# Reverse Bias Operation. Zener Diode

## **Zener Diodes**

Zener diodes are specially manufactured to operate in the Zener region. These diodes are made by means of heavily doped regions near the metal contacts to the semiconductor. The high density of charge carriers provides the means for a substantial reverse breakdown current to be sustained. These diodes are useful in applications where one would like to hold some load voltage constant, for example, in voltage regulators. If the voltage a cross zener diode less than Vz but greater than 0 with the polarity indicated the zener diode is in off state and the equivalent circuit is at open circuit.



equivalents for the (a) "on" and (b) "off" states

#### Voltage Regulator Circuit using a Zener Diode



(a) Fig. 13.3 (a) Basic Zener regulator

#### Vi and R fixed

To analysis of zener diode circuits can be broken into steps: -

1. Remove zener diode from the Circuit and calculate open circuit voltage



(b) Determining the state of the Zener diode

-If V>Vz the zener diode is on and can be substituted by the equivalent model of (a)

-If V < Vz the zener diode is off and the equivalent model of (b) can be substituted.



(c) Substituting the Zener equivalent for the "on" situation

2-Substitute the appropriate equivalent model for the network of on state

$$I_{R} = I_{z} + I_{L}$$

$$V_{L} = Vz$$

$$I_{L} = \frac{V_{L}}{R_{L}}$$

$$I_{R} = \frac{V_{R}}{R} = \frac{Vi - Vz}{R}$$

#### *The power P=IV*

The power dissipated by zener diode  $P_z=I_z$   $V_z$  must be less than  $P_{zm}$  specified for the device.

#### Example 13.1

Determine  $V_L$ ,  $V_R$ ,  $I_z$  and  $P_z$ . If Vi=16V, Vz=10V,  $R_1=1k$ ,  $P_{zmax}=30mw$ a- $R_{Load}=1.2k$ , b- $R_{Load}=3k$ 



Fig. 13.4 Example 13,1

#### **Solution**



Fig. 13.5 Determining V for the regulator

(a)

$$V_L = Vi \frac{R_L}{R_L + R_1} = 16 \frac{1.2}{1.2 + 1} = 8.73V$$

V=8.73V Less than  $V_z=10V$  then diode off  $V_L=8.73V$   $V_R=Vi-Vz=16-8.73=7.27V$   $I_z=0$  $P_z=0$ 





(b)

$$V_L = Vi \frac{R_L}{R_L + R_1} = 16 \frac{3}{3+1} = 12V$$

V=12V more than  $V_z=10V$  then diode on



Fig. 13.7 Network in the "on" state

$$I_z = I_R - I_L = 6 - 3.33 = 2.67 mA$$
  
 $P_z = I_z V_z = 2.67 \times 10^{-3} \times 10 = 26.7 mW$  Which is less than  $P_{zmax}$  30mw

Note :- The zener is in the on state as soon as the voltage a cross the zener diode is Vz volt. It will then lock in at this level and never reach the higher level. Zener diode used in regulator networks to maintained a fixed voltage a cross  $R_L$ .

#### Vi fixed, variable R<sub>L</sub>

Too small  $R_L$  will result  $V_L$  less than  $V_Z$  and the zener device will be in the off state. To determine the minimum load resistance that will turn the zener diode **on**, simply calculate the value of  $R_L$  that will result  $V_L = V_Z$ 

$$R_{L\min} = \frac{RVz}{Vi - Vz}$$

Any load resistance value greater than  $R_{Lmin}$  will ensure that the zener diode **on.** 

$$I_{L \max} = \frac{V_Z}{R_{L \min}}$$

Since  $I_z$  is limited to  $I_{zmax}$  as provided in data sheet

$$I_{R} = \frac{V_{R}}{R}$$
$$I_{L\min} = I_{R} - I_{Z\max}$$

And maximum resistance load

$$R_{L\,\mathrm{max}} = \frac{Vz}{I_{L\,\mathrm{min}}}$$

#### Example 13.2

Determine the (a) range of  $R_L$  and  $I_L$  that will result in  $V_{RL}$  maintained at 10V, (b) maximum wattage



# **Solution**

$$R_{L\min} = \frac{RVz}{Vi - Vz} = \frac{1k \times 10}{50 - 10} = 250\Omega$$

$$R_{L\max} = \frac{Vz}{I_{L\min}}$$

$$I_{L\min} = I_R - I_{Z\max}$$

$$I_{L\min} = \frac{Vi - Vz}{R} - I_{Z\max}$$

$$I_{L\min} = \frac{50 - 10}{1k} - 32m = 8mA$$

$$R_{L\max} = \frac{10}{8m} = 1.25k\Omega$$

$$I_{L\max} = \frac{V_Z}{R_{L\min}} = \frac{10}{250} = 40mA$$

$$P_{2max} = I_{2m}V_z = 32 \times 10^{-3} \times 10 = 320 \text{mW}$$

$$I_0 = \frac{V_L}{V_L} = \frac{10}{1250} = 40 \text{mA}$$

 $(\mathbf{b})$ 

 $\vec{I}_{l}$ 

 $40\,\mathrm{mA}$ 

Fig. 13.9 VL versus RL and IL for the regulator

(a)

## *R*<sup>*L*</sup> *fixed, variable Vi*

For fixed values of  $R_L$ , the voltage Vi must be sufficiently large to turn the zener diode on. The minimum turn on voltage  $Vi=Vi_{min}$ 

$$V_{i\min} = \frac{\left(R_{L} + R\right)Vz}{R_{L}}$$
$$V_{i\max} = I_{R\max}R + V_{Z}$$
$$I_{R\max} = I_{z\max} + I_{L}$$

# Example 13.3

Determine the range of *Vi* that will maintain zener diode in the on state



Fig.13.10 Example 13.3

**Solution** 



Fig. 13.11 VL versus Vi for the regulator

$$I_{R \max} = I_{z \max} + I_{L}$$

$$V_{i \max} = I_{R \max} R + V_{Z}$$

$$I_{R \max} = 60m + \frac{20}{1.2k} = 76.67mA$$

$$V_{i \max} = 76.67m \times 220 + 20 = 36.87V$$

Fig.13.12 Waveform generated by a filtered rectified signal

Note: The input could appear as shown and the output would remain constant at 20V.

Two or more reference level can be established by placing zener diodes in series. As long as Vi is greater than the sum of  $V_{z1}$  and  $V_{z2}$  both diodes will be in the on state and the three reference voltages will be available.



Fig. 13.13 Establishing three reference voltage levels.

Two back to back zener diodes can also be used as shown as long as Vi is greater than the Vz, Z2 turn on as a zener diode while Z1 is forward bias as short circuit, if Vi (Vi=10V) is smaller than the Vz, Z2 turn off as an open circuit and then Vo=10V.



Fig. 13.14 Sinusoidal ac regulation: (a) 40-V peak-to-peak sinusoidal ac regulator; (b) circuit operation at vi = 10 V.



Fig. 13.15 Simple square-wave generator.

## Problem

**Q1:** Design a voltage regulator that will maintain an input voltage of 20V across  $1k\Omega$  load with an input that will vary between 30 to 50V. Determine the proper value of  $R_s$  and the maximum current.

(Ans:  $R_s=0.5$ k $\Omega$ ,  $I_{zm}=40$ mA)

**Q2.** (a) Design the network to maintain  $V_L$  at 12 V for a load variation ( $I_L$ ) from 0

to 200 mA. That is, determine Rs and  $V_Z$ .

(b) Determine *PZ*max for the Zener diode of part (a).

