An ISP is granted a block of addresses starting with 190.100.0.0/16 (65,536 addresses). The ISP needs to distribute these addresses to three groups of customers as follows:

- a. The first group has 64 customers; each needs 256 addresses.
- b. The second group has 128 customers; each needs 128 addresses.
- c. The third group has 128 customers; each needs 64 addresses.
- Design the subblocks and find out how many addresses are still available after these allocations.

Example 3.10 (continued)

Solution

Figure 3.9 shows the situation.

Group 1

For this group, each customer needs 256 addresses. This means that 8 (log2 256) bits are needed to define each host. The prefix length is then 32 - 8 = 24. The addresses are

1st Customer:	190.100.0.0/24	190.100.0.255/24	
2nd Customer:	190.100.1.0/24	190.100.1.255/24	
64th Customer:	190.100.63.0/24	190.100.63.255/24	
$Total = 64 \times 256 = 16,384$			

Example 3.10 (continued)

Group 2

For this group, each customer needs 128 addresses. This means that 7 (log2 128) bits are needed to define each host. The prefix length is then 32 - 7 = 25. The addresses are

1st Customer:	190.100.64.0/25	190.100.64.127/25	
2nd Customer:	190.100.64.128/25	190.100.64.255/25	
128th Customer	: 190.100.127.128/25	190.100.127.255/25	
$Total = 128 \times 128 = 16,384$			

Group 3

For this group, each customer needs 64 addresses. This means that 6 ($\log_2 64$) bits are needed to each host. The prefix length is then 32 - 6 = 26. The addresses are

1st Customer:	190.100.128.0/26	190.100.128.63/26	
2nd Customer:	190.100.128.64/26	190.100.128.127/26	
128th Customer.	: 190.100.159.192/26	190.100.159.255/26	
$Total = 128 \times 64 = 8192$			

Number of granted addresses to the ISP: 65,536 Number of allocated addresses by the ISP: 40,960 Number of available addresses: 24,576

Figure 3.9 An example of address allocation and distribution by an ISP

Table 3.3 Addresses for private networks

Range			Total
10.0.0.0	to	10.255.255.255	2^{24}
172.16.0.0	to	172.31.255.255	2^{20}
192.168.0.0	to	192.168.255.255	2 ¹⁶

Example 3.11 :A company is granted the site address 211.80.64.0 .The company needs six subnets. Design the subnets?

Solution:

No. of subnet must be power of 2 therefore we design 8 subnets No.of subnet bits=Log2(8)=3 bits

Ip address 211.80.64.0 is class c

Net	Sub	Host
24 Bit	3 Bit	8 Bit

Subnet	NET	. Subnet	. Host	Subnet IP
Subnet 0	211.80.64	000	00000	211.80.64.0
	211.80.64	000	11111	211.80.64.31
	211.80.64	001	00000	211.80.64.32
Subnet 1	211.80.64	001	11111	211.80.64.63
	211.80.64	010	00000	211.80.64.64
Subnet 2	211.80.64	010	11111	211.80.64.95
Subnet 3	211.80.64	011	00000	211.80.64.96
	211.80.64	011	11111	211.80.64. 127
Subnet 4	211.80.64	100	00000	211.80.64. 128
	211.80.64	100	11111	211.80.64. 159
Subnet 5	211.80.64	101	00000	211.80.64. 160
	211.80.64	101	11111	211.80.64. 191
Subnet 6	211.80.64	110	00000	211.80.64. 192
	211.80.64	110	11111	211.80.64. 223
Subnet 7	211.80.64	111	00000	211.80.64. 224
	211.80.64	111	11111	211.80.64.255