Conductivity of Extrinsic Semiconductor.

$$\sigma = n_{i}e\mu_{n} + p_{i}e\mu_{p}$$
For n-type

$$\sigma_{n} = n_{n}e\mu_{n} + p_{n}e\mu_{p}$$
Since $(n_{n}) \gg (p_{n})$

$$\sigma_{n} = n_{n}e\mu_{n}$$
and if $n_{n}=N_{D}$ then $\sigma_{n} = N_{D}e\mu_{n}$
For p-type

$$\sigma_{p} = n_{p}e\mu_{n} + p_{p}e\mu_{p}$$
Since $(p_{p}) \gg (n_{p})$

$$\sigma_{p} = p_{p}e\mu_{p}$$
and if $p_{p}=N_{A}$ then

$$\sigma_{p} = N_{A}e\mu_{p}$$

Example

P-type sample with *l*=6mm, A=0.5mm², R=120 Ω . Calculate majority and minority carriers if intrinsic carrier density is 2.5×10^{19} /m³. Given μ_n =0.38m²/Vs, μ_p =0.18m²/Vs.

Solution

$$R = \rho \frac{l}{A} = \frac{l}{\sigma A}$$
$$\sigma_p = p_p e \mu_p$$

 $n_i^2 = n_p p_p$

$$p_{p} = \frac{\sigma_{p}}{e\mu_{p}} = \frac{100}{1.6 \times 10^{-19} \times 0.18} = 3.46 \times 10^{21} / m^{3}$$
$$n_{p} = \frac{n_{i}^{2}}{p_{p}} = 1.9 \times 10^{17} / m^{3}$$

Drift Current Density

An electric field is applied to a semiconductor will produce force on electrons and holes so that they will experience a net acceleration and net movement. This net movement of charge due to an electric field is called *drift*. The net drift of charge gives rise to a *drift current*. The current density due to electrons drift

 $J_n = ne\mu_n E$ The current density due to electrons drift

$$J_p = pe\mu_p E$$

The total current density due to electrons and holes drift

$$J = J_n + J_p = ne\mu_n E + pe\mu_p E$$

Example

Calculate the drift current density in a gallium arsenide sample at T=300 K, with doping concentration N_a=0, N_d=10²²/m³, μ_n =0.85m²/V.s, μ_p =0.04m²/V.s, E=10 V/cm, n_i=2.2×10¹⁷/m³.

Solution

Since N_D>>N_a then it is n-type

$$n_n \approx N_D - N_A$$

 $n \approx 10^{22} / m^3$

The minority hole concentration is

$$p = \frac{n_i^2}{n} = 3.24 \times 10^2 \,/\, m^3$$

$$J = (1.6 \times 10^{-19})(0.85)(10^{22})(10^3) = 136 \times 10^4 \, A \, / \, m^2$$

Diffusion Current Density

It is gradual flow of charge from a region of high density to a region of low density. Current density due to electron diffusion is

$$J_n = eD_n \frac{dn}{dx}$$

Current density due to hole diffusion is

$$J_{p} = -eD_{p}\frac{dp}{dx}$$

Where D_n , D_p (cm²/s) are electron and hole diffusion constants, respectively.

$\frac{dn}{dx}$	Density gradient of electrons
$\frac{dp}{dx}$	Density gradient of holes

Total Current Density

The total current density is the sum of these four components

$$J = en\mu_{n}E + ep\mu_{p}E + eD_{n}\frac{dn}{dx} - eD_{p}\frac{dp}{dx}$$

Einstein Relation

This relation between the mobility and diffusion coefficient.

$$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{kT}{e}$$
$$D = \frac{kT}{e}\mu = \frac{\mu}{39}$$

Example

Determine the diffusion coefficient, assume the mobility is $1000 \text{cm}^2/\text{V.s}$ at T=300K.

Solution

$$D = \frac{kT}{e} \,\mu = 0.0259 \times 1000 = 25.9 \,cm^2 \,/\,s$$

Rcombination

Recombination that result from the collision of an electron with a hole. This process is the return of a free electrons in the conduction band to valence band, there is a net recombination rate by difference between the recombination and generation rates.

$$L_n = \sqrt{D_n \tau} \qquad L_p = \sqrt{D_p \tau}$$

Where L the distance traveled by charge carrier before, recombination τ life time.

Hall Effect:

As shown there is a current I_x resulting from an applied electric field E_x in x- direction an electrons will drift v_x . A magnetic field B_y (wb/m²) is superposed on applied electric field E_x , whereby the current I_x and the magnetic flux B_y are perpendicular to each other. The electrons will experience a Lorentz force F_z perpendicular to I_x and B_y (in z direction)

$$F_{z} = ev_{x}B_{y}$$

Thus the electrons under the influence of this force will tend to crowds one face in the sample. This collection of electrons to one side establish an electric field in z-direction is known Hall effect E_H or E_z . Resulting a voltage V_H between the upper and the lower faces of the sample is observed:

On the other hand

$$eE_{z} = ev_{x}B_{z}$$

the current density J_x is given by:

$$E_z = v_x B_y$$
 $J_x = \sigma E_x$ $J_x = nev_x$

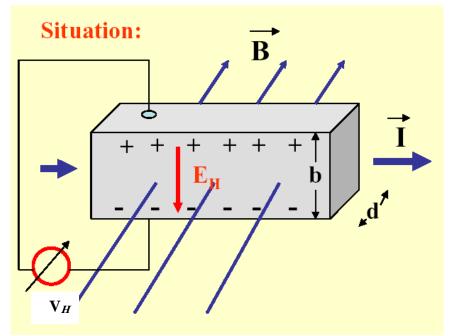


Fig. 5.7. Hall measurement situation

$$E_{z} = \frac{J_{x}}{ne} B_{y}$$
$$J_{x} = \frac{I_{x}}{A} = \frac{I_{x}}{bd}$$

Hall coefficient

 $R_{H} = \frac{1}{ne} \text{ Where n is the total number of charge carrier per volum}$ $E_{z} = R_{H} \frac{I_{x}}{bd} B_{y}$ $\frac{V_{H}}{b} = R_{H} \frac{I_{x}}{bd} B_{y}$ $V_{H} = R_{H} \frac{I_{x}}{d} B_{y}$ $n = \frac{I_{x}}{V_{\mu}ed} B_{y}$

Where all the quantities in the right-hand side of the equation can n measured. Thus the carrier concentration and carrier type can e obtained directly from the Hall measurement.

$$J_{x} = \sigma E_{x} = ne\mu E_{x}$$
$$\frac{I_{x}}{A} = \frac{ne\mu V_{x}}{L}$$

$$\mu = \frac{I_x L}{neV_x A}$$

Example

Determine the majority carrier concentration and mobility, sample 10^{-1} cm length and $10^{-2} \times 10^{-3}$ cm² cross section area, given Hall effect parameters $I_x=1$ mA, $V_x=12$.V, B=5×10⁻²tesla, $V_H=-6.25$ mV.

Solution

The negative Hall voltage indicate n-type semiconductor

$$n = \frac{I_x}{V_H e d} B_y$$

$$n = \frac{-(10^{-3})(5 \times 10^{-2})}{(1.6 \times 10^{-19})(10^{-5})(-6.25 \times 10^{-3})} = 5 \times 10^{21} m^{-3}$$

$$\mu = \frac{I_x L}{n e V_x A}$$

$$\mu = \frac{(10^{-3})(10^{-3})}{(1.6 \times 10^{-19})(5 \times 10^{21})(12.5)(10^{-4})(10^{-5})} = 0.1m^2 / V.s$$

Problems

Q1: Calculate the drift current density in silicon sample. If T=300 K, $N_d=10^{21}/m^3$, $N_a=10^{20}/m^3V$, $\mu_n=0.85m^2/V.s$, $\mu_p=0.04m^2/V.s$, E=35 V/cm..

(Ans: $6.8 \times 10^4 \text{A/m}^2$).

- Q2: A cubic doped n-type silicon semiconductor sample at T=300 K, μ_n =0.85m²/V.s, R=10k Ω , J=50A/cm² when 5V is applied. Calculate N_{D.}.
- Q3: Determine 10mm×1mm×1mm sample, a magnetic field 0.2wb/m² is superposed on applied voltage 1mV. Calculate Hall voltage if electrons density 7×10^{21} /m³ μ_n =0.4 m²/Vs.