sections and chapters to follow that networks
combining different types of elements will have total impedances that
extend from �90° to �90°. If the total impedance has an angle of 0°,
it is said to be resistive in nature. If it is closer to 90°, it is inductive in
nature; and if it is closer to �90°, it is capacitive in nature.

Of course, for single-element networks the angle associated with the
impedance will be the same as that of the resistive or reactive element,
as revealed by Eqs. (15.1) through (15.3). It is important to stay aware
that impedance, like resistance or reactance, is not a phasor quantity
representing a time-varying function with a particular phase shift. It is
simply an operating “tool” that is extremely useful in determining the
magnitude and angle of quantities in a sinusoidal ac network.

Once the total impedance of a network is determined, its magnitude
will define the resulting current level (through Ohm’s law), whereas its
angle will reveal whether the network is primarily inductive or capaci-
tive or simply resistive.

For any configuration (series, parallel, series-parallel, etc.), the
angle associated with the total impedance is the angle by which the
applied voltage leads the source current. For inductive networks, vT

will be positive, whereas for capacitive networks, vT will be
negative.

15.3 SERIES CONFIGURATION

The overall properties of series ac circuits (Fig. 15.20) are the same as
those for dc circuits. For instance, the total impedance of a system is the
sum of the individual impedances:

(15.4)ZT � Z1 � Z2 � Z3 � ⋅ ⋅ ⋅ � ZN

a c

I

ZT

I I I
ZNZ3Z2Z1

I

FIG. 15.20

Series impedances.

EXAMPLE 15.7 Draw the impedance diagram for the circuit of Fig.
15.21, and find the total impedance.

Solution: As indicated by Fig. 15.22, the input impedance can be
found graphically from the impedance diagram by properly scaling the

R  =  4 � XL  =  8 �

ZT

FIG. 15.21

Example 15.7.

+ 90°

j

– 90°

XL ∠ 90°

XC ∠ 90°

R ∠ 0° +

FIG. 15.19

Impedance diagram.



XL  =  8 �

j

Z T

+R  =  4 �

vT

FIG. 15.22

Impedance diagram for Example 15.7.

+

j

ZT

Tθ

R = 6 Ω

XL = 10 Ω

XC – XL = 2 Ω

XC = 12 Ω
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real and imaginary axes and finding the length of the resultant vector ZT

and angle vT. Or, by using vector algebra, we obtain

ZT � Z1 � Z2

� R �0° � XL �90°
� R � jXL � 4 � � j8 �

ZT � 8.944 � �63.43°

EXAMPLE 15.8 Determine the input impedance to the series network
of Fig. 15.23. Draw the impedance diagram.

Solution:

ZT � Z1 � Z2 � Z3

� R �0° � XL �90° � XC ��90°
� R � jXL � jXC

� R � j(XL � XC) � 6 � � j(10 � � 12 �) � 6 � � j2 �
ZT � 6.325 � ��18.43°

The impedance diagram appears in Fig. 15.24. Note that in this
example, series inductive and capacitive reactances are in direct oppo-
sition. For the circuit of Fig. 15.23, if the inductive reactance were
equal to the capacitive reactance, the input impedance would be purely
resistive. We will have more to say about this particular condition in a
later chapter.

For the representative series ac configuration of Fig. 15.25 having
two impedances, the current is the same through each element (as it
was for the series dc circuits) and is determined by Ohm’s law:

ZT � Z1 � Z2

and (15.5)

The voltage across each element can then be found by another applica-
tion of Ohm’s law:

(15.6a)

(15.6b)

Kirchhoff’s voltage law can then be applied in the same manner as it
is employed for dc circuits. However, keep in mind that we are now
dealing with the algebraic manipulation of quantities that have both
magnitude and direction.

E � V1 � V2 � 0

or (15.7)

The power to the circuit can be determined by

(15.8)

where vT is the phase angle between E and I.

P � EI cos vT

E � V1 � V2

V2 � IZ2

V1 � IZ1

I � �
Z
E

T
�

a c

ZT

Z1

R  =  6 �

Z2

XL  =  10 �

Z3

XC  =  12 �

FIG. 15.23

Example 15.8

FIG. 15.24

Impedance diagram for Example 15.8.

I

Z2

Z1

+

V2

–

V1 –+

E

+

ZT–

FIG. 15.25

Series ac circuit.



+

j

R = 3 �

XL = 4 Ω

Z 
= 

5 
�

Tθ = 53.13°

+

–

I

R = 3 � XL = 4 Ω

VR+ – VL+ –

E = 100 V � 0°
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Now that a general approach has been introduced, the simplest of
series configurations will be investigated in detail to further emphasize
the similarities in the analysis of dc circuits. In many of the circuits to
be considered, 3 � j4 � 5 �53.13° and 4 � j3 � 5 �36.87° will be
used quite frequently to ensure that the approach is as clear as possible
and not lost in mathematical complexity. Of course, the problems at 
the end of the chapter will provide plenty of experience with random 
values.

R-L

Refer to Fig. 15.26.

Phasor Notation

e � 141.4 sin qt ⇒ E � 100 V �0°

Note Fig. 15.27.

a c

R  =  3 � XL  =  4 �

vL –+vR –+

–

+

e  =  141.4 sin qt i

FIG. 15.26

Series R-L circuit.

FIG. 15.27

Applying phasor notation to the network of Fig. 15.26.

FIG. 15.28

Impedance diagram for the series R-L circuit
of Fig. 15.26.

ZT

ZT � Z1 � Z2 � 3 � �0° � 4 � �90° � 3 � �j4 �

and ZT � 5 � �53.13°

Impedance diagram: See Fig. 15.28.

I

I � � � 20 A ��53.13°

VR and VL

Ohm’s law:

VR � IZR � (20 A ��53.13°)(3 � �0°)
� 60 V��53.13°

VL � IZL � (20 A ��53.13°)(4 � �90°)
� 80 V �36.87°

Kirchhoff’s voltage law:

V � E � VR � VL � 0

or E � VR � VL

�

100 V �0°
��
5 � �53.13°

E
�
ZT



+

j

80 V

60 V

VR

I
53.13° E

VL

36.87°
100 V
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In rectangular form,

VR � 60 V ��53.13° � 36 V � j 48 V

VL � 80 V ��36.87° � 64 V � j 48 V

and

E � VR � VL � (36 V � j 48 V) � (64 V � j 48 V) � 100 V � j 0
� 100 V �0°

as applied.
Phasor diagram: Note that for the phasor diagram of Fig. 15.29, I

is in phase with the voltage across the resistor and lags the voltage
across the inductor by 90°.

Power: The total power in watts delivered to the circuit is

PT � EI cos vT

� (100 V)(20 A) cos 53.13° � (2000 W)(0.6)
� 1200 W

where E and I are effective values and vT is the phase angle between E
and I, or

PT � I2R
� (20 A)2(3 �) � (400)(3)
� 1200 W

where I is the effective value, or, finally,

PT � PR � PL � VRI cos vR � VLI cos vL

� (60 V)(20 A) cos 0° � (80 V)(20 A) cos 90°
� 1200 W � 0
� 1200 W

where vR is the phase angle between VR and I, and vL is the phase angle
between VL and I.

Power factor: The power factor Fp of the circuit is cos 53.13° �
0.6 lagging, where 53.13° is the phase angle between E and I.

If we write the basic power equation P � EI cos v as follows:

cos v �

where E and I are the input quantities and P is the power delivered to
the network, and then perform the following substitutions from the
basic series ac circuit:

cos v � � � � �

we find (15.9)

Reference to Fig. 15.28 also indicates that v is the impedance angle
vT as written in Eq. (15.9), further supporting the fact that the imped-
ance angle vT is also the phase angle between the input voltage and cur-
rent for a series ac circuit. To determine the power factor, it is necessary

Fp � cos vT � �
Z
R

T
�

R
�
ZT

R
�
E/I

IR
�
E

I2R
�
EI

P
�
EI

P
�
EI

a c

FIG. 15.29

Phasor diagram for the series R-L circuit of
Fig. 15.26.
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+

j

Tθ = 53.13°

R = 6 �

Z
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only to form the ratio of the total resistance to the magnitude of the
input impedance. For the case at hand,

Fp � cos v � � � 0.6 lagging

as found above.

R-C

Refer to Fig. 15.30.

Phasor Notation

i � 7.07 sin(qt � 53.13°) ⇒ I � 5 A �53.13°

Note Fig. 15.31.

3 �
�
5 �

R
�
ZT

a c

FIG. 15.31

Applying phasor notation to the circuit of Fig. 15.30.

ZT

ZT � Z1 � Z2 � 6 � �0° � 8 � ��90° � 6 � � j8 �

and ZT � 10 � ��53.13°

Impedance diagram: As shown in Fig. 15.32.

E

E � IZT � (5 A �53.13°)(10 � ��53.13°) � 50 V �0°

VR and VC

VR � IZR � (I �v)(R �0°) � (5 A �53.13°)(6 � �0°)
� 30 V �53.13°

VC � IZC � (I �v)(XC ��90°) � (5 A �53.13°)(8 � ��90°)
� 40 V ��36.87°

Kirchhoff’s voltage law:

V � E � VR � VC � 0

or E � VR � VC

which can be verified by vector algebra as demonstrated for the R-L
circuit.

Phasor diagram: Note on the phasor diagram of Fig. 15.33 that the
current I is in phase with the voltage across the resistor and leads the
voltage across the capacitor by 90°.

�

FIG. 15.32

Impedance diagram for the series R-C circuit
of Fig. 15.30.

FIG. 15.33

Phasor diagram for the series R-C circuit 
of Fig. 15.30.

R  =  6 � XC  =  8 �

vC –+vR –+

i  =  7.07 sin(qt  +  53.13°)

FIG. 15.30

Series R-C ac circuit.
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a c

70.70 V

56.56 V

42.42 V
vR

e

vC

36.87°

90°

i
�0   t�

�2
�

2
3

�
2

�
2

–

Power: The total power in watts delivered to the circuit is

PT � EI cos vT � (50 V)(5 A) cos 53.13°
� (250)(0.6) � 150 W

or PT � I2R � (5 A)2(6 �) � (25)(6)
� 150 W

or, finally,

PT � PR � PC � VRI cos vR � VCI cos vC

� (30 V)(5 A) cos 0° � (40 V)(5 A) cos 90°
� 150 W � 0
� 150 W

Power factor: The power factor of the circuit is

Fp � cos v � cos 53.13° � 0.6 leading

Using Eq. (15.9), we obtain

Fp � cos v � �

� 0.6 leading

as determined above.

6 �
�
10 �

R
�
ZT

FIG. 15.34

Waveforms for the series R-C circuit of Fig. 15.30.

Time domain: In the time domain,

e � �2�(50) sin qt � 70.70 sin qt

vR � �2�(30) sin(qt � 53.13°) � 42.42 sin(qt � 53.13°)

vC � �2�(40) sin(qt � 36.87°) � 56.56 sin(qt � 36.87°)

A plot of all of the voltages and the current of the circuit appears
in Fig. 15.34. Note again that i and vR are in phase and that vC lags i
by 90°.



+

j

XL = 7 Ω

XL – XC = 4 Ω

XC = 3 Ω

R = 3 Ω

Z T
 =

 5
 Ω

θT  = 53.13°
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R-L-C

Refer to Fig. 15.35.

a c

R  =  3 � XC  =  3 �

VC –+VR –+

E  =  50 V ∠  0°

VL –+

XL  =  7 �

–

+

I

ZT

ZT � Z1 � Z2 � Z3� R �0° � XL �90° � XC ��90°
� 3 � � j 7 � � j 3 � � 3 � � j 4 �

and ZT � 5 � �53.13°

Impedance diagram: As shown in Fig. 15.37.

I

I � � � 10 A ��53.13°

VR, VL, and VC

VR � IZR � (I �v)(R �0°) � (10 A ��53.13°)(3 � �0°)
� 30 V ��53.13°

VL � IZL � (I �v)(XL �90°) � (10 A ��53.13°)(7 � �90°)
� 70 V �36.87°

VC � IZC � (I �v)(XC ��90°) � (10 A ��53.13°)(3 � ��90°)
� 30 V ��143.13°

Kirchhoff’s voltage law:

V � E � VR � VL � VC � 0�

50 V �0°
��
5 � �53.13°

E
�
ZT

FIG. 15.36

Applying phasor notation to the circuit of Fig. 15.35.

FIG. 15.37

Impedance diagram for the series R-L-C
circuit of Fig. 15.35.

R   =  3 � XC  =  3 �

vC –+vR –+

e =  70.7 sin qt

vL –+

XL  =  7 �

–

+

i

FIG. 15.35

Series R-L-C ac circuit.

Phasor Notation As shown in Fig. 15.36.
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53.13°
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j

+
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a c

FIG. 15.38

Phasor diagram for the series R-L-C circuit of
Fig. 15.35.

or E � VR � VL � VC

which can also be verified through vector algebra.
Phasor diagram: The phasor diagram of Fig. 15.38 indicates that

the current I is in phase with the voltage across the resistor, lags the
voltage across the inductor by 90°, and leads the voltage across the
capacitor by 90°.

Time domain:

i � �2�(10) sin(qt � 53.13°) � 14.14 sin(qt � 53.13°)

vR � �2�(30) sin(qt �53.13°) � 42.42 sin(qt � 53.13°)

vL � �2�(70) sin(qt � 36.87°) � 98.98 sin(qt � 36.87°)

vC � �2�(30) sin(qt � 143.13°) � 42.42 sin(qt � 143.13°)

A plot of all the voltages and the current of the circuit appears in Fig.
15.39.

FIG. 15.39

Waveforms for the series R-L circuit of Fig. 15.35.

98.98 V

70.70 V

42.42 V

vL

vC

53.13°
90°

�0

36.87°

e

vR

i

  t��3�
2
5�2�

2
3�

2
�
2

–

Power: The total power in watts delivered to the circuit is

PT � EI cos vT � (50 V)(10 A) cos 53.13° � (500)(0.6) � 300 W

or PT � I2R � (10 A)2(3 �) � (100)(3) � 300 W

or

PT � PR � PL � PC

� VRI cos vR � VLI cos vL � VC I cos vC

� (30 V)(10 A) cos 0° � (70 V)(10 A) cos 90° � (30 V)(10 A) cos 90°
� (30 V)(10 A) � 0 � 0 � 300 W

Power factor: The power factor of the circuit is

Fp � cos vT � cos 53.13° � 0.6 lagging

Using Eq. (15.9), we obtain

Fp � cos v � � � 0.6 lagging
3 �
�
5 �

R
�
ZT



a c

15.4 VOLTAGE DIVIDER RULE
The basic format for the voltage divider rule in ac circuits is exactly
the same as that for dc circuits:

(15.10)

where Vx is the voltage across one or more elements in series that have
total impedance Zx, E is the total voltage appearing across the series
circuit, and ZT is the total impedance of the series circuit.

EXAMPLE 15.9 Using the voltage divider rule, find the voltage across
each element of the circuit of Fig. 15.40.

Solution:

VC � � �

� � 80 V ��36.87°

VR � � �

� 60 V ��53.13°

EXAMPLE 15.10 Using the voltage divider rule, find the unknown
voltages VR, VL, VC, and V1 for the circuit of Fig. 15.41.

300 �0°
��
5 ��53.13°

(3 � �0°)(100 V �0°)
���

5 � ��53.13°

ZRE
�
ZC � ZR

400 ��90°
��
5 ��53.13°

400 ��90°
��

3 � j 4
(4 � ��90°)(100 V �0°)
���

4 � ��90° � 3 � �0°

ZCE
�
ZC � ZR

Vx � �
Z
Z

x

T

E
�
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R  =  6 � XC  =  17 �

VC –+VR –+

E  =  50 V ∠  30°
–

+

V1

XL  =  9 �

VL –+

Solution:

VR � �

� �

� � 30 V �83.13°

Calculator The above calculation provides an excellent opportunity
to demonstrate the power of today’s calculators. Using the notation of
the TI-86 calculator, the above calculation and the result are as follows:

300 �30°
��
10 ��53.13°

300 �30°
��

6 � j 8
300 �30°

��
6 � j 9 � j 17

(6 � �0°)(50 V �30°)
����
6 � �0° � 9 � �90° � 17 � ��90°

ZRE
��
ZR � ZL � ZC

FIG. 15.41

Example 15.10.

R  =  3 � XC  =  4 �

VC –+VR –+

E  =  100 V ∠  0°
–

+

FIG. 15.40

Example 15.9.
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CALC. 15.1

VL � � �

� 45 V �173.13°

VC � � �

� 85 V ��6.87°

V1 � �

�

� � 40 V ��6.87°

EXAMPLE 15.11 For the circuit of Fig. 15.42:

400 ��60°
��
10 ��53.13°

(8 ��90°)(50 �30°)
���

10 ��53.13°

(9 � �90° � 17 � ��90°)(50 V �30°)
�����

10 � ��53.13°

(ZL � ZC)E
��

ZT

850 V��60°
��

10 ��53°

(17 � ��90°)(50 V �30°)
���

10 � ��53.13°

ZCE
�
ZT

450 V�120°
��
10 ��53.13°

(9 � �90°)(50 V �30°)
���

10 � ��53.13°

ZLE
�
ZT

a c

R1  =  6 � L2  =  0.05 H

vC
–+–+

e  =  �2(20) sin 377t

–

+ vL
–+

L1  =  0.05 H

vR

R2  =  4 �

C2  =  200 mFC1  =  200 mF

i

FIG. 15.42

Example 15.11.

a. Calculate I, VR, VL, and VC in phasor form.
b. Calculate the total power factor.
c. Calculate the average power delivered to the circuit.
d. Draw the phasor diagram.
e. Obtain the phasor sum of VR, VL, and VC, and show that it equals the

input voltage E.
f. Find VR and VC using the voltage divider rule.

Solutions:

a. Combining common elements and finding the reactance of the
inductor and capacitor, we obtain

RT � 6 � � 4 � � 10 �

LT � 0.05 H � 0.05 H � 0.1 H

CT � � 100 mF
200 mF
�

2

(6�0)*(50�30)/((6�0)�(9�90)�(17��90))

(3.588E0,29.785E0)
Ans � Pol

(30.000E0�83.130E0)
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a c

XL � qL � (377 rad/s)(0.1 H) � 37.70 �

XC � � � � 26.53 �

Redrawing the circuit using phasor notation results in Fig. 15.43.

106 �
�
37,700

1
���
(377 rad/s)(100 � 10�6 F)

1
�
qC

FIG. 15.44

Phasor diagram for the circuit of Fig. 15.42.

FIG. 15.43

Applying phasor notation to the circuit of  Fig. 15.42.

R  =  10 � XC  =  26.53 �

VC –+VR –+

E  =  20 V ∠  0°
–

+

I

XL  =  37.70 �

VL –+

For the circuit of Fig. 15.43,

ZT � R �0° � XL �90° � XC ��90°
� 10 � � j 37.70 � � j 26.53 �
� 10 � � j 11.17 � � 15 � �48.16°

The current I is

I � � � 1.33 A ��48.16°

The voltage across the resistor, inductor, and capacitor can be found
using Ohm’s law:

VR � IZR � (I �v)(R �0°) � (1.33 A ��48.16°)(10 � �0°)
� 13.30 V ��48.16°

VL � IZL � (I �v)(XL �90°) � (1.33 A ��48.16°)(37.70 � �90°)
� 50.14 V �41.84°

VC � IZC � (I �v)(XC ��90°) � (1.33A ��48.16°)(26.53 ���90°)
� 35.28 V ��138.16°

b. The total power factor, determined by the angle between the applied
voltage E and the resulting current I, is 48.16°:

Fp � cos v � cos 48.16° � 0.667 lagging

or Fp � cos v � � � 0.667 lagging

c. The total power in watts delivered to the circuit is

PT � EI cos v � (20 V)(1.33 A)(0.667) � 17.74 W

d. The phasor diagram appears in Fig. 15.44.
e. The phasor sum of VR, VL, and VC is

E � VR � VL � VC

� 13.30 V ��48.16° � 50.14 V �41.84° � 35.28 V ��138.16°
E � 13.30 V ��48.16° � 14.86 V �41.84°

10 �
�
15 �

R
�
ZT

20 V �0°
��
15 � �48.16°

E
�
ZT
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Therefore,

E � �(1�3�.3�0� V�)2� �� (�1�4�.8�6� V�)2� � 20 V

and vE � 0° (from phasor diagram)

and E � 20 �0°

f. VR � � �

� 13.3 V ��48.16°

VC � � �

� 35.37 V ��138.16°

15.5 FREQUENCY RESPONSE OF THE
R-C CIRCUIT

Thus far, the analysis of series circuits has been limited to a particular
frequency. We will now examine the effect of frequency on the response
of an R-C series configuration such as that in Fig. 15.45. The magnitude
of the source is fixed at 10 V, but the frequency range of analysis will
extend from zero to 20 kHz.

530.6 V��90°
��

15 �48.16°
(26.5 � ��90°)(20 V �0°)
���

15 � �48.16°
ZCE
�
ZT

200 V�0°
��
15 �48.16°

(10 � �0°)(20 V �0°)
���

15 � �48.16°
ZRE
�
ZT

a c

5 k�

ZTE  =  10 V ∠  0°
–

+

R

C 0.01 mF

–

+

VC

f : 0 to 20 kHz

FIG. 15.45

Determining the frequency response of a series R-C circuit.

ZT Let us first determine how the impedance of the circuit ZT will
vary with frequency for the specified frequency range of interest.
Before getting into specifics, however, let us first develop a sense for
what we should expect by noting the impedance-versus-frequency
curve of each element, as drawn in Fig. 15.46.

At low frequencies the reactance of the capacitor will be quite high
and considerably more than the level of the resistance R, suggesting that
the total impedance will be primarily capacitive in nature. At high fre-
quencies the reactance XC will drop below the R � 5-k� level, and the
network will start to shift toward one of a purely resistive nature (at
5 k�). The frequency at which XC � R can be determined in the fol-
lowing manner:

XC � � R

and
XC � R

(15.11)f1 � �
2p

1
RC
�

1
�
2pf1C
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which for the network of interest is

f1 � � 3183.1 Hz

For frequencies less than f1, XC > R, and for frequencies greater than f1,
R > XC, as shown in Fig. 15.46.

Now for the details. The total impedance is determined by the fol-
lowing equation:

ZT � R � j XC

and (15.12)

The magnitude and angle of the total impedance can now be found
at any frequency of interest by simply substituting into Eq. (15.12). The
presence of the capacitor suggests that we start from a low frequency
(100 Hz) and then open the spacing until we reach the upper limit of
interest (20 kHz).

f � 100 Hz

XC � � � 159.16 k�

and ZT � �R�2��� X�2
C� � �(5� k���)2� �� (�1�5�9�.1�6� k���)2� � 159.24 k�

with vT � �tan�1 � �tan�1 � �tan�1 31.83

� �88.2°

and ZT � 159.24 k� ��88.2°

which compares very closely with ZC � 159.16 k� ��90° if the cir-
cuit were purely capacitive (R � 0 �). Our assumption that the circuit
is primarily capacitive at low frequencies is therefore confirmed.

159.16 k�
��

5 k�

XC�
R

1
���
2p(100 Hz)(0.01 mF)

1
�
2pfC

ZT � ZT �vT � �R�2��� X�2
C� ��tan�1 �

X
R

C�

1
���
2p(5 k�)(0.01 mF)

a c

0

R = 5 k�

ZT XC = 1
2   fC

f

5 k�

R

XC

5 k�

R < XC     R > XC

0 f

�

 f1

FIG. 15.46

The frequency response of the individual elements of a series R-C circuit.
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f � 1 kHz

XC � � � 15.92 k�

and ZT � �R�2��� X�2
C� � �(5� k���)2� �� (�1�5�.9�2� k���)2� � 16.69 k�

with vT � �tan�1 � �tan�1

� �tan�1 3.18 � �72.54°

and ZT � 16.69 k� ��72.54°

A noticeable drop in the magnitude has occurred, and the impedance
angle has dropped almost 17° from the purely capacitive level.

Continuing:

f � 5 kHz: ZT � 5.93 k� ��32.48°

f � 10 kHz: ZT � 5.25 k� ��17.66°

f � 15 kHz: ZT � 5.11 k� ��11.98°

f � 20 kHz: ZT � 5.06 k� ��9.04°

Note how close the magnitude of ZT at f � 20 kHz is to the resistance
level of 5 k�. In addition, note how the phase angle is approaching that
associated with a pure resistive network (0°).

A plot of ZT versus frequency in Fig. 15.47 completely supports our
assumption based on the curves of Fig. 15.46. The plot of vT versus fre-
quency in Fig. 15.48 further suggests the fact that the total impedance
made a transition from one of a capacitive nature (vT � �90°) to one
with resistive characteristics (vT � 0°).

15.92 k�
��

5 k�

XC�
R

1
���
2p(1 kHz)(0.01 mF)

1
�
2pfC

a c

50 101 15 20 f (kHz)

Circuit resistive

Circuit capacitive

5

10

15

20
ZT (k�)

R  =  5 k�

ZT ( f )

FIG. 15.47

The magnitude of the input impedance versus frequency for the circuit of 
Fig. 15.45.
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Applying the voltage divider rule to determine the voltage across the
capacitor in phasor form yields

VC �

� �

�

or VC �VC �vC � /�90° � tan�1(XC/R)

The magnitude of VC is therefore determined by

VC � (15.13)

and the phase angle vC by which VC leads E is given by

(15.14)

To determine the frequency response, XC must be calculated for each
frequency of interest and inserted into Eqs. (15.13) and (15.14).

To begin our analysis, it makes good sense to consider the case of 
f � 0 Hz (dc conditions).

vC � �90° � tan�1 �
X
R

C
� � �tan�1 �

X
R

C
�

XCE
��
�R�2��� X�2

C�

XC E
��
�R�2��� X�2

C�

XC E ��90°
���
�R�2��� X�2

C� /�tan�1 XC/R

XC E ��90°
��

R � j XC

(XC ��90°)(E �0°)
���

R � j XC

ZCE
�
ZR � ZC

a c

5

0°

101 15 20 f (kHz)

Circuit capacitive

–45°

–30°

–60°

–90°

Circuit resistive

  Tθ

  T ( f )θ

FIG. 15.48

The phase angle of the input impedance versus frequency for the circuit of 
Fig. 15.45.
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f � 0 Hz

XC � � ⇒ very large value

Applying the open-circuit equivalent for the capacitor based on the
above calculation will result in the following:

VC � E � 10 V �0°

If we apply Eq. (15.13), we find

X2
C >> R2

and �R�2��� X�2
C� � �X�2

C� � XC

and VC � � � E

with vC � �tan�1 � �tan�1 0 � 0°

verifying the above conclusions.

f � 1 kHz Applying Eq. (15.13):

XC � � � 15.92 k�

�R�2��� X�2
C� � �(5� k���)2� �� (�1�5�.9�2� k���)2� � 16.69 k�

and VC � � � 9.54 V

Applying Eq. (15.14):

vC � �tan�1 � �tan�1

� �tan�1 0.314 � �17.46°

and VC � 9.53 V ��17.46°

As expected, the high reactance of the capacitor at low frequencies has
resulted in the major part of the applied voltage appearing across the
capacitor.

If we plot the phasor diagrams for f � 0 Hz and f � 1 kHz, as shown
in Fig. 15.49, we find that VC is beginning a clockwise rotation with an
increase in frequency that will increase the angle vC and decrease the
phase angle between I and E. Recall that for a purely capacitive net-

5 k�
�
15.9 k�

R
�
XC

(15.92 k�)(10)
��

16.69 k�

XCE
��
�R�2��� X�2

C�

1
����
(2p)(1 � 103 Hz)(0.01 � 10�6 F)

1
�
2pfC

R
�
XC

XCE
�
XC

XCE
��
�R�2��� X�2

C�

1
�
0

1
�
2p(0)C

a c

I  =  0 A

f  =  0 Hz

E
VC

E

I

VR

f  =  1 kHz

–17.46°

VC

  Cθ

  Iθ

  C  =  0°θ
  I  =  90°θ

FIG. 15.49

The phasor diagram for the circuit of Fig. 15.45 for f � 0 Hz and 1 kHz.
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work, I leads E by 90°. As the frequency increases, therefore, the
capacitive reactance is decreasing, and eventually R >> XC with vC �
�90°, and the angle between I and E will approach 0°. Keep in mind
as we proceed through the other frequencies that vC is the phase angle
between VC and E and that the magnitude of the angle by which I leads
E is determined by

(15.15)

f � 5 kHz Applying Eq. (15.13):

XC � � � 3.18 k�

Note the dramatic drop in XC from 1 kHz to 5 kHz. In fact, XC is now
less than the resistance R of the network, and the phase angle deter-
mined by tan�1(XC /R) must be less than 45°. Here,

VC � � � 5.37 V

with vC � �tan�1 � �tan�1

� �tan�1 1.56 � �57.38°

f � 10 kHz

XC � 1.59 k� VC � 3.03 V vC � �72.34°

f � 15 kHz

XC � 1.06 k� VC � 2.07 V vC � �78.02°

f � 20 kHz

XC � 795.78 � VC � 1.57 V vC � �80.96°

The phasor diagrams for f � 5 kHz and f � 20 kHz appear in Fig.
15.50 to show the continuing rotation of the VC vector.

5 k�
�
3.2 k�

R
�
XC

(3.18 k�)(10 V)
���
�(5� k���)2� �� (�3�.1�8� k���)2�

XCE
��
�R�2��� X�2

C�

1
����
(2p)(5 � 103 Hz)(0.01 � 10�6 F)

1
�
2pfC

 vI � 90° �  vC

a c

I

IVR

f  =  20 kHz

VR

E

VC

f  =  5 kHz

E

VC

  C  =  –80.96°θ  C  =  –57.38°θ

FIG. 15.50

The phasor diagram for the circuit of Fig. 15.45 for f � 5 kHz and 20 kHz.

Note also from Figs. 15.49 and 15.50 that the vector VR and the cur-
rent I have grown in magnitude with the reduction in the capacitive
reactance. Eventually, at very high frequencies XC will approach zero
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a c

VC  ≅   0 V E
VR

vI  ≅   0°
vC  ≅   –90°

f  =  very high frequencies

FIG. 15.51

The phasor diagram for the circuit of Fig.
15.45 at very high frequencies.

50 101 15 20 f (kHz)

Network resistive

Network capacitive

4

9

10

VC

VC ( f )

8

7

6

5

3

2

1

ohms and the short-circuit equivalent can be applied, resulting in VC �
0 V and vC � �90°, and producing the phasor diagram of Fig. 15.51.
The network is then resistive, the phase angle between I and E is essen-
tially zero degrees, and VR and I are their maximum values.

A plot of VC versus frequency appears in Fig. 15.52. At low fre-
quencies XC >> R, and VC is very close to E in magnitude. As the

FIG. 15.52

The magnitude of the voltage VC versus frequency for the circuit of Fig. 15.45.

FIG. 15.53

The phase angle between E and VC versus frequency for the circuit of 
Fig. 15.45.

50 10 15 20 f (kHz)

Network capacitive–30°

–60°

–90°

Network resistive

1

  C ( f )θ

  C (phase angle between E and VC)θ

applied frequency increases, XC decreases in magnitude along with VC

as VR captures more of the applied voltage. A plot of vC versus fre-
quency is provided in Fig. 15.53. At low frequencies the phase angle
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between VC and E is very small since VC � E. Recall that if two pha-
sors are equal, they must have the same angle. As the applied frequency
increases, the network becomes more resistive and the phase angle
between VC and E approaches 90°. Keep in mind that, at high frequen-
cies, I and E are approaching an in-phase situation and the angle
between VC and E will approach that between VC and I, which we
know must be 90° (IC leading VC).

A plot of VR versus frequency would approach E volts from zero
volts with an increase in frequency, but remember VR � E � VC due to
the vector relationship. The phase angle between I and E could be plot-
ted directly from Fig. 15.53 using Eq. (15.15).

In Chapter 23, the analysis of this section will be extended to a much
wider frequency range using a log axis for frequency. It will be demon-
strated that an R-C circuit such as that in Fig. 15.45 can be used as a fil-
ter to determine which frequencies will have the greatest impact on the
stage to follow. From our current analysis, it is obvious that any net-
work connected across the capacitor will receive the greatest potential
level at low frequencies and be effectively “shorted out” at very high
frequencies.

The analysis of a series R-L circuit would proceed in much the same
manner, except that XL and VL would increase with frequency and the
angle between I and E would approach 90° (voltage leading the cur-
rent) rather than 0°. If VL were plotted versus frequency, VL would
approach E, and XL would eventually attain a level at which the open-
circuit equivalent would be appropriate.

15.6 SUMMARY: SERIES ac CIRCUITS

The following is a review of important conclusions that can be derived
from the discussion and examples of the previous sections. The list is
not all-inclusive, but it does emphasize some of the conclusions that
should be carried forward in the future analysis of ac systems.

For series ac circuits with reactive elements:
1. The total impedance will be frequency dependent.
2. The impedance of any one element can be greater than the total

impedance of the network.
3. The inductive and capacitive reactances are always in direct

opposition on an impedance diagram.
4. Depending on the frequency applied, the same circuit can be

either predominantly inductive or predominantly capacitive.
5. At lower frequencies the capacitive elements will usually have the

most impact on the total impedance, while at high frequencies the
inductive elements will usually have the most impact.

6. The magnitude of the voltage across any one element can be
greater than the applied voltage.

7. The magnitude of the voltage across an element compared to the
other elements of the circuit is directly related to the magnitude
of its impedance; that is, the larger the impedance of an
element, the larger the magnitude of the voltage across the
element.

8. The voltages across a coil or capacitor are always in direct
opposition on a phasor diagram.

9. The current is always in phase with the voltage across the
resistive elements, lags the voltage across all the inductive

a c
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elements by 90°, and leads the voltage across all the capacitive
elements by 90°.

10. The larger the resistive element of a circuit compared to the net
reactive impedance, the closer the power factor is to unity.

PARALLEL ac CIRCUITS

15.7 ADMITTANCE AND SUSCEPTANCE

The discussion for parallel ac circuits will be very similar to that for
dc circuits. In dc circuits, conductance (G) was defined as being equal
to 1/R. The total conductance of a parallel circuit was then found by
adding the conductance of each branch. The total resistance RT is sim-
ply 1/GT.

In ac circuits, we define admittance (Y) as being equal to 1/Z. The
unit of measure for admittance as defined by the SI system is siemens,
which has the symbol S. Admittance is a measure of how well an ac cir-
cuit will admit, or allow, current to flow in the circuit. The larger its
value, therefore, the heavier the current flow for the same applied
potential. The total admittance of a circuit can also be found by finding
the sum of the parallel admittances. The total impedance ZT of the cir-
cuit is then 1/YT; that is, for the network of Fig. 15.54:

(15.16)YT � Y1 � Y2 � Y3 � ⋅ ⋅ ⋅ � YN

a c

Y1  =
1
Z1

Y2  =
1
Z2

Y3  =
1
Z3

YN  =
1
ZN

YT

ZT

FIG. 15.54

Parallel ac network.

or, since Z � 1/Y,

(15.17)

For two impedances in parallel,

� �

If the manipulations used in Chapter 6 to find the total resistance of two
parallel resistors are now applied, the following similar equation will
result:

(15.18)ZT � �
Z1

Z
�
1Z2

Z2
�

1
�
Z2

1
�
Z1

1
�
ZT

�
Z
1

T
� � �

Z
1

1
� � �

Z
1

2
� � �

Z
1

3
� � ⋅ ⋅ ⋅ � �

Z
1

N
�
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For three parallel impedances,

ZT � (15.19)

As pointed out in the introduction to this section, conductance is the
reciprocal of resistance, and

(15.20)

The reciprocal of reactance (1/X) is called susceptance and is a mea-
sure of how susceptible an element is to the passage of current through
it. Susceptance is also measured in siemens and is represented by the
capital letter B.

For the inductor,

(15.21)

Defining (siemens, S) (15.22)

we have (15.23)

Note that for inductance, an increase in frequency or inductance will
result in a decrease in susceptance or, correspondingly, in admittance.

For the capacitor,

(15.24)

Defining (siemens, S) (15.25)

we have (15.26)

For the capacitor, therefore, an increase in frequency or capacitance
will result in an increase in its susceptibility.

For parallel ac circuits, the admittance diagram is used with the
three admittances, represented as shown in Fig. 15.55.

Note in Fig. 15.55 that the conductance (like resistance) is on the
positive real axis, whereas inductive and capacitive susceptances are in
direct opposition on the imaginary axis.

For any configuration (series, parallel, series-parallel, etc.), the angle
associated with the total admittance is the angle by which the source
current leads the applied voltage. For inductive networks, vT is
negative, whereas for capacitive networks, vT is positive.

YC � BC �90°

BC � �
X
1

C
�

YC � �
Z
1

C
� � �

XC �

1
�90°
� � �

X
1

C
� �90°

YL � BL ��90°

BL � �
X
1

L
�

YL � �
Z
1

L
� � �

XL �

1
90°
� � �

X
1

L
� ��90°

YR � �
Z
1

R
� � �

R �

1
0°

� � G �0°

Z1Z2Z3���
Z1Z2 � Z2Z3 � Z1Z3

a c

 j

BC ∠ 90°

BL ∠ –90°

G ∠ 0°
+

FIG. 15.55

Admittance diagram.



XC 20 �
YT

ZT
R 5 � XL 8 �

XL 10 �

YT

ZT
R 20 �
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EXAMPLE 15.12 For the network of Fig. 15.56:
a. Find the admittance of each parallel branch.
b. Determine the input admittance.
c. Calculate the input impedance.
d. Draw the admittance diagram.

Solutions:

a. YR � G �0° � �0° � �0°

� 0.05 S �0° � 0.05 S � j 0

YL � BL ��90° � ��90° � ��90°

� 0.1 S ��90° � 0 � j 0.1 S

b. YT � YR � YL � (0.05 S � j 0) � (0 � j 0.1 S)

� 0.05 S � j 0.1 S � G � j BL

c. ZT � � �

� 8.93 � �63.43°

or Eq. (15.17):

ZT � �

� � 8.93 � �63.43°

d. The admittance diagram appears in Fig. 15.57.

200 � �90°
��
22.36 �26.57°

(20 � �0°)(10 � �90°)
���

20 � � j 10 �
ZRZL�

ZR � ZL

1
��
0.112 S ��63.43°

1
��
0.05 S � j 0.1 S

1
�
YT

1
�
10 �

1
�
XL

1
�
20 �

1
�
R

a c

FIG. 15.56

Example 15.12.

 j

YT

+

YL  =  0.1 S ∠  – 90°

0.112 S

–63.43°

YR  =  0.05 S ∠ 0°

FIG. 15.57

Admittance diagram for the network of 
Fig. 15.56.

FIG. 15.58

Example 15.13.

EXAMPLE 15.13 Repeat Example 15.12 for the parallel network of
Fig. 15.58.

Solutions:

a. YR � G �0° � �0° � �0°

� 0.2 S �0° � 0.2 S � j 0

1
�
5 �

1
�
R
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YL � BL ��90° � ��90° � ��90°

� 0.125 S ��90° � 0 � j 0.125 S

YC � BC �90° � �90° � �90°

� 0.050 S ��90° � 0 � j 0.050 S
b. YT � YR � YL � YC

� (0.2 S � j 0) � (0 � j 0.125 S) � (0 � j 0.050 S)

� 0.2 S � j 0.075 S � 0.2136 S ��20.56°

c. ZT � � 4.68 � �20.56°

or

ZT �

�

� (5 � �0°)(20 � ��90°)

�

� �

�

� 4.68 � �20.56°

d. The admittance diagram appears in Fig. 15.59.

On many occasions, the inverse relationship YT � 1/ZT or ZT �
1/YT will require that we divide the number 1 by a complex number
having a real and an imaginary part. This division, if not performed in
the polar form, requires that we multiply the numerator and denomina-
tor by the conjugate of the denominator, as follows:

YT � � � � � � � �

and YT � S � j S

To avoid this laborious task each time we want to find the reciprocal
of a complex number in rectangular form, a format can be developed
using the following complex number, which is symbolic of any imped-
ance or admittance in the first or fourth quadrant:

� � � � � �

or (15.27)

Note that the denominator is simply the sum of the squares of each
term. The sign is inverted between the real and imaginary parts. A few
examples will develop some familiarity with the use of this equation.

�
a1 �

1
j b1
� � �

a2
1

a
�

1

b2
1

� � j �
a2

1

b
�

1

b2
1

�

a1 � j b1
�
a2

1 � b2
1

a1 � j b1
�
a1 � j b1

1
�
a1 � j b1

1
�
a1 � j b1

6
�
52

4
�
52

4 � j 6
�
42 � 62

(4 � � j 6 �)
��
(4 � � j 6 �)

1
��
4 � � j 6 �

1
��
4 � � j 6 �

1
�
ZT

800 �
��
170.88 ��20.56°

800 �
��
160 � j 60

800 �
��
160 � j 40 � j 100

800 � �0°
����
40 �90° � 160 �0° � 100 ��90°

(5 � �0°)(8 � �90°)(20 � ��90°)
������
(5 � �0°)(8 � �90°) � (8 � �90°)(20 � ��90°)

ZRZLZC
���
ZRZL � ZLZC � ZRZC

1
���
0.2136 S ��20.56°

1
�
20 �

1
�
XC

1
�
8 �

1
�
XL

a c

20.56°

YR

YC

YL  –  YC

YT

0.2136 S

+

YL

 j

FIG. 15.59

Admittance diagram for the network of 
Fig. 15.58.



R 6 �

XC 8 �

Y

(a)

R 10 �

XC 0.1 �

Y

(b)

XL 4 �
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a c

I

Z2E
ZT,

 
YT

Z1

I1 I2

EXAMPLE 15.14 Find the admittance of each set of series elements
in Fig. 15.60.

FIG. 15.60

Example 15.14.

FIG. 15.61

Parallel ac network.

Solutions:

a. Z � R � j XC � 6 � �j 8 �

Eq. (15.27):

Y � � � j

� S � j S

b. Z � 10 � � j 4 � � (�j 0.1 �) � 10 � � j 3.9 �

Eq. (15.27):

Y � � � � j

� � j � 0.087 S � j 0.034 S

15.8 PARALLEL ac NETWORKS

For the representative parallel ac network of Fig. 15.61, the total imped-
ance or admittance is determined as described in the previous section,
and the source current is determined by Ohm’s law as follows:

(15.28)

Since the voltage is the same across parallel elements, the current
through each branch can then be found through another application of
Ohm’s law:

(15.29a)

(15.29b)I2 � �
Z
E

2
� � EY2

I1 � �
Z
E

1
� � EY1

I � �
Z
E

T
� � EYT

3.9
�
115.21

10
�
115.21

3.9
��
(10)2 � (3.9)2

10
��
(10)2 � (3.9)2

1
��
10 � � j 3.9 �

1
�
Z

8
�
100

6
�
100

8
��
(6)2 � (8)2

6
��
(6)2 � (8)2

1
��
6 � � j 8 �
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Kirchhoff’s current law can then be applied in the same manner as
employed for dc networks. However, keep in mind that we are now
dealing with the algebraic manipulation of quantities that have both
magnitude and direction.

I � I1 � I2 � 0

or (15.30)

The power to the network can be determined by

(15.31)

where vT is the phase angle between E and I.
Let us now look at a few examples carried out in great detail for the

first exposure.

R-L

Refer to Fig. 15.62.

P � EI cos vT

I � I1 � I2

a c

YT and ZT

YT � YR � YL

� G �0° � BL ��90° � �0° � ��90°

� 0.3 S �0° � 0.4 S ��90° � 0.3 S � j 0.4 S

� 0.5 S ��53.13°

ZT � � � 2 � �53.13°
1

��
0.5 S ��53.13°

1
�
YT

1
�
2.5 �

1
�
3.33 �

R 3.33 �

a

iLiR

2.5 �XL

i

e  =  �2(20) sin(qt  +  53.13°)

+

–

FIG. 15.62

Parallel R-L network.

R 3.33 �

a

ILIR

2.5 �XL

I  =  10 A ∠  0°

E  =  20 V ∠  53.13°

+

–

YT

ZT

FIG. 15.63

Applying phasor notation to the network of Fig. 15.62.

Phasor Notation As shown in Fig. 15.63.



PARALLEL ac NETWORKS  661

Admittance diagram: As shown in Fig. 15.64.

a c

53.13° +

j

YT  =  0.5 S ∠ –53.13°

G ∠ 0°  =  0.3 S ∠  0°

BL ∠  –90°  =  0.4 S ∠  –90°

I

I � � EYT � (20 V �53.13°)(0.5 S ��53.13°) � 10 A �0°

IR and IL

IR � � (E �v)(G �0°)

� (20 V �53.13°)(0.3 S �0°) � 6 A �53.13°

IL � � (E �v)(BL ��90°)

� (20 V �53.13°)(0.4 S ��90°)

� 8 A ��36.87°

Kirchhoff’s current law: At node a,

I � IR � IL � 0

or

I � IR � IL

10 A �0° � 6 A �53.13° � 8 A ��36.87°

10 A �0° � (3.60 A � j 4.80 A) � (6.40 A � j 4.80 A) � 10 A � j 0

and 10 A �0° � 10 A �0° (checks)

Phasor diagram: The phasor diagram of Fig. 15.65 indicates that
the applied voltage E is in phase with the current IR and leads the cur-
rent IL by 90°.

Power: The total power in watts delivered to the circuit is

PT � EI cos vT

� (20 V)(10 A) cos 53.13° � (200 W)(0.6)
� 120 W

or PT � I 2R � � V2
RG � (20 V)2(0.3 S) � 120 W

V2
R

�
R

E �v
�
XL �90°

E �v
�
R �0°

E
�
ZT

FIG. 15.64

Admittance diagram for the parallel R-L network of Fig. 15.62.

36.87° +

j

I

53.13°

IL

IR

E

FIG. 15.65

Phasor diagram for the parallel R-L network
of Fig. 15.62.



662  SERIES AND PARALLEL ac CIRCUITS

or, finally,

PT � PR � PL � EIR cos vR � EIL cos vL

� (20 V)(6 A) cos 0° � (20 V)(8 A) cos 90° � 120 W � 0
� 120 W

Power factor: The power factor of the circuit is

Fp � cos vT � cos 53.13° � 0.6 lagging

or, through an analysis similar to that employed for a series ac circuit,

cos vT � � � � �

and (15.32)

where G and YT are the magnitudes of the total conductance and admit-
tance of the parallel network. For this case,

Fp � cos vT � � 0.6 lagging

Impedance approach: The current I can also be found by first find-
ing the total impedance of the network:

ZT � �

� � 2 � �53.13°

And then, using Ohm’s law, we obtain

I � � � 10 A �0°

R-C

Refer to Fig. 15.66.

20 V �53.13°
��
2 � �53.13°

E
�
ZT

8.325 �90°
��
4.164 �36.87°

(3.33 � �0°)(2.5 � �90°)
���
3.33 � �0° � 2.5 � �90°

ZRZL
�
ZR � ZL

0.3 S
�
0.5 S

Fp � cos vT � �
Y
G

T
�

G
�
YT

G
�
I/V

EG
�

I
E2/R
�

EI
P
�
EI

a c

R 1.67 �

a

iCiR

1.25 �XCi  =  14.14 sin qt

+

–

e

FIG. 15.66

Parallel R-C network.

Phasor Notation As shown in Fig. 15.67.

YT and ZT

YT � YR � YC � G �0° � BC �90° � �0° � �90°

� 0.6 S �0° � 0.8 S �90° � 0.6 S � j 0.8 S � 1.0 S �53.13°

ZT � � � 1 � ��53.13°
1

��
1.0 S �53.13°

1
�
YT

1
�
1.25 �

1
�
1.67 �
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a c

IC

I

36.87°

53.13°

j

+

IR

E

Admittance diagram: As shown in Fig. 15.68.

E

E � IZT � � � 10 V ��53.13°

IR and IC

IR � (E �v)(G �0°)
� (10 V ��53.13°)(0.6 S �0°) � 6 A ��53.13°

IC � (E �v)(BC �90°)
� (10 V ��53.13°)(0.8 S �90°) � 8 A �36.87°

Kirchhoff’s current law: At node a,

I � IR � IC � 0

or I � IR � IC

which can also be verified (as for the R-L network) through vector
algebra.

Phasor diagram: The phasor diagram of Fig. 15.69 indicates that
E is in phase with the current through the resistor IR and lags the capac-
itive current IC by 90°.

Time domain:

e � �2�(10) sin(qt � 53.13°) � 14.14 sin(qt � 53.13°)

iR � �2�(6) sin(qt � 53.13°) � 8.48 sin(qt � 53.13°)

iC � �2�(8) sin(qt � 36.87°) � 11.31 sin(qt � 36.87°)

10 A �0°
��
1 S �53.13°

I
�
YT

R 1.67 �

a

ICIR

1.25 �XC
I  =  10 A ∠  0°

+

–

E

FIG. 15.67

Applying phasor notation to the network of Fig. 15.66.

53.13°

+

j

G ∠ 0°  =  0.6 S ∠  0°

BC ∠  90°  =  0.8 S ∠  90°
YT  =  1 S ∠  53.13°

FIG. 15.68

Admittance diagram for the parallel R-C network of Fig. 15.66.

FIG. 15.69

Phasor diagram for the parallel R-C network 
of Fig. 15.66.
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a c

A plot of all of the currents and the voltage appears in Fig. 15.70.
Note that e and iR are in phase and e lags iC by 90°.

Power:

PT � EI cos v � (10 V)(10 A) cos 53.13° � (10)2(0.6)
� 60 W

or PT � E2G � (10 V)2(0.6 S) � 60 W

or, finally,

PT � PR � PC � EIR cos vR � EIC cos vC

� (10 V)(6 A) cos 0° � (10 V)(8 A) cos 90°
� 60 W

Power factor: The power factor of the circuit is

Fp � cos 53.13° � 0.6 leading

Using Eq. (15.32), we have

Fp � cos vT � � � 0.6 leading

Impedance approach: The voltage E can also be found by first
finding the total impedance of the circuit:

ZT � �

� � 1 � ��53.19°

and then, using Ohm’s law, we find

E � IZT � (10 A �0°)(1 � ��53.19°) � 10 V ��53.19°

R-L-C

Refer to Fig. 15.71.

2.09 ��90°
��
2.09 ��36.81°

(1.67 � �0°)(1.25 � ��90°)
����
1.67 � �0° � 1.25 � ��90°

ZRZC
�
ZR � ZC

0.6 S
�
1.0 S

G
�
YT

90°

36.87°

iR

�0

e

�
2

– �
2 �

2
3

iC

i
14.14 A

11.31 A

8.48 A

  t�  �2

FIG. 15.70

Waveforms for the parallel R-C network of Fig. 15.66.
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a c

Phasor notation: As shown in Fig. 15.72.

YT and ZT

YT � YR � YL � YC � G �0° � BL ��90° � BC �90°

� �0° � ��90° � �90°

� 0.3 S �0° � 0.7 S ��90° � 0.3 S �90°
� 0.3 S � j 0.7 S � j 0.3 S
� 0.3 S � j 0.4 S � 0.5 S ��53.13°

ZT � � � 2 � �53.13°

Admittance diagram: As shown in Fig. 15.73.

I

I � � EYT � (100 V �53.13°)(0.5 S ��53.13°) � 50 A �0°

IR, IL , and IC

IR � (E �v)(G �0°)
� (100 V �53.13°)(0.3 S �0°) � 30 A �53.13°

IL � (E �v)(BL ��90°)
� (100 V �53.13°)(0.7 S ��90°) � 70 A ��36.87°

IC � (E �v)(BC �90°)
� (100 V �53.13°)(0.3 S ��90°) � 30 A �143.13°

Kirchhoff’s current law: At node a,

I � IR � IL � IC � 0

E
�
ZT

1
��
0.5 S ��53.13°

1
�
YT

1
�
3.33 �

1
�
1.43 �

1
�
3.33 �

R 3.33 �

a

iLiR

1.43 �XL

i  =  70.7 sin qt

e  =  �2(100) sin(qt  +  53.13°)

+

–

iC

3.33 �XC

FIG. 15.71

Parallel R-L-C ac network.

R 3.33 �

a

ILIR

1.43 �XL

I  =  50 A ∠  0°

E  =  100 V ∠  53.13°

+

–

IC

3.33 �XC

FIG. 15.72

Applying phasor notation to the network of Fig. 15.71.

53.13°

BC
 ∠  90°  =  0.3 S ∠  90°

+

 j

G ∠  0°  =  0.3 S ∠  0°

BL
 ∠  –90°  =  0.7 S ∠  –90°

YT  =  0.5 S ∠  –53.13°

BL  –  BC

FIG. 15.73

Admittance diagram for the parallel R-L-C
network of Fig. 15.71.
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90°

36.87°

iL

0

e

�
2

– �
2

i

53.13°

90°

iR

�–

iC

  t�2��
�

2
3

FIG. 15.75

Waveforms for the parallel R-L-C network of Fig. 15.71.

or I � IR � IL � IC

Phasor diagram: The phasor diagram of Fig. 15.74 indicates that
the impressed voltage E is in phase with the current IR through the
resistor, leads the current IL through the inductor by 90°, and lags the
current IC of the capacitor by 90°.

Time domain:

i � �2�(50) sin qt � 70.70 sin qt

iR � �2�(30) sin(qt � 53.13°) � 42.42 sin(qt � 53.13°)

iL � �2�(70) sin(qt � 36.87°) � 98.98 sin(qt � 36.87°)

iC � �2�(30) sin(qt � 143.13°) � 42.42 sin(qt � 143.13°)

A plot of all of the currents and the impressed voltage appears in
Fig. 15.75.

36.87°

53.13°

j

+

IC

I

IR

E

IL  –  IC

IL

FIG. 15.74

Phasor diagram for the parallel R-L-C
network of Fig. 15.71.

Power: The total power in watts delivered to the circuit is

PT � EI cos v � (100 V)(50 A) cos 53.13° � (5000)(0.6)
� 3000 W

or PT � E2G � (100 V)2(0.3 S) � 3000 W

or, finally,

PT � PR � PL � PC

� EIR cos vR � EIL cos vL � ELC cos vC

� (100 V)(30 A) cos 0° � (100 V)(70 A) cos 90°
� (100 V)(30 A) cos 90°

� 3000 W � 0 � 0
� 3000 W

Power factor: The power factor of the circuit is

Fp � cos vT � cos 53.13° � 0.6 lagging
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IT  =  5 A  30°

R

1 �

XL

8 �

XC

2 �

XL 4 ��

I  =  20 A        0°
IL

R 3 

IR

Using Eq. (15.32), we obtain

Fp � cos vT � � � 0.6 lagging

Impedance approach: The input current I can also be determined
by first finding the total impedance in the following manner:

ZT � � 2 � �53.13°

and, applying Ohm’s law, we obtain

I � �
Z
E

T
� � � 50 A �0°

15.9 CURRENT DIVIDER RULE

The basic format for the current divider rule in ac circuits is exactly
the same as that for dc circuits; that is, for two parallel branches with
impedances Z1 and Z2 as shown in Fig. 15.76,

(15.33)

EXAMPLE 15.15 Using the current divider rule, find the current
through each impedance of Fig. 15.77.

Solution:

IR � � �

� 16 A �36.87°

IL � � �

� 12 A ��53.13°

EXAMPLE 15.16 Using the current divider rule, find the current
through each parallel branch of Fig. 15.78.

60 A�0°
��
5 �53.13°

(3 � �0°)(20 A �0°)
���

5 � �53.13°
ZRIT
�
ZR � ZL

80 A�90°
��
5 �53.13°

(4 � �90°)(20 A �0°)
���
3 � �0° � 4 � �90°

ZLIT
�
ZR � ZL

I1 � �
Z1

Z
�
2IT

Z2
� or I2 � �

Z1

Z
�
1IT

Z2
�

100 V �53.13°
��

2 � �53.13°

ZRZLZC
���
ZRZL � ZLZC � ZRZC

0.3 S
�
0.5 S

G
�
YT

Solution:

IR-L � � �

� � 1.644 A ��140.54°
10 A��60°
��
6.083 �80.54°

10 A��60°
��

1 � j 6
(2 � ��90°)(5 A �30°)
���

�j 2 � � 1 � � j 8 �

ZC IT
��
ZC � ZR-L

IT

Z1

Z2

IT

I1

I2

FIG. 15.76

Applying the current divider rule.

FIG. 15.77

Example 15.15.

FIG. 15.78

Example 15.16.
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IC � �

� �

� 6.625 A �32.33°

15.10 FREQUENCY RESPONSE OF THE
PARALLEL R-L NETWORK

In Section 15.5 the frequency response of a series R-C circuit was ana-
lyzed. Let us now note the impact of frequency on the total impedance
and inductive current for the parallel R-L network of Fig. 15.79 for a
frequency range of zero through 40 kHz.

40.30 A�112.87°
��

6.083 �80.54°
(8.06 �82.87°)(5 A�30°)
���

6.08 �80.54°

(1 � � j 8 �)(5 A �30°)
���

6.08 � �80.54°

ZR-LIT
��
ZR-L � ZC

ZT Before getting into specifics, let us first develop a “sense” for the
impact of frequency on the network of Fig. 15.79 by noting the imped-
ance-versus-frequency curves of the individual elements, as shown in
Fig. 15.80. The fact that the elements are now in parallel requires that
we consider their characteristics in a different manner than occurred for
the series R-C circuit of Section 15.5. Recall that for parallel elements,
the element with the smallest impedance will have the greatest impact

R 220 � L 4 mHVs

+

–

ZT
IL

I  =  100 mA ∠ 0°

f : 0 to 20 kHz

FIG. 15.79

Determining the frequency response of a parallel R-L network.

R 220 � L
L  =  4 mH

ZT

R

220 �

0 f

XL

0 ff2

220 Ω

XL < R XL > R

XL  =  2   fL�

FIG. 15.80

The frequency response of the individual elements of a parallel R-L network.
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on the total impedance at that frequency. In Fig. 15.80, for example, XL

is very small at low frequencies compared to R, establishing XL as the
predominant factor in this frequency range. In other words, at low fre-
quencies the network will be primarily inductive, and the angle associ-
ated with the total impedance will be close to 90°, as with a pure induc-
tor. As the frequency increases, XL will increase until it equals the
impedance of the resistor (220 �). The frequency at which this situation
occurs can be determined in the following manner:

XL � 2pf2L � R

and (15.34)

which for the network of Fig. 15.79 is

f 2 � �

� 8.75 kHz

which falls within the frequency range of interest.
For frequencies less than f2, XL < R, and for frequencies greater than

f2, XL > R, as shown in Fig. 15.80. A general equation for the total
impedance in vector form can be developed in the following manner:

ZT �

� � 

and ZT � /90° �tan�1 XL /R

so that (15.35)

and (15.36)

The magnitude and angle of the total impedance can now be found
at any frequency of interest simply by substituting Eqs. (15.35) and
(15.36).

f � 1 kHz

XL � 2pf L � 2p(1 kHz)(4 � 10�3 H) � 25.12 �

and

ZT � � � 24.96 �

with vT � tan�1 � tan�1

� tan�1 8.76 � 83.49°

220 �
�
25.12 �

R
�
XL

(220 �)(25.12 �)
���
�(2�2�0� ��)2� �� (�2�5�.1�2� ��)2�

RXL
��
�R�2��� X�2

L�

vT � 90° � tan�1 �
X

R
L
� � tan�1 �

X

R

L
�

ZT � �
�R�

R
2

X

���
L

X�2
L�

�

RXL
��
�R�2��� X�2

L�

RXL �90°
���
�R�2��� X�2

L� �tan�1 XL /R

(R �0°)(XL �90°)
��

R � j XL

ZRZL
�
ZR � ZL

220 �
��
2p(4 � 10�3 H)

R
�
2pL

f2 � �
2p

R
L

�
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and ZT � 24.96 � �83.49°

This value compares very closely with XL � 25.12 � �90°, which it
would be if the network were purely inductive (R � ∞ �). Our assump-
tion that the network is primarily inductive at low frequencies is there-
fore confirmed.

Continuing:

f � 5 kHz: ZT � 109.1 � �60.23°

f � 10 kHz: ZT � 165.5 � �41.21°

f � 15 kHz: ZT � 189.99 � �30.28°

f � 20 kHz: ZT � 201.53 � �23.65°

f � 30 kHz: ZT � 211.19 � �16.27°

f � 40 kHz: ZT � 214.91 � �12.35°

At f � 40 kHz, note how closely the magnitude of ZT has ap-
proached the resistance level of 220 � and how the associated angle
with the total impedance is approaching zero degrees. The result is a
network with terminal characteristics that are becoming more and more
resistive as the frequency increases, which further confirms the earlier
conclusions developed by the curves of Fig. 15.80.

Plots of ZT versus frequency in Fig. 15.81 and vT in Fig. 15.82
clearly reveal the transition from an inductive network to one that
has resistive characteristics. Note that the transition frequency of
8.75 kHz occurs right in the middle of the knee of the curves for
both ZT and vT.

ZT (v)

Network inductive

XL < R (ZT  ≅   XL)

100

200
R  =  220 �

ZT (�)

0 1 5 10 20 30 40 f (kHz)

XL > R (ZT  ≅   R)

Network resistive

XL  =  R

8.75

FIG. 15.81

The magnitude of the input impedance versus frequency for the network of 
Fig. 15.79.

A review of Figs. 15.47 and 15.81 will reveal that a series R-C and
a parallel R-L network will have an impedance level that approaches
the resistance of the network at high frequencies. The capacitive cir-
cuit approaches the level from above, whereas the inductive network
does the same from below. For the series R-L circuit and the parallel
R-C network, the total impedance will begin at the resistance level and
then display the characteristics of the reactive elements at high fre-
quencies.
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IL Applying the current divider rule to the network of Fig. 15.79 will
result in the following:

IL �

� �

and IL � IL �vL � /�tan�1 XL /R

The magnitude of IL is therefore determined by

(15.37)

and the phase angle vL, by which IL leads I, is given by

(15.38)

Because vL is always negative, the magnitude of vL is, in actuality,
the angle by which IL lags I.

To begin our analysis, let us first consider the case of f � 0 Hz (dc
conditions).

f � 0 Hz

XL � 2pfL � 2p(0 Hz)L � 0 �

Applying the short-circuit equivalent for the inductor in Fig. 15.79
would result in

IL � I � 100 mA �0°

vL � �tan�1 �
X

R
L
�

IL � �
�R�

R
2�

I

�� X�2
L�

�

RI
��
�R�2��� X�2

L�

RI �0°
���
�R�2��� X�2

L� /tan�1 XL /R

(R �0°)(I �0°)
��

R � j XL

ZRI
�
ZR � ZL

5 f (kHz)1 10 20 30 40

0°

30°

45°

60°

90°

Inductive (XL < R)

Resistive (XL > R)

  Tθ

  T ( f )θ

FIG. 15.82

The phase angle of the input impedance versus frequency for the network of
Fig. 15.79.
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as appearing in Figs. 15.83 and 15.84.

f � 1 kHz Applying Eq. (15.37):

XL � 2pfL � 2p(1 kHz)(4 mH) � 25.12 �

and �R�2��� X�2
L� � �(2�2�0� ��)2� �� (�2�5�.1�2� ��)2� � 221.43 �

and IL � � � 99.35 mA

with

vL � tan�1 � �tan�1 � �tan�1 0.114 � �6.51°

and IL � 99.35 mA ��6.51°

The result is a current IL that is still very close to the source current I
in both magnitude and phase.

Continuing:

f � 5 kHz: IL � 86.84 mA ��29.72°
f � 10 kHz: IL � 65.88 mA ��48.79°
f � 15 kHz: IL � 50.43 mA ��59.72°
f � 20 kHz: IL � 40.11 mA ��66.35°
f � 30 kHz: IL � 28.02 mA ��73.73°
f � 40 kHz: IL � 21.38 mA ��77.65°

The plot of the magnitude of IL versus frequency is provided in Fig.
15.83 and reveals that the current through the coil dropped from its
maximum of 100 mA to almost 20 mA at 40 kHz. As the reactance of
the coil increased with frequency, more of the source current chose the

25.12 �
�
220 �

XL
�
R

(220 �)(100 mA)
��

221.43 �

RI
��
�R�2��� X�2

L�

FIG. 15.83

The magnitude of the current IL versus frequency for the parallel R-L network
of Fig. 15.79.

IL (mA)

5 f (kHz)1 10 20 30 400

25

Network inductive

IL ( f )

50

75

100
XL < R (IL  ≅  Is)

Network resistive

XL > R (IL  => 0 mA)
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FIG. 15.84

The phase angle of the current IL versus frequency for the parallel R-L network
of Fig. 15.79.

Network inductive

5 10 20 30 40 f (kHz)0°

–30°

–45°

–60°

–90°

Network resistive

  L ( f )θ

  L of  ILθ

  L  =    sθ θ

  R  ≅     s  ≅   0°θ θ

83.49°

Vs

IR

IL

I

–6.51°

12.35° Vs
IR

I–77.65°IL

FIG. 15.85

The phasor diagram for the parallel R-L net-
work of Fig. 15.79 at f � 1 kHz.

FIG. 15.86

The phasor diagram for the parallel R-L net-
work of Fig. 15.79 at f � 40 kHz.

lower-resistance path of the resistor. The magnitude of the phase angle
between IL and I is approaching 90° with an increase in frequency, as
shown in Fig. 15.84, leaving its initial value of zero degrees at f � 0 Hz
far behind.

At f � 1 kHz, the phasor diagram of the network appears as shown
in Fig. 15.85. First note that the magnitude and the phase angle of IL are
very close to those of I. Since the voltage across a coil must lead the
current through a coil by 90°, the voltage Vs appears as shown. The
voltage across a resistor is in phase with the current through the resis-
tor, resulting in the direction of IR shown in Fig. 15.85. Of course, at
this frequency R > XL, and the current IR is relatively small in magni-
tude.

At f � 40 kHz, the phasor diagram changes to that appearing in Fig.
15.86. Note that now IR and I are close in magnitude and phase because
XL > R. The magnitude of IL has dropped to very low levels, and the
phase angle associated with IL is approaching �90°. The network is
now more “resistive” compared to its “inductive” characteristics at low
frequencies.

The analysis of a parallel R-C or R-L-C network would proceed in
much the same manner, with the inductive impedance predominating at
low frequencies and the capacitive reactance predominating at high fre-
quencies.

15.11 SUMMARY: PARALLEL ac NETWORKS

The following is a review of important conclusions that can be derived
from the discussion and examples of the previous sections. The list is
not all-inclusive, but it does emphasize some of the conclusions that
should be carried forward in the future analysis of ac systems.
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For parallel ac networks with reactive elements:

1. The total admittance (impedance) will be frequency
dependent.

2. The impedance of any one element can be less than the total
impedance (recall that for dc circuits the total resistance must
always be less than the smallest parallel resistor).

3. The inductive and capacitive susceptances are in direct
opposition on an admittance diagram.

4. Depending on the frequency applied, the same network can be
either predominantly inductive or predominantly capacitive.

5. At lower frequencies the inductive elements will usually have
the most impact on the total impedance, while at high
frequencies the capacitive elements will usually have the most
impact.

6. The magnitude of the current through any one branch can be
greater than the source current.

7. The magnitude of the current through an element, compared
to the other elements of the network, is directly related to the
magnitude of its impedance; that is, the smaller the impedance
of an element, the larger the magnitude of the current through
the element.

8. The current through a coil is always in direct opposition with
the current through a capacitor on a phasor diagram.

9. The applied voltage is always in phase with the current
through the resistive elements, leads the voltage across all the
inductive elements by 90°, and lags the current through all
capacitive elements by 90°.

10. The smaller the resistive element of a network compared to the
net reactive susceptance, the closer the power factor is to
unity.

15.12 EQUIVALENT CIRCUITS

In a series ac circuit, the total impedance of two or more elements in
series is often equivalent to an impedance that can be achieved with
fewer elements of different values, the elements and their values being
determined by the frequency applied. This is also true for parallel cir-
cuits. For the circuit of Fig. 15.87(a),

ZT � � �

� 10 � ��90°

50 �0°
�
5 �90°

(5 � ��90°)(10 � �90°)
���
5 � ��90° � 10 � �90°

ZCZL
�
ZC � ZL

5 �XC
ZT 10 �XL

(a)

10 �XC
ZT

(b)

FIG. 15.87

Defining the equivalence between two networks at a specific frequency.
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Rs

Zs = Zp

Ys = Yp

Xs

(b)

(a)

Rp
Zp

Yp

XP

The total impedance at the frequency applied is equivalent to a capaci-
tor with a reactance of 10 �, as shown in Fig. 15.87(b). Always keep in
mind that this equivalence is true only at the applied frequency. If the
frequency changes, the reactance of each element changes, and the
equivalent circuit will change—perhaps from capacitive to inductive in
the above example.

Another interesting development appears if the impedance of a par-
allel circuit, such as the one of Fig. 15.88(a), is found in rectangular
form. In this case,

ZT � �

� � 2.40 � �36.87°

� 1.920 � � j 1.440 �

which is the impedance of a series circuit with a resistor of 1.92 � and
an inductive reactance of 1.44 �, as shown in Fig. 15.88(b).

The current I will be the same in each circuit of Fig. 15.87 or Fig.
15.88 if the same input voltage E is applied. For a parallel circuit of one
resistive element and one reactive element, the series circuit with the
same input impedance will always be composed of one resistive and
one reactive element. The impedance of each element of the series cir-
cuit will be different from that of the parallel circuit, but the reactive
elements will always be of the same type; that is, an R-L circuit and an
R-C parallel circuit will have an equivalent R-L and R-C series circuit,
respectively. The same is true when converting from a series to a paral-
lel circuit. In the discussion to follow, keep in mind that

the term equivalent refers only to the fact that for the same applied
potential, the same impedance and input current will result.

To formulate the equivalence between the series and parallel circuits,
the equivalent series circuit for a resistor and reactance in parallel can
be found by determining the total impedance of the circuit in rectangu-
lar form; that is, for the circuit of Fig. 15.89(a),

Yp � � � � j

and

Zp � �

� � j

Multiplying the numerator and denominator of each term by R2
pX2

p

results in

Zp � � j

� Rs � j Xs [Fig. 15.89(b)]

and (15.39)Rs � �
X

R
2
p

p

�

X

R

2
p

2
p

�

R2
pXp

�
X2

p � R2
p

RpX2
p

�
X2

p � R2
p

1/Xp
��
(1/Rp)

2 � (1/Xp)
2

1/Rp
��
(1/Rp)

2 � (1/Xp)
2

1
��
(1/Rp) � j (1/Xp)

1
�
Yp

1
�
Xp

1
�
RP

1
�
�j Xp

1
�
Rp

12 �90°
��
5 �53.13°

(4 � �90°)(3 � �0°)
���
4 � �90° � 3 � �0°

ZLZR
�
ZL � ZR

4 � R 3 �XL

I

ZT

E

+

–

(a)

XL  =  1.44 �I

ZT

E

+

–

(b)

R  =  1.92 �

FIG. 15.88

Finding the series equivalent circuit 
for a parallel R-L network.

FIG. 15.89

Defining the parameters of equivalent series
and parallel networks.
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with (15.40)

For the network of Fig. 15.88,

Rs � � � � 1.920 �

and

Xs � � � � 1.440 �

which agrees with the previous result.
The equivalent parallel circuit for a circuit with a resistor and reac-

tance in series can be found by simply finding the total admittance of
the system in rectangular form; that is, for the circuit of Fig. 15.89(b),

Zs � Rs � j Xs

Ys � � � � j 

� Gp � j Bp � � j [Fig. 15.89(a)]

or (15.41)

with (15.42)

For the above example,

Rp � � � � 3.0 �

and Xp � � � 4.0 �

as shown in Fig. 15.88(a).

EXAMPLE 15.17 Determine the series equivalent circuit for the net-
work of Fig. 15.90.

5.76 �
�

1.44

R2
s � X2

s
�

Xs

5.76 �
�

1.92

(1.92 �)2 � (1.44 �)2

���
1.92 �

R2
s � X2

s
�

Rs

Xp � �
R2

s

X

�

s

X2
s

�

Rp � �
R2

s

R

�

s

X2
s

�

1
�
Xp

1
�
Rp

Xs
�
R2

s � X2
s

Rs
�
R2

s � X2
s

1
�
Rs � j Xs

1
�
Zs

36 �
�

25

(3 �)2(4 �)
��
(4 �)2 � (3 �)2

R2
p Xp

�
X2

p � R2
p

48 �
�

25

(3 �)(4 �)2

��
(4 �)2 � (3 �)2

RpX2
p

�
X2

p � R2
p

Xs � �
X2

p

R

�

2
pX

R
p

2
p

�

4 k�

R 8 k�

XC

9 k�XL

Rp

Xp

FIG. 15.90

Example 15.17.
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Solution:

Rp � 8 k�

Xp (resultant) �  XL � XC �  9 k� � 4 k�
� 5 k�

and

Rs � � � � 2.247 k�

with

Xs � � �

� 3.596 k� (inductive)

The equivalent series circuit appears in Fig. 15.91.

EXAMPLE 15.18 For the network of Fig. 15.92:

320 k�
�

89

(8 k�)2(5 k�)
��
(5 k�)2 � (8 k�)2

R2
p Xp

�
X2

p � R2
p

200 k�
�

89

(8 k�)(5 k�)2

��
(5 k�)2 � (8 k�)2

RpX2
p

�
X2

p � R2
p

3.596 k�2.247 k�

XsRs

FIG. 15.91

The equivalent series circuit for the parallel
network of Fig. 15.90.

R1 10 � R2 40 � L1 6 mH L2 12 mH
C1

80 mF
C2

20 mF

iL

i  =  �2 (12) sin 1000t

+

YT

ei
–

ZT

FIG. 15.92

Example 15.18.

a. Determine YT.
b. Sketch the admittance diagram.
c. Find E and IL.
d. Compute the power factor of the network and the power delivered to

the network.
e. Determine the equivalent series circuit as far as the terminal charac-

teristics of the network are concerned.
f. Using the equivalent circuit developed in part (e), calculate E, and

compare it with the result of part (c).
g. Determine the power delivered to the network, and compare it with

the solution of part (d).
h. Determine the equivalent parallel network from the equivalent series

circuit, and calculate the total admittance YT. Compare the result
with the solution of part (a).

Solutions:

a. Combining common elements and finding the reactance of the
inductor and capacitor, we obtain

RT � 10 � � 40 � � 8 �

LT � 6 mH � 12 mH � 4 mH

CT � 80 mF � 20 mF � 100 mF
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XL � qL � (1000 rad/s)(4 mH) � 4 �

XC � � � 10 �

The network is redrawn in Fig. 15.93 with phasor notation. The total
admittance is

YT � YR � YL � YC

� G �0° � BL ��90° � BC ��90°

� �0° � ��90° � ��90°

� 0.125 S �0° � 0.25 S ��90° � 0.1 S ��90°
� 0.125 S � j 0.25 S � j 0.1 S
� 0.125 S � j 0.15 S � 0.195 S ��50.194°

1
�
10 �

1
�
4 �

1
�
8 �

1
��
(1000 rad/s)(100 mF)

1
�
qC

b. See Fig. 15.94.

c. E � IZT � � � 61.538 V �50.194°

IL � � � � 15.385 A ��39.81°

d. Fp � cos v � � � 0.641 lagging (E leads I)

P � EI cos v � (61.538 V)(12 A) cos 50.194°

� 472.75 W

e. ZT � � � 5.128 � ��50.194°

� 3.283 � � j 3.939 �
� R � j XL

XL � 3.939 � � qL

L � � � 3.939 mH

The series equivalent circuit appears in Fig. 15.95.

f. E � IZT � (12 A �0°)(5.128 � �50.194°)

� 61.536 V �50.194° (as above)

g. P � I2R � (12 A)2(3.283 �) � 472.75 W (as above)

h. Rp � � � 8 �
(3.283 �)2 � (3.939 �)2

���
3.283 �

R2
s � X2

s
�

Rs

3.939 �
��
1000 rad/s

3.939 �
�

q

1
���
0.195 S ��50.194°

1
�
YT

0.125 S
�
0.195 S

G
�
YT

61.538 V �50.194°
���

4 � �90°

E
�
ZL

VL
�
ZL

12 A �0°
���
0.195 S ��50.194°

I
�
YT

R 8 � 4 �XL XC
10 �

YT
IL

+

–

EI  =  12 A ∠  0°

FIG. 15.93

Applying phasor notation to the network of Fig. 15.92.

G ∠  0°

–50.194°

0.195 S

YT

BL ∠  –90°

BL – BC

BC  ∠  90°

j

+–

FIG. 15.94

Admittance diagram for the parallel R-L-C
network of Fig. 15.92.
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Xp � � � 6.675 �

The parallel equivalent circuit appears in Fig. 15.96.

(3.283 �)2 � (3.939 �)2

���
3.939 �

R2
s � X2

s
�

Xs

YT � G �0° � BL ��90° � �0° � ��90°

� 0.125 S �0° � 0.15 S ��90°

� 0.125 S � j 0.15 S � 0.195 S ��50.194° (as above)

15.13 PHASE MEASUREMENTS
(DUAL-TRACE OSCILLOSCOPE)

The phase shift between the voltages of a network or between the volt-
ages and currents of a network can be found using a dual-trace (two sig-
nals displayed at the same time) oscilloscope. Phase-shift measure-
ments can also be performed using a single-trace oscilloscope by
properly interpreting the resulting Lissajous patterns obtained on the
screen. This latter approach, however, will be left for the laboratory
experience.

In Fig. 15.97, channel 1 of the dual-trace oscilloscope is hooked up
to display the applied voltage e. Channel 2 is connected to display the
voltage across the inductor vL. Of particular importance is the fact that
the ground of the scope is connected to the ground of the oscilloscope
for both channels. In other words, there is only one common ground for
the circuit and oscilloscope. The resulting waveforms may appear as
shown in Fig. 15.98.

1
�
6.675 �

1
�
8 �

FIG. 15.95

Series equivalent circuit for the parallel R-L-C network of Fig. 15.92 with 
q � 1000 rad/s.

L

R

3.283 �

3.939 mHE

+

–

I  =  12 A ∠  0°

LR 8 � 6.675 �I  =  12 A ∠  0°

YT

FIG. 15.96

Parallel equivalent of the circuit of Fig. 15.95.
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R

Le

+

–

vL

+

–

21

Oscilloscope

FIG. 15.97

Determining the phase relationship between e and vL.

v

θ
1.6 div.

e

T  =  8 div.

FIG. 15.98

Determining the phase angle between e and vL.

For the chosen horizontal sensitivity, each waveform of Fig. 15.98
has a period T defined by eight horizontal divisions, and the phase angle
between the two waveforms is defined by 1�

1
2

� divisions. Using the fact
that each period of a sinusoidal waveform encompasses 360°, the fol-
lowing ratios can be set up to determine the phase angle v:

�
8
36

d
0
iv
°
.

� � �
1.6

v

div.
�

and v � � �360° � 72°

In general,

(15.43)

If the phase relationship between e and vR is required, the oscillo-
scope must not be hooked up as shown in Fig. 15.99. Points a and b
have a common ground that will establish a zero-volt drop between the
two points; this drop will have the same effect as a short-circuit con-
nection between a and b. The resulting short circuit will “short out” the
inductive element, and the current will increase due to the drop in
impedance for the circuit. A dangerous situation can arise if the induc-
tive element has a high impedance and the resistor has a relatively low

v � �
(
(
d
d
i
i
v
v
.
.
f
f
o
o
r
r

T
v)
)

� � 360°

1.6
�
8
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impedance. The current, controlled solely by the resistance R, could
jump to dangerous levels and damage the equipment.

The phase relationship between e and vR can be determined by sim-
ply interchanging the positions of the coil and resistor or by introduc-
ing a sensing resistor, as shown in Fig. 15.100. A sensing resistor is
exactly that: introduced to “sense” a quantity without adversely affect-
ing the behavior of the network. In other words, the sensing resistor
must be small enough compared to the other impedances of the network
not to cause a significant change in the voltage and current levels or
phase relationships. Note that the sensing resistor is introduced in a way
that will result in one end being connected to the common ground of the
network. In Fig. 15.100, channel 2 will display the voltage vRs

, which is
in phase with the current i. However, the current i is also in phase with
the voltage vR across the resistor R. The net result is that the voltages
vRs

and vR are in phase and the phase relationship between e and vR can
be determined from the waveforms e and vRs

. Since vRs
and i are in

phase, the above procedure will also determine the phase angle between
the applied voltage e and the source current i. If the magnitude of Rs is
sufficiently small compared to R or XL, the phase measurements of Fig.
15.97 can be performed with Rs in place. That is, channel 2 can be con-
nected to the top of the inductor and to ground, and the effect of Rs can
be ignored. In the above application, the sensing resistor will not reveal
the magnitude of the voltage vR but simply the phase relationship
between e and vR.

R

Le

+

–

21

vR –+

Oscilloscope

a

b

FIG. 15.99

An improper phase-measurement connection.

R

L

e

+

–

21

vR –+

vRs

+

–
Rs

i

i

Oscilloscope

FIG. 15.100

Determining the phase relationship between e and vR or e and i using a sensing
resistor.
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For the parallel network of Fig. 15.101, the phase relationship
between two of the branch currents, iR and iL, can be determined using
a sensing resistor, as shown in the figure. Channel 1 will display the
voltage vR, and channel 2 will display the voltage vRs

. Since vR is in
phase with iR, and vRs

is in phase with the current iL, the phase rela-
tionship between vR and vRs

will be the same as that between iR and iL.
In this case, the magnitudes of the current levels can be determined
using Ohm’s law and the resistance levels R and Rs, respectively.

FIG. 15.101

Determining the phase relationship between iR and iL.

L

e
+

–

21

iR
iL

vRs
Rs

+

–

vR

+

–
R C

Oscilloscope

e
+

–

2

1

is

vRs
+–

R

isRs

FIG. 15.102

Determining the phase relationship between e 
and is.

If the phase relationship between e and is of Fig. 15.101 is required,
a sensing resistor can be employed, as shown in Fig. 15.102.

In general, therefore, for dual-trace measurements of phase relation-
ships, be particularly careful of the grounding arrangement, and fully
utilize the in-phase relationship between the voltage and current of a
resistor.

15.14 APPLICATIONS

Home Wiring

An expanded view of house wiring is provided in Fig. 15.103 to permit
a discussion of the entire system. The house panel has been included
with the “feed” and the important grounding mechanism. In addition, a
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number of typical circuits found in the home have been included to pro-
vide a sense for the manner in which the total power is distributed.

First note how the copper bars in the panel are laid out to provide
both 120 V and 208 V. Between any one bar and ground is the single-
phase 120-V supply. However, the bars have been arranged so that
208 V can be obtained between two vertical adjacent bars using a
double-gang circuit breaker. When time permits, examine your own
panel (but do not remove the cover), and note the dual circuit breaker
arrangement for the 208-V supply.

For appliances such as fixtures and heaters that have a metal casing,
the ground wire is connected to the metal casing to provide a direct path
to ground path for a “shorting” or errant current as described in Section
7.7. For outlets and such that do not have a conductive casing, the
ground lead is connected to a point on the outlet that distributes to all
important points of the outlet.

Note the series arrangement between the thermostat and the heater
but the parallel arrangement between heaters on the same circuit. In
addition, note the series connection of switches to lights in the upper-
right corner but the parallel connection of lights and outlets. Due to
high current demand the air conditioner, heaters, and electric stove have
30-A breakers. Keep in mind that the total current does not equal the
product of the two (or 60 A) since each breaker is in a line and the same
current will flow through each breaker.

In general, you now have a surface understanding of the general
wiring in your home. You may not be a qualified, licensed electrician,

Neutral Line 1 Line 2

Main
breaker
200 A Copper bus-bars

Lighting Series switches20 A

40 A

40 A

30 A

30 A

15 A

15 A

30 A

30 A

30 A

30 A

#14

#14

#10

#10

#10
#10

Parallel
lamps

120 V

+

–

120 V
+

–

Washing
machine

400 W

Electric dryer

4.8 kW
208 V

+

–

208 V
+

–
Thermostat

2′ section 4′ section 8′ section

2300 W

Parallel electric
baseboard heaters

Neutral bus-bar

Ground bus bar

MAIN PANEL

#12

#8

#8

#10

#10

Switched outlets Parallel outlets

12.2-kW
electric range

Air conditioner

860 W

208 V
+

–

208 V
+

–

120
V

+

–
60 W 40 W 60 W60 W

575 W 1150 W

FIG. 15.103

Home wiring diagram.
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but at least you should now be able to converse with some intelligence
about the system.

Speaker Systems

The best reproduction of sound is obtained using a different speaker for
the low-, mid-, and high-frequency regions. Although the typical audio
range for the human ear is from about 100 Hz to 20 kHz, speakers are
available from 20 Hz to 40 kHz. For the low-frequency range usually
extending from about 20 Hz to 300 Hz, a speaker referred to as a
woofer is used. Of the three speakers, it is normally the largest. The
mid-range speaker is typically smaller in size and covers the range from
about 100 Hz to 5 kHz. The tweeter, as it is normally called, is usually
the smallest of the three speakers and typically covers the range from
about 2 kHz to 25 kHz. There is an overlap of frequencies to ensure that
frequencies aren’t lost in those regions where the response of one drops
off and the other takes over. A great deal more about the range of each
speaker and their dB response (a term you may have heard when dis-
cussing speaker response) will be covered in detail in Chapter 23.

One popular method for hooking up the three speakers is the cross-
over configuration of Fig. 15.104. Note that it is nothing more than a
parallel network with a speaker in each branch and full applied voltage
across each branch. The added elements (inductors and capacitors)
were carefully chosen to set the range of response for each speaker.
Note that each speaker is labeled with an impedance level and associ-
ated frequency. This type of information is typical when purchasing a
quality speaker. It immediately identifies the type of speaker and reveals
at which frequency it will have its maximum response. A detailed
analysis of the same network will be included in Section 23.15. For
now, however, it should prove interesting to determine the total imped-
ance of each branch at specific frequencies to see if indeed the response
of one will far outweigh the response of the other two. Since an ampli-
fier with an output impedance of 8 � is to be employed, maximum

8 �
Llow = 3.3 mH

Vi

+

–

8 �

8 �

Cmid = 47   F� Lmid = 270   H�

Chigh = 3.9   F�

Woofer

Tweeter

Midrange

FIG. 15.104

Crossover speaker system.
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transfer of power (see Section 18.5 for ac networks) to the speaker will
result when the impedance of the branch is equal to or very close to 8 �.

Let us begin by examining the response of the frequencies to be car-
ried primarily by the mid-range speaker since it represents the greatest
portion of the human hearing range. Since the mid-range speaker
branch is rated at 8 � at 1.4 kHz, let us test the effect of applying 1.4 kHz
to all branches of the crossover network.

For the mid-range speaker:

XC � �
2p

1
fC
� � � 2.42 �

XL � 2pfL � 2p(1.4 kHz)(270 mH) � 2.78 �

R � 8 �

and Zmid-range � R � j (XL � XC) � 8 � � j (2.78 � � 2.42 �)

� 8 � � j 0.36 �

� 8.008 � ��2.58° � 8 � �0° � R

In Fig. 15.105(a), the amplifier with the output impedance of 8 �
has been applied across the mid-range speaker at a frequency of
1.4 kHz. Since the total reactance offered by the two series reactive ele-
ments is so small compared to the 8-� resistance of the speaker, we can
essentially replace the series combination of the coil and capacitor by a
short circuit of 0 �. We are then left with a situation where the load
impedance is an exact match with the output impedance of the ampli-
fier, and maximum power will be delivered to the speaker. Because of
the equal series impedances, each will capture half the applied voltage
or 6 V. The power to the speaker is then V2/R � (6 V)2/8 � � 4.5 W.

At a frequency of 1.4 kHz we would expect the woofer and tweeter
to have minimum impact on the generated sound. We will now test the
validity of this statement by determining the impedance of each branch
at 1.4 kHz.

For the woofer:

XL � 2pfL � 2p(1.4 kHz)(3.3 mH) � 29.03 �

and Zwoofer � R � j XL � 8 � � j 29.03 �

� 30.11 � �74.59°

which is a poor match with the output impedance of the amplifier. The
resulting network is shown in Fig. 15.105(b).

The total load on the source of 12 V is

ZT � 8 � � 8 � � j 29.03 � � 16 � � j 29.03 �

� 33.15 � �61.14°

and the current is

I � �

� 362 mA ��61.14°

The power to the 8-� speaker is then

Pwoofer � I2R � (362 mA)28 � � 1.048 W

or about 1 W.
Consequently, the sound generated by the mid-range speaker will far

outweigh the response of the woofer (as it should).

12 V �0°
��
33.15 � �61.14°

E
�
ZT

1
���
2p(1.4 kHz)(47 mF)
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For the tweeter:

XC � � � 29.15 �

and Ztweeter � R � j XC � 8 � � j 29.15 �

� 30.23 � ��74.65°

which, as for the woofer, is a poor match with the output impedance of
the amplifier. The current

I � �

� 397 mA �74.65°

The power to the 8-� speaker is then

Ptweeter � I2R � (397 mA)2(8 �) � 1.261 W

or about 1.3 W.

12 V �0°
���
30.23 � ��74.65°

E
�
ZT

1
���
2p(1.4 kHz)(3.9 	F)

1
�
2pfC

8 �

8 �
2.42 � 2.38 �

Midrange

XL

+

–

Vspeaker
= 6 V

Amplifier

+

–

12 V

(a)

(–jXC + jXL = –j 0.04 �)

XC

8 �

8 � 29.03 �

Woofer

XL

Ispeaker
= 362 mA

Amplifier

+

–

12 V

(b)

8 �

8 �
29.15 �

Tweeter

Amplifier

+

–

12 V

(c)

XC

ZT

Zwoofer

Ztweeter

Ispeaker
= 397 mA

ZT

Zmidrange

FIG. 15.105

Crossover network: (a) mid-range speaker at 1.4 kHz; (b) woofer at 1.4 kHz;
(c) tweeter.
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Consequently, the sound generated by the mid-range speaker will far
outweigh the response of the tweeter also.

All in all, the mid-range speaker predominates at a frequency of
1.4 kHz for the crossover network of Fig. 15.104.

Just for interest sake, let us now determine the impedance of the
tweeter at 20 kHz and the impact of the woofer at this frequency.

For the tweeter:

XC � � � 2.04 �

with Ztweeter � 8 � � j 2.04 � � 8.26 � ��14.31°

Even though the magnitude of the impedance of the branch is not
exactly 8 �, it is very close, and the speaker will receive a high level of
power (actually 4.43 W).

For the woofer:

XL � 2pf L � 2p(20 kHz)(3.3 mH) � 414.69 �

with Zwoofer � 8 � � j 414.69 � � 414.77 � �88.9°

which is a terrible match with the output impedance of the amplifier.
Therefore, the speaker will receive a very low level of power (6.69 mW �
0.007 W).

For all the calculations, note that the capacitive elements predomi-
nate at low frequencies, and the inductive elements at high frequen-
cies. For the low frequencies, the reactance of the coil will be quite
small, permitting a full transfer of power to the speaker. For the high-
frequency tweeter, the reactance of the capacitor is quite small, pro-
viding a direct path for power flow to the speaker.

Phase-Shift Power Control

In Chapter 12 the internal structure of a light dimmer was examined and
its basic operation described. We can now turn our attention to how the
power flow to the bulb is controlled.

If the dimmer were composed of simply resistive elements, all the
voltages of the network would be in phase as shown in Fig. 15.106(a).
If we assume that 20 V are required to turn on the triac of Fig. 12.49,
then the power will be distributed to the bulb for the period highlighted
by the blue area of Fig. 15.106(a). For this situation, the bulb is close to
full brightness since the applied voltage is available to the bulb for
almost the entire cycle. To reduce the power to the bulb (and therefore
reduce its brightness), the controlling voltage would have to have a
lower peak voltage as shown in Fig. 15.106(b). In fact, the waveform of
Fig. 15.106(b) is such that the turn-on voltage is not reached until the
peak value occurs. In this case power is delivered to the bulb for only
half the cycle, and the brightness of the bulb will be reduced. The prob-
lem with using only resistive elements in a dimmer now becomes
apparent: The bulb can be made no dimmer than the situation depicted
by Fig. 15.106(b). Any further reduction in the controlling voltage
would reduce its peak value below the trigger level, and the bulb would
never turn on.

This dilemma can be resolved by using a series combination of ele-
ments such as shown in Fig. 15.107(a) from the dimmer of Fig. 12.49.
Note that the controlling voltage is the voltage across the capacitor,

1
���
2p(20 kHz)(3.9 mF)

1
�
2pfC

170

20

0

V (volts)

t

Applied
voltage

(b)

Controlling
voltage

(a)

170

20

0

V (volts)

t

Applied
voltage

Lamp
voltage

FIG. 15.106

Light dimmer: (a) with purely resistive
elements; (b) half-cycle power distribution.
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while the full line voltage of 120 V rms, 170 V peak, is across the entire
branch. To describe the behavior of the network, let us examine the case
defined by setting the potentiometer (used as a rheostat) to 1/10 its
maximum value, or 33 k�. Combining the 33 k� with the fixed resis-
tance of 47 k� will result in a total resistance of 80 k� and the equiv-
alent network of Fig. 15.107(b).

At 60 Hz, the reactance of the capacitor is

XC � �
2p

1
fC
� � � 42.78 k�

Applying the voltage divider rule:

Vcontrol � �
ZR

Z
�
CV

Z
s

C
�

� �

� 0.472Vs ��61.86°

Using a peak value of 170 V:

Vcontrol � 0.472(170 V) ��61.86°

� 80.24 V ��61.86°

producing the waveform of Fig. 15.108(a). The result is a waveform
with a phase shift of 61.86° (lagging the applied line voltage) and a rel-
atively high peak value. The high peak value will result in a quick tran-
sition to the 20-V turn-on level, and power will be distributed to the
bulb for the major portion of the applied signal. Recall from the dis-
cussion of Chapter 12 that the response in the negative region is a
replica of that achieved in the positive region. If we reduced the poten-
tiometer resistance further, the phase angle would be reduced, and the
bulb would burn brighter. The situation is now very similar to that
described for the response of Fig. 15.106(a). In other words, nothing
has been gained thus far by using the capacitive element in the control
network. However, let us now increase the potentiometer resistance to
200 k� and note the effect on the controlling voltage.

42.78 k� Vs ��90°
���
90.72 k� ��28.14°

(42.78 k� ��90°)(Vs �0°)
���

80 k� � j 42.78 k�

1
��
2p(60 Hz)(62 mF)

+

–

G

K

A

TRIACDIAC

0.068 µFVcontrol

330-k�
rheostat

47 k�

+

–

Vline = 170 V ∠ 0°
(peak)

(a)

+

–

170 V ∠ 0°

0.068 µFC

(b)

Vcontrol

+

–

80 k�R

FIG. 15.107

Light dimmer: (a) from Fig. 12.49; (b) with rheostat set at 33 k�.
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That is,

RT � 200 k� � 47 k� � 247 k�

Vcontrol � �
ZR

Z
�
CV

Z
s

C
�

� �

� 0.171Vs ��80.2°

and using a peak value of 170 V, we have

Vcontrol � 0.171(170 V) ��80.2°

� 29.07 V ��80.2°

The peak value has been substantially reduced to only 29.07 V, and the
phase-shift angle has increased to 80.2°. The result, as depicted by Fig.
15.108(b), is that the firing potential of 20 V is not reached until near
the end of the positive region of the applied voltage. Power is delivered
to the bulb for only a very short period of time, causing the bulb to be
quite dim, significantly dimmer than obtained from the response of Fig.
15.106(b).

A conduction angle less than 90° is therefore possible due only to
the phase shift introduced by the series R-C combination. Thus, it is
possible to construct a network of some significance with a rather sim-
ple pair of elements.

15.15 COMPUTER ANALYSIS

PSpice

Series  R-L-C Circuit The R-L-C network of Fig. 15.35 will now be
analyzed using OrCAD Capture. Since the inductive and capacitive

42.78 k� Vs ��90°
���
250.78 k� ��9.8°

(42.78 k� ��90°)(Vs �0°)
���

247 k� � j 42.78 k�

170

80.24

20

0° 90° 360°
61.86°

V(volts)

Vlamp

Vcontrol

Vapplied

θ

(a)

180°

170

29.07
20

0° 90° 360°

80.2°

V(volts)

Vlamp

Vcontrol

Vapplied

θ

(b)

180°

FIG. 15.108

Light dimmer of Fig. 12.49: (a) rheostat set at 33 k�; (b) rheostat set at 200 k�.
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reactances cannot be entered onto the screen, the associated inductive
and capacitive levels were first determined as follows:

XL � 2pf L ⇒ L � � � 1.114 mH

XC � ⇒ C � � � 53.05 mF

The values were then entered into the schematic as shown in Fig. 15.109.
For the ac source, the sequence is Place part icon-SOURCE-VSIN-
OK with VOFF set at 0 V, VAMPL set at 70.7 V (the peak value of
the applied sinusoidal source in Fig. 15.35), and FREQ � 1 kHz. If we
double-click on the source symbol, the Property Editor will appear,
confirming the above choices and showing that DF � 0 s, PHASE � 0°,
and TD � 0 s as set by the default levels. We are now ready to do an
analysis of the circuit for the fixed frequency of 1 kHz.

1
��
2p(1 kHz)3 �

1
�
2pf XC

1
�
2pfC

7 �
��
2p(1 kHz)

XL
�
2pf

FIG. 15.109

Using PSpice to analyze a series R-L-C ac circuit.

The simulation process is initiated by first selecting the New Simu-
lation Profile icon and inserting SeriesRLC as the Name followed by
Create. The Simulation Settings dialog will now appear, and since we
are continuing to plot the results against time, the Time Domain(Tran-
sient) option is selected under Analysis type. Since the period of each
cycle of the applied source is 1 ms, the Run to time will be set at 5 ms
so that five cycles will appear. The Start saving data after will be left
at 0 s even though there will be an oscillatory period for the reactive
elements before the circuit settles down. The Maximum step size will
be set at 5 ms/1000 � 5 ms. Finally OK is selected followed by the
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Run PSpice key. The result will be a blank screen with an x-axis
extending from 0 s to 5 ms.

The first quantity of interest is the current through the circuit, so
Trace-Add-Trace is selected followed by I(R) and OK. The resulting
plot of Fig. 15.110 clearly shows that there is a period of storing and
discharging of the reactive elements before a steady-state level is estab-
lished. It would appear that after 3 ms, steady-state conditions have
been essentially established. Select the Toggle cursor key, and left-
click the mouse; a cursor will result that can be moved along the axis
near the maximum value around 1.4 ms. In fact, the cursor reveals a
maximum value of 16.4 A which exceeds the steady-state solution by
over 2 A. A right click of the mouse will establish a second cursor on
the screen that can be placed near the steady-state peak around 4.4 ms.
The resulting peak value is about 14.15 A which is a match with the
longhand solution for Fig. 15.35. We will therefore assume that steady-
state conditions have been established for the circuit after 4 ms.

FIG. 15.110

A plot of the current for the circuit of Fig. 15.109 showing the transition from the transient state to
the steady-state response.

Let us now add the source voltage through Trace-Add Trace-
V(Vs:+)-OK to obtain the multiple plot at the bottom of Fig. 15.111.
For the voltage across the coil, the sequence Plot-Add Plot to Window-
Trace-Add Trace-V(L:1)-V(L:2) will result in the plot appearing at
the top of Fig. 15.111. Take special note of the fact that the Trace
Expression is V(L:1)�V(L:2) rather than just V(L:1) because V(L:1)
would be the voltage from that point to ground which would include the
voltage across the capacitor. In addition, the � sign between the two
comes from the Functions or Macros list at right of the Add Traces



692  SERIES AND PARALLEL ac CIRCUITS
a c

dialog box. Finally, since we know that the waveforms are fairly steady
after 3 ms, let us cut away the waveforms before 3 ms with Plot-Axis
Settings-X axis-User Defined-3ms to 5ms-OK to obtain the two
cycles of Fig. 15.111. Now you can clearly see that the peak value of
the voltage across the coil is 100 V to match the analysis of Fig. 15.35.
It is also clear that the applied voltage leads the input current by an
angle that can be determined using the cursors. First activate the cursor
option by selecting the cursor key (a red plot through the origin) in the
second toolbar down from the menu bar. Then select V(Vs:+) at the
bottom left of the screen with a left click of the mouse, and set it at that
point where the applied voltage passes through the horizontal axis with
a positive slope. The result is A1 � 4 ms at �4.243 mV � 0 V. Then
select I(R) at the bottom left of the screen with a right click of the
mouse, and place it at the point where the current waveform passes
through the horizontal axis with a positive slope. The result is A2 �
4.15 ms at �55.15 mA � 0.55 A � 0 A (compared to a peak value of
14.14 A). At the bottom of the Probe Cursor dialog box, the time dif-
ference is 147.24 ms.

Now set up the ratio

�

v � 52.99°

The phase angle by which the applied voltage leads the source is 52.99°
which is very close to the theoretical solution of 53.13° obtained in Fig.
15.39. Increasing the number of data points for the plot would have
increased the accuracy level and brought the results closer to 53.13°.

v
�
360°

147.24 ms
��

1000 ms

FIG. 15.111

A plot of the steady-state response (t � 3 ms) for vL, vs, and i  for the circuit of Fig. 15.109.
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Electronics Workbench

We will now examine the response of a network versus frequency rather
than time using the network of Fig. 15.79 which now appears on the
schematic of Fig. 15.112. The ac current source appears as AC–CUR-
RENT–SOURCE in the Sources tool bin next to the ac voltage source. 
Note that the current source was given an amplitude of 1 A to establish
a magnitude match between the response of the voltage across the net-
work and the impedance of the network. That is,

� ZT � � � � � � � � � Vs �

Before applying computer methods, we should develop a rough idea
of what to expect so that we have something to which to compare the
computer solution. At very high frequencies such as 1 MHz, the imped-
ance of the inductive element will be about 25 k� which when placed
in parallel with the 220 � will look like an open circuit. The result is
that as the frequency gets very high, we should expect the impedance of
the network to approach the 220-� level of the resistor. In addition,
since the network will take on resistive characteristics at very high fre-
quencies, the angle associated with the input impedance should also
approach 0 �. At very low frequencies the reactance of the inductive
element will be much less than the 220 � of the resistor, and the net-
work will take on inductive characteristics. In fact, at, say, 10 Hz, the
reactance of the inductor is only about 0.25 � which is very close to a
short-circuit equivalent compared to the parallel 220-� resistor. The
result is that the impedance of the network is very close to 0 � at very
low frequencies. Again, since the inductive effects are so strong at low

Vs�
1 A

Vs�
Is

FIG. 15.112

Obtaining an impedance plot for a parallel R-L network using Electronics Workbench.
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frequencies, the phase angle associated with the input impedance
should be very close to 90°.

Now for the computer analysis. The current source, the resistor ele-
ment, and the inductor are all placed and connected using procedures
described in detail in earlier chapters. However, there is one big differ-
ence this time that the user must be aware of: Since the output will be
plotted versus frequency, the Analysis Setup heading must be selected
in the AC Current dialog box for the current source. When selected,
the AC Magnitude must be set to the value of the ac source. In this
case, the default level of 1A matches that of the applied source, so we
were set even if we failed to check the setting. In the future, however, a
voltage or current source may be used that does not have an amplitude
of 1, and proper entries must be made to this listing.

For the simulation the sequence Simulate-Analyses-AC Analysis is
first applied to obtain the AC Analysis dialog box. The Start fre-
quency will be set at 10 Hz so that we have entries at very low fre-
quencies, and the Stop frequency will be set at 1MHz so that we have
data points at the other end of the spectrum. The Sweep type can
remain Decade, but the number of points per decade will be 1000 so
that we obtain a detailed plot. The Vertical scale will be set on Linear.
Within Output variables we find that only one node, 1, is defined.
Shifting it over to the Selected variables for analysis column using the
Plot during simulation key pad and then hitting the Simulate key will
result in the two plots of Fig. 15.112. The Show/Hide Grid key was
selected to place the grid on the graph, and the Show/Hide Cursors
key was selected to place the AC Analysis dialog box appearing in Fig.
15.112. Since two graphs are present, we must define the one we are
working on by clicking on the Voltage or Phase heading on the left side
of each plot. A small red arrow will appear when selected to keep us
aware of the active plot. When setting up the cursors, be sure that you
have activated the correct plot. When the red cursor is moved to 10 Hz
(x1), we find that the voltage across the network is only 0.251 V (y1),
resulting in an input impedance of only 0.25 �—quite small and
matching our theoretical prediction. In addition, note that the phase
angle is essentially at 90° in the other plot, confirming our other
assumption above—a totally inductive network. If we set the blue cur-
sor near 100 kHz (x2 � 102.3 kHz), we find that the impedance at
219.2 � (y2) is closing in on the resistance of the parallel resistor of
220 �, again confirming the preliminary analysis above. As noted in the
bottom of the AC Analysis box, the maximum value of the voltage is
219.99 � or essentially 220 � at 1 MHz. Before leaving the plot, note
the advantages of using a log axis when you want a response over a
wide frequency range.
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PROBLEMS

SECTION 15.2 Impedance and the Phasor Diagram

1. Express the impedances of Fig. 15.113 in both polar and
rectangular forms.

   = 157 rad/sω  f  = 10 kHz

R = 6.8 Ω

L = 2 H

   = 377 rad/sω

L = 0.05 H

 f  = 50 Hz

   = 377 rad/sω

C = 10    Fµ C = 0.05    Fµ R = 200 Ω

(a) (b) (c)

(d) (e) (f)

FIG. 15.113

Problem 1.

2. Find the current i for the elements of Fig. 15.114 using
complex algebra. Sketch the waveforms for v and i on the
same set of axes.

i

R 3 �

(a)

v  =  21 sin(qt + 10°)

i

XL 7 �

(b)

v  =  49 sin(qt + 70°)

i

XC 100 �

(c)

v  =  25 sin(qt – 20°)

+

–

+

–

+

–

i

R  =  5.1 k�

(d)

v  =  4 � 10–3 sin(qt – 120°)

i

L  =  0.1 H

(e)

v  =  16 sin(377t + 60°)

i

C  =  2 mF

(f)

v  =  120 sin qt

+

–

+

–

+

–
f  =  5 kHz

FIG. 15.114

Problem 2.

3. Find the voltage v for the elements of Fig. 15.115 using
complex algebra. Sketch the waveforms of v and i on the
same set of axes.

FIG. 15.115

Problem 3.

0.016 H

i  =  1.5 sin(377t + 60°)

v

+

–

i  =  4 � 10–3 sin qt

R 22 �

(a)

v L

(b)

i  =  0.02 sin(157t + 40°)

C 0.05 mF

(c)

v

+

–

+

–

a c



696  SERIES AND PARALLEL ac CIRCUITS
a c

SECTION 15.3 Series Configuration

4. Calculate the total impedance of the circuits of Fig.
15.116. Express your answer in rectangular and polar
forms, and draw the impedance diagram.

XL2
  =  7 k�

4 k�

R1  =  1 k�

R2

(c)

XL1  =  3 k�

ZT

R  =  6.8 �

XL 6.8 �

(a)

ZT
8 �

R1  =  2 �

R2

(b)

XC  =  6 �

ZT

FIG. 15.116

Problem 4.

L2  =  0.2 H

C  =  10 mF

R  =  47 �

(c)

L1  =  0.06 H

ZT

R  =  3 �

XL 4 �

(a)

ZT
5 k�

R  =  0.5 k�

XL2

(b)

ZT

XC  =  7 � XC  =  4 k�

XL1
  =  2 k�

f  =  1 kHz

FIG. 15.117

Problem 5.

5. Calculate the total impedance of the circuits of Fig.
15.117. Express your answer in rectangular and polar
forms, and draw the impedance diagram.

6. Find the type and impedance in ohms of the series circuit
elements that must be in the closed container of Fig.
15.118 for the indicated voltages and currents to exist at
the input terminals. (Find the simplest series circuit that
will satisfy the indicated conditions.)

I  =  60 A ∠  70°

E  =  120 V ∠  0° ?

(a)

+

–

I  =  20 mA ∠  40°

E  =  80 V ∠  320° ?

(b)

+

–

I  =  0.2 A ∠  –60°

E  =  8 kV ∠  0° ?

(c)

+

–

FIG. 15.118

Problems 6 and 26.
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7. For the circuit of Fig. 15.119:
a. Find the total impedance ZT in polar form.
b. Draw the impedance diagram.
c. Find the current I and the voltages VR and VL in pha-

sor form.
d. Draw the phasor diagram of the voltages E, VR, and

VL, and the current I.
e. Verify Kirchhoff’s voltage law around the closed loop.
f. Find the average power delivered to the circuit.
g. Find the power factor of the circuit, and indicate

whether it is leading or lagging.
h. Find the sinusoidal expressions for the voltages and

current if the frequency is 60 Hz.
i. Plot the waveforms for the voltages and current on the

same set of axes.

8. Repeat Problem 7 for the circuit of Fig. 15.120, replacing
VL with VC in parts (c) and (d).

E  =  100 V ∠  0°

R  =  8 �

VR
+ – VL

+ –

XL  =  6 �

I

+

–
ZT

FIG. 15.119

Problems 7 and 47.

E  =  120 V ∠  20°

R  =  10 �

VR
+ –

VC
+ –

XC  =  30 �

I

+

–
ZT

FIG. 15.120

Problem 8.

+

–
ZT

vC+ –

0.1 mF

C

0.47 k�

vR+ –

Ri

e  =  20 sin qt
f  =  1 kHz

FIG. 15.121

Problems 9 and 49.

9. Given the network of Fig. 15.121:
a. Determine ZT.
b. Find I.
c. Calculate VR and VL.
d. Find P and Fp.

10. For the circuit of Fig. 15.122:
a. Find the total impedance ZT in polar form.
b. Draw the impedance diagram.
c. Find the value of C in microfarads and L in henries.
d. Find the current I and the voltages VR, VL, and VC in

phasor form.
e. Draw the phasor diagram of the voltages E, VR, VL,

and VC, and the current I.
f. Verify Kirchhoff’s voltage law around the closed loop.
g. Find the average power delivered to the circuit.
h. Find the power factor of the circuit, and indicate

whether it is leading or lagging.
i. Find the sinusoidal expressions for the voltages and

current.
j. Plot the waveforms for the voltages and current on the

same set of axes.

FIG. 15.122

Problem 10.

+

–
ZT

vL+ –

XC  =  10 �

vR+ –

R  =  2 �

e  =  70.7 sin 377t

vC
+ –

XL  =  6 �

i



+

–
ZT

vL+ –

XC  =  1 k�

vR+ –

R  =  3 k�

e  =  6 sin(314t + 60°)

vC
+ –

XL  =  2 k�

i

FIG. 15.123

Problem 11.
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E = 20 V(rms) 80 � Scope = 45.27 V( p -p)

+

–

R+

–

FIG. 15.124

Problem 12.

Scope = 21.28 V( p -p)

+

–

R+

–

29.94 mA(rms)

L

I

E = 10 V(rms)
f = 1 kHz

FIG. 15.125

Problem 13.

*13. Using the DMM current reading and the oscilloscope
measurement of Fig. 15.125:
a. Determine the inductance L.
b. Find the resistance R.

11. Repeat Problem 10 for the circuit of Fig. 15.123.

12. Using the oscilloscope reading of Fig. 15.124, determine
the resistance R.

*14. Using the oscilloscope reading of Fig. 15.126, determine
the capacitance C.

E = 12 V(rms)

Scope = 8.27 V( p -p)
+

+

–

C

R

10 k�

–

f = 40 kHz

FIG. 15.126

Problem 14.

+

–

V1
+ –

9 �6.8 �

E  =  60 V ∠  5°
V2

+ –

40 �

(b)

+

–

V2
+ –

2 k�

E  =  120 V ∠  20°

6 k�

(a)

V1
+ –

FIG. 15.127

Problem 15.

SECTION 15.4 Voltage Divider Rule

15. Calculate the voltages V1 and V2 for the circuit of Fig.
15.127 in phasor form using the voltage divider rule.
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+

–
V1

3.3 k�4.7 k�

E  =  120 V ∠  0°

30 k�

(b)

+

–

V2
+ –

20 �

E  =  20 V ∠  70°

20 �

(a)

V1
+ –

60 �

V2 10 k�

FIG. 15.128

Problem 16.

vC+ –

+

–

30 �

e  =  �2(20) sin(377t + 40°)

L  = 0.2 H

i
C  =  4 mFL  = 0.2 H

vR+ –

FIG. 15.129

Problems 17, 18, and 50.

*17. For the circuit of Fig. 15.129:
a. Determine I, VR, and VC in phasor form.
b. Calculate the total power factor, and indicate whether

it is leading or lagging.
c. Calculate the average power delivered to the circuit.
d. Draw the impedance diagram.
e. Draw the phasor diagram of the voltages E, VR, and

VC, and the current I.
f. Find the voltages VR and VC using the voltage divider

rule, and compare them with the results of part (a)
above.

g. Draw the equivalent series circuit of the above as far
as the total impedance and the current i are concerned.

16. Calculate the voltages V1 and V2 for the circuit of Fig.
15.128 in phasor form using the voltage divider rule.

*18. Repeat Problem 17 if the capacitance is changed to 
1000 mF.

19. An electrical load has a power factor of 0.8 lagging. It
dissipates 8 kW at a voltage of 200 V. Calculate the
impedance of this load in rectangular coordinates.
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*23. For the series R-L-C circuit of Fig. 15.133:
a. Plot ZT and vT versus frequency for a frequency range

of zero to 20 kHz in increments of 1 kHz.
b. Plot VC (magnitude only) versus frequency for the

same frequency range of part (a).
c. Plot I (magnitude only) versus frequency for the same

frequency range of part (a).

ZT C

R

E  =  120 V ∠ 0° VC

+

–

L

8 nF

1 k� 20 mH

I

FIG. 15.133

Problem 23.

SECTION 15.5 Frequency Response of the 

R-C Circuit

*21. For the circuit of Fig. 15.131:
a. Plot ZT and vT versus frequency for a frequency range

of zero to 20 kHz.
b. Plot VL versus frequency for the frequency range of

part (a).
c. Plot vL versus frequency for the frequency range of

part (a).
d. Plot VR versus frequency for the frequency range of

part (a).

L 20 mH VL

–

+
ZT

1 k�

R
VR –+

+

–

e  =  7.07 sin qt
E  =  5 V ∠  0°

FIG. 15.131

Problem 21.

*22. For the circuit of Fig. 15.132:
a. Plot ZT and vT versus frequency for a frequency range

of zero to 10 kHz.
b. Plot VC versus frequency for the frequency range of

part (a).
c. Plot vC versus frequency for the frequency range of

part (a).
d. Plot VR versus frequency for the frequency range of

part (a).

C 0.5 mF VC

–

+ZT

100 �

R
VR –+

+

–
e  =  �2(10) sin qt

FIG. 15.132

Problem 22.

*20. Find the series element or elements that must be in the
enclosed container of Fig. 15.130 to satisfy the following
conditions:
a. Average power to circuit � 300 W.
b. Circuit has a lagging power factor.

+

–

2 �

E  =  120 V ∠  0°

I  =  3 A ∠  v

?

FIG. 15.130

Problem 20.
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SECTION 15.7 Admittance and Susceptance

24. Find the total admittance and impedance of the circuits of
Fig. 15.134. Identify the values of conductance and sus-
ceptance, and draw the admittance diagram.

22 �

ZT

YT

(d)

10 � 60 �

ZT

YT

(e)

22 � 6 � 9 k�

ZT

YT

(f)

3 k� 6 k�

ZT

YT

(a)

R  =  47 �

ZT

YT

(b)

XL  =  200 �

ZT

YT

(c)

XC  =  0.6 �

25. Find the total admittance and impedance of the circuits of
Fig. 15.135. Identify the values of conductance and sus-
ceptance, and draw the admittance diagram.

FIG. 15.134

Problem 24.

26. Repeat Problem 6 for the parallel circuit elements that
must be in the closed container for the same voltage and
current to exist at the input terminals. (Find the simplest
parallel circuit that will satisfy the conditions indicated.)

0.6 k�

(c)

0.5 k�R  =  3 �

XL  =  8 �

(a)

ZT

20 �

40 �

(b)

70 �

YT

ZT

YT

0.2 k�

ZT

YT

FIG. 15.135

Problem 25.
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SECTION 15.8 Parallel ac Networks

27. For the circuit of Fig. 15.136:
a. Find the total admittance YT in polar form.
b. Draw the admittance diagram.
c. Find the voltage E and the currents IR and IL in pha-

sor form.
d. Draw the phasor diagram of the currents Is, IR, and IL,

and the voltage E.
e. Verify Kirchhoff’s current law at one node.
f. Find the average power delivered to the circuit.
g. Find the power factor of the circuit, and indicate

whether it is leading or lagging.
h. Find the sinusoidal expressions for the currents and

voltage if the frequency is 60 Hz.
i. Plot the waveforms for the currents and voltage on the

same set of axes.

28. Repeat Problem 27 for the circuit of Fig. 15.137, replac-
ing IL with IC in parts (c) and (d).

29. Repeat Problem 27 for the circuit of Fig. 15.138, replac-
ing E with Is in part (c).

E 20 k�XC

+

–

R 10 k�

IR

Is  =  2 mA ∠  20°

IC

FIG. 15.137

Problem 28.

10 �XL

+

–

R 12 �

IR

Is

IL

YT

E  =  60 V ∠  0°

FIG. 15.138

Problems 29 and 48.

30. For the circuit of Fig. 15.139:
a. Find the total admittance YT in polar form.
b. Draw the admittance diagram.
c. Find the value of C in microfarads and L in henries.
d. Find the voltage E and currents IR, IL, and IC in pha-

sor form.
e. Draw the phasor diagram of the currents Is, IR, IL, and

IC, and the voltage E.
f. Verify Kirchhoff’s current law at one node.
g. Find the average power delivered to the circuit.
h. Find the power factor of the circuit, and indicate

whether it is leading or lagging.
i. Find the sinusoidal expressions for the currents and

voltage.
j. Plot the waveforms for the currents and voltage on the

same set of axes.

is  =  3 sin(377t + 60°) R 1.2 � 2 �XL XC 5 �

+

–

iR iL iC

e

FIG. 15.139

Problem 30.

E 5 �XL

+

–

YT
R 2 �

IR

Is  =  2 A ∠  0°

IL

FIG. 15.136

Problem 27.
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31. Repeat Problem 30 for the circuit of Fig. 15.140.

32. Repeat Problem 30 for the circuit of Fig. 15.141, replac-
ing e with is in part (d).

is  =  5 � 10–3 sin(377t – 20°) R 3 k� 4 k�XL XC 2 k�

+

–

iR iL iC

e

FIG. 15.140

Problem 31.

e  =  35.4 sin(314t + 60°) XC 5 � 22 �R XL 10 �

+

–

iC iR iL
YT

is

FIG. 15.141

Problem 32.

SECTION 15.9 Current Divider Rule

33. Calculate the currents I1 and I2 of Fig. 15.142 in phasor
form using the current divider rule.

I  =  20 A ∠  40°

R 33 �

60 �XL1

10 �XL2

I1

I2

I  =  6 A ∠  30°

I1

R

3 �

XL

4 �

I2
XC

6 �

(b)(a)

FIG. 15.142

Problem 33.

SECTION 15.10 Frequency Response of the Parallel

R-L Network

*34. For the parallel R-C network of Fig. 15.143:
a. Plot ZT and vT versus frequency for a frequency range

of zero to 20 kHz.
b. Plot VC versus frequency for the frequency range of

part (a).
c. Plot IR versus frequency for the frequency range of

part (a).

VC2 mFC

+

–

R 40 �

IR

ZT

I  =  50 mA ∠ 0°

FIG. 15.143

Problems 34 and 36.
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*35. For the parallel R-L network of Fig. 15.144:
a. Plot ZT and vT versus frequency for a frequency range

of zero to 10 kHz.
b. Plot IL versus frequency for the frequency range of

part (a).
c. Plot IR versus frequency for the frequency range of

part (a).

36. Plot YT and vT (of YT � YT �vT) for a frequency range of
zero to 20 kHz for the network of Fig. 15.143.

37. Plot YT and vT (of YT � YT �vT) for a frequency range of
zero to 10 kHz for the network of Fig. 15.144.

38. For the parallel R-L-C network of Fig. 15.145:
a. Plot YT and vT (of YT � YT �vT) for a frequency range

of zero to 20 kHz.
b. Repeat part (a) for ZT and vT (of ZT � ZT �vT).
c. Plot VC versus frequency for the frequency range of

part (a).
d. Plot IL versus frequency for the frequency range of

part (a).

200 mHL

+

–

R 5 k�

IR

ZT

E  =  40 V ∠ 0°

IL

FIG. 15.144

Problems 35 and 37.

I  =  10 mA ∠ 0° R 1 k�
100 mH

L C 4 nF

ZT

IL

VC

+

–
YT

FIG. 15.145

Problem 38.

SECTION 15.12 Equivalent Circuits

39. For the series circuits of Fig. 15.146, find a parallel cir-
cuit that will have the same total impedance (ZT).

22 �

(a)

40 �

ZT

2 k�

(b)

8 k�

ZT

6 k�

FIG. 15.146

Problem 39.

40. For the parallel circuits of Fig. 15.147, find a series cir-
cuit that will have the same total impedance.

4.7 k�

R 20 k�XC
ZT

(a)

60 �
68 �RZT

(b)

XL

20 �XC

FIG. 15.147

Problem 40.
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41. For the network of Fig. 15.148:
a. Calculate E, IR, and IL in phasor form.
b. Calculate the total power factor, and indicate whether

it is leading or lagging.
c. Calculate the average power delivered to the circuit.
d. Draw the admittance diagram.
e. Draw the phasor diagram of the currents Is, IR, and IL,

and the voltage E.
f. Find the current IC for each capacitor using only

Kirchhoff’s current law.
g. Find the series circuit of one resistive and reactive

element that will have the same impedance as the
original circuit.

*42. Repeat Problem 41 if the inductance is changed to 1 H.

43. Find the element or elements that must be in the closed
container of Fig. 15.149 to satisfy the following condi-
tions. (Find the simplest parallel circuit that will satisfy
the indicated conditions.)
a. Average power to the circuit � 3000 W.
b. Circuit has a lagging power factor.

e R

220 �

1 mFC C 1 mF

+

–

iR iL

is  =  �2 sin 2p 1000t

L  =  10 mH

FIG. 15.148

Problems 41 and 42.

E  =  100 V ∠  0° ?20 �

I  =  40 A ∠  v

FIG. 15.149

Problem 43.

SECTION 15.13 Phase Measurements 

(Dual-Trace Oscilloscope)

44. For the circuit of Fig. 15.150, determine the phase rela-
tionship between the following using a dual-trace oscillo-
scope. The circuit can be reconstructed differently for
each part, but do not use sensing resistors. Show all con-
nections on a redrawn diagram.
a. e and vC

b. e and is
c. e and vL

is

C

R

e vC

+

–

L

vR –+

+

–

vL –+

FIG. 15.150

Problem 44.

45. For the network of Fig. 15.151, determine the phase rela-
tionship between the following using a dual-trace oscillo-
scope. The network must remain as constructed in Fig.
15.151, but sensing resistors can be introduced. Show all
connections on a redrawn diagram.
a. e and vR2
b. e and is
c. iL and iC

is

C

R1

e

+

–

iCvR2

+

–

iL
L

R2

FIG. 15.151

Problem 45.
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46. For the oscilloscope traces of Fig. 15.152:
a. Determine the phase relationship between the wave-

forms, and indicate which one leads or lags.
b. Determine the peak-to-peak and rms values of each

waveform.
c. Find the frequency of each waveform.

Vertical sensitivity = 0.5 V/div.
Horizontal sensitivity = 0.2 ms/div.

v1

v2

Vertical sensitivity = 2 V/div.
Horizontal sensitivity = 10    s/div.

v1

v2

�

(II)(I)

FIG. 15.152

Problem 46.

SECTION 15.15 Computer Analysis

PSpice or Electronics Workbench

47. For the network of Fig. 15.119 (use f � 1 kHz):
a. Determine the rms values of the voltages VR and VL

and the current I.
b. Plot vR, vL, and i versus time on separate plots.
c. Place e, vR, vL, and i on the same plot, and label

accordingly.

48. For the network of Fig. 15.138:
a. Determine the rms values of the currents Is, IR, and IL.
b. Plot is, iR, and iL versus time on separate plots.
c. Place e, is, iR, and iL on the same plot, and label

accordingly.

49. For the network of Fig. 15.121:
a. Plot the impedance of the network versus frequency

from 0 to 10 kHz.
b. Plot the current i versus frequency for the frequency

range zero to 10 kHz.

*50. For the network of Fig. 15.129:
a. Find the rms values of the voltages vR and vC at a fre-

quency of 1 kHz.
b. Plot vC versus frequency for the frequency range zero

to 10 kHz.
c. Plot the phase angle between e and i for the frequency

range zero to 10 kHz.

Programming Language (C��, QBASIC, Pascal, etc.)

51. Write a program to generate the sinusoidal expression for
the current of a resistor, inductor, or capacitor given the
value of R, L, or C and the applied voltage in sinusoidal
form.

52. Given the impedance of each element in rectangular
form, write a program to determine the total impedance
in rectangular form of any number of series elements.

53. Given two phasors in polar form in the first quadrant,
write a program to generate the sum of the two phasors in
polar form.
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GLOSSARY

Admittance A measure of how easily a network will
“admit” the passage of current through that system. It is
measured in siemens, abbreviated S, and is represented by
the capital letter Y.

Admittance diagram A vector display that clearly depicts
the magnitude of the admittance of the conductance,
capacitive susceptance, and inductive susceptance, and
the magnitude and angle of the total admittance of the
system.

Current divider rule A method by which the current
through either of two parallel branches can be determined
in an ac network without first finding the voltage across the
parallel branches.

Equivalent circuits For every series ac network there is a
parallel ac network (and vice versa) that will be “equiva-
lent” in the sense that the input current and impedance are
the same.

Impedance diagram A vector display that clearly depicts
the magnitude of the impedance of the resistive, reactive,

and capacitive components of a network, and the magnitude
and angle of the total impedance of the system.

Parallel ac circuits A connection of elements in an ac net-
work in which all the elements have two points in common.
The voltage is the same across each element.

Phasor diagram A vector display that provides at a glance
the magnitude and phase relationships among the various
voltages and currents of a network.

Series ac configuration A connection of elements in an ac
network in which no two impedances have more than one
terminal in common and the current is the same through
each element.

Susceptance A measure of how “susceptible” an element is to
the passage of current through it. It is measured in siemens,
abbreviated S, and is represented by the capital letter B.

Voltage divider rule A method through which the voltage
across one element of a series of elements in an ac network
can be determined without first having to find the current
through the elements.




