Example 3.10

An ISP is granted a block of addresses starting with 190.100.0.0/16 (65,536 addresses). The ISP needs to distribute these addresses to three groups of customers as follows:
a. The first group has 64 customers; each needs 256 addresses.
b. The second group has 128 customers; each needs 128 addresses.
c. The third group has 128 customers; each needs 64 addresses.
Design the subblocks and find out how many addresses are still available after these allocations.

Example 3.10 (continued)

Solution
Figure 3.9 shows the situation.
Group 1
For this group, each customer needs 256 addresses. This means that $8(\log 2256)$ bits are needed to define each host. The prefix length is then $32-8=24$. The addresses are

```
1st Customer: 190.100.0.0/24 190.100.0.255/24
2nd Customer: 190.100.1.0/24 190.100.1.255/24
64th Customer: 190.100.63.0/24 190.100.63.255/24
Total = 64\times256=16,384
```


Example 3.10 (continued)

Group 2
For this group, each customer needs 128 addresses. This means that $7(\log 2128)$ bits are needed to define each host. The prefix length is then $32-7=25$. The addresses are

```
1st Customer: 190.100.64.0/25 190.100.64.127/25
2nd Customer: 190.100.64.128/25 190.100.64.255/25
128th Customer: 190.100.127.128/25 190.100.127.255/25
Total = 128 人 128=16,384
```


Example 3.10 (continued)

Group 3

For this group, each customer needs 64 addresses. This means that $6\left(\log _{2} 64\right)$ bits are needed to each host. The prefix length is then $32-6=26$. The addresses are

```
1st Customer: 190.100.128.0/26 190.100.128.63/26
2nd Customer: 190.100.128.64/26 190.100.128.127/26
128th Customer: 190.100.159.192/26 190.100.159.255/26
Total = 128\times64=8192
```

Number of granted addresses to the ISP: 65,536 Number of allocated addresses by the ISP: 40,960 Number of available addresses: 24,576

Figure 3.9 An example of address allocation and distribution by an ISP

Table 3.3 Addresses for private networks

Range			Total
10.0 .0 .0	to	10.255 .255 .255	2^{24}
172.16 .0 .0	to	172.31 .255 .255	2^{20}
192.168 .0 .0	to	192.168 .255 .255	2^{16}

Example 3.11 :A company is granted the site address 211.80.64.0 .The company needs six subnets. Design the subnets?

Solution:
No. of subnet must be power of 2 therefore we design 8 subnets
No.of subnet bits $=\log 2(8)=3$ bits

Ip address 211.80 .64 .0 is class c

Net	Sub	Host
24 Bit	3 Bit	8 Bit

Subnet	NET	Subnet	Host	Subnet IP
Subnet 0	211.80 .64	000	00000	211.80 .64 .0
	211.80 .64	000	11111	211.80 .64 .31
Subnet 1	211.80 .64	001	00000	211.80 .64 .32
	211.80 .64	001	11111	211.80 .64 .63
Subnet 2	211.80 .64	010	00000	211.80 .64 .64
	211.80 .64	010	11111	211.80 .64 .95
Subnet 3	211.80 .64	011	00000	211.80 .64 .96
	211.80 .64	011	11111	211.80 .64 .127
Subnet 4	211.80 .64	100	00000	211.80 .64 .128
	211.80 .64	100	11111	211.80 .64 .159
Subnet 5	211.80 .64	101	00000	211.80 .64 .160
	211.80 .64	101	11111	211.80 .64 .191
Subnet 6	211.80 .64	110	00000	211.80 .64 .192
	211.80 .64	110	11111	211.80 .64 .223
Subnet 7	211.80 .64	111	00000	211.80 .64 .224
	211.80 .64	111	11111	211.80 .64 .255

