Integrating both sides, we get

$$
\begin{aligned}
& \int d v=8.8 \times 10^{13} \int \sin \left(6.28 \times 10^{6} t\right) d t \\
& v=-1.4 \times 10^{7} \cos \left(6.28 \times 10^{6} t\right)+K_{1}
\end{aligned}
$$

where K_{1} is a constant of integration whose value can be found from
known initial conditions; $\mathrm{t}=0, v=1.5 \times 10^{6} \mathrm{~m} / \mathrm{s}$
Substituting these values, we get $1.5 \times 10^{6}=-1.4 \times 10^{7}+K_{I}$
$K_{l}=1.55 \times 10^{7} \mathrm{~m} / \mathrm{s}$
Putting this value of K_{l}, we get

$$
\begin{aligned}
v & =1.55 \times 10^{7}-1.4 \times 10^{7} \cos \left(6.28 \times 10^{6} t\right) \\
v=\frac{d x}{d t} & =1.55 \times 10^{7}-1.4 \times 10^{7} \cos \left(6.28 \times 10^{6} t\right)
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{aligned}
\int d x & =\int\left(1.55 \times 10^{7}-1.4 \times 10^{7} \cos \left(6.28 \times 10^{6} t\right)\right) d t \\
x & =1.55 \times 10^{7} t-2.229 \sin \left(6.28 \times 10^{6} t\right)+K_{2}
\end{aligned}
$$

When $t=0, x=0$

$$
K_{2}=0
$$

$$
x=1.55 \times 10^{7} t-2.229 \sin \left(6.28 \times 10^{6} t\right)
$$

Uniform Electric Field : Initial Velocity Perpendicular to the Field

Let an electron having an initial velocity of u along X-axis enter at point 0 the space between two plane parallel plates A and B where an electric field E exists along the Y-axis as shown. While moving between the two plates, the electron experiences a vertical acceleration along Y -axis but none
along X-axis. It is worth emphasizing that since there is no force along X axis, the electron velocity remains constant along this direction.

Fig. 2.2 Initial velocity perpendicular to the field The axial distance travelled by the electron is:

$$
\begin{equation*}
x=u t \tag{i}
\end{equation*}
$$

There is no initial electron velocity along y-axis but as the electron moves between the plates, its velocity along Y-axis keeps on increasing.

$$
a_{y}=\frac{e E}{m}=\frac{e}{m} \cdot \frac{V}{d}
$$

The velocity and displacement
along y -axis after time t are given by

$$
\begin{gather*}
v=a_{y} t \\
y=\frac{1}{2} a_{y} t^{2} \tag{ii}
\end{gather*}
$$

Substituting value of t from Eq. (i) in Eq. (ii), we get

$$
y=\frac{1}{2} a_{y}\left(\frac{x}{u}\right)^{2}=\left(\frac{1}{2} \cdot \frac{a_{y}}{u^{2}}\right) x^{2}
$$

It shows that the electron moves along a parabolic path in the region between the two plates.

If an electron enter at angle θ as shown. A few characteristics of this motion are worth noting
(i) the velocity along x-axis remains constant and equal to the initial axial velocity because there is no force and hence no acceleration along x -axis.
(ii) the time taken to travel the parabolic path is equal to that taken to travel the axial distance $A B$.
(iii) time taken by the electron to rise from A to C is equal to that taken by it to fall from C to B and each is equal to half the time taken to travel the axial distance $A B$.
(iv) velocity of impact or arrival at point B is exactly the same as the initial velocity at point A.
(v) the net vertical distance traveled by the electron is zero because the distance traveled upwards is exactly equal and opposite to that traveled downwards. Hence, the two cancel out.

Example

A 500-V electron enters at an angle of 60° to the electric field existing between two plates separated in vacuum by a distance of 3 cm and having a fixed potential difference of V volt between them. The electron reaches point B where $A B=10 \mathrm{~cm}$. Calculate (a) the time taken by the electron to go from A to $\mathrm{B}(\mathrm{b})$ the value of V if the electron is to reach point B (c) highest point of ascent of the electron.

Solution

By a $500-\mathrm{V}$ electron is meant an electron which has been accelerated through 500 V so that its
kinetic energy is

$$
E_{k}=\frac{m u^{2}}{2}=e V
$$

$u=\sqrt{\frac{2 e V}{m}}=5.93 * 10^{5} \sqrt{V}=5.93 * 10^{5} \sqrt{500}=1.326 * 10^{7} \mathrm{~m} / \mathrm{s}$
Initial velocity along x -axis $u_{x}=u \cos 60^{\circ}=6.6308 \times 10^{6} \mathrm{~m} / \mathrm{s}$
Initial velocity along y-axis $u_{y}=u \sin 60^{\circ}=1.148 \times 10^{7} \mathrm{~m} / \mathrm{s}$
(a) As u_{x} remains constant, the time taken by the electron to travel the distance $A B$ is $t=0.1 / u_{x}=0.1 / 6.6308 \times 10^{6}=1.5081 \times 10^{-8} \mathrm{~s}$
(b) The vertical distance traveled by the electron can be found by using the well-known relation

$$
S=u_{y} t+\frac{1}{2} a_{y} t^{2}
$$

Since the vertical distance
traveled by the electron upwards is equal and opposite to that traveled by
it downwards, the two cancel out. Hence, putting $S=0$ in the above equation, we get

$$
a_{y}=\frac{-2 u_{y}}{t}=-1.5231 \times 10^{15}
$$

The distances and velocity etc. directed upwards are taken as negative whereas those directed downwards are taken as positive. The negative sign merely indicates that u_{y} and a_{y} are oppositely-directed.

$$
\begin{gathered}
a_{y}=\frac{e E}{m}=\frac{e}{m} \cdot \frac{V}{d} \\
V=\frac{a_{y} m d}{e}=\frac{1.5231 \times 10^{15} \times 9.1 \times 10^{-31} \times 0.03}{1.602 \times 10^{-19}}=259.8 \mathrm{~V}
\end{gathered}
$$

(c) For finding the point of highest ascent i.e. point \mathbf{C}, the following wellknown relation may be used

$$
v^{2}-u^{2}=2 a S
$$

Now, remembering that at point $\mathrm{C}, V y=0$,

$$
\begin{array}{ll}
S=\frac{-u_{y}{ }^{2}}{2 a_{y}} & 0-u_{y}{ }^{2}=2 a_{y} S \\
S=-0.0433 \mathrm{~m}=-4.33 \mathrm{~cm}
\end{array}
$$

The negative sign again indicates that the distance is travelled upwards

$$
y_{\max }=4.33 \mathrm{~cm}
$$

PROBLEMS

Q1: An electron starts from rest at the negative plate separated by 2 cm and having a potential difference of 1500 volts. How long does it take to reach a speed of $10^{7} \mathrm{~m} / \mathrm{s}$ and what position does it reach at this speed? Find the kinetic energy of the electron when it hits the anode?
(Ans; $0.38 \mathrm{~cm}, 1500 \mathrm{eV}$)

Q2:Electrons accelerated from rest through 400 V are introduced at A into a uniform electric field E of intensity $150 \mathrm{~V} / \mathrm{cm}$. If the electrons emerge at $\mathrm{B} 5 \times 10^{-9} \mathrm{~s}$ later, determine distance AB .
(Ans;4.98 cm)

Q3:Two parallel plates A and B are spaced 1 cm apart. A stream of electrons is projected at an accelerating voltage of 2 kV into the space between the plates through a hole in plate A at an angle of 30° to it. Find the value and polarity of the potential difference which is required between A and B in order that the electron just touches plate B .
(Ans; 500 V)

