
 1

CHANNEL CODING
Introduction:

The purpose of channel coding is-

1-either to protect information from channel noise, distortion and jamming,

which is the subject of error detecting and correcting codes. Or,

2-to protect information from the 3
rd

 party (enemy) which is the subject of

encryption, scrambling.

In this course, only error detecting and correcting codes are discussed.

ERROR DETECTING AND CORRECTING CODES

Concept:

The basic idea behind error detecting or correcting codes is to add extra bits

(or digits) to the information such that the receiver can use it to detect or

correct errors with limited capabilities. These extra redundant bits are called

parity or check or correction bits. So, if for each k digits, r parity digits are

added then, the transmitted k+r=n digits will have r redundant digits and the

code is called (n,k) code with code efficiency or rate of (k/n). In general, the

ability of detection or correction depends on the techniques used and the n, k

parameters.

ERROR DETECTING CODES

Simple error detecting codes:

The simplest error detection schemes are the well- known even and odd

parity generators. For even parity, an extra bit is added for each k

information bits such that the total number of 1’s is even. At the receiver, an

error is detected if the number of 1’s is odd. However, if the number of 1’s

is even, then either no error occurs or even number of errors occur. Hence:

 probability(detecting errors)=probability(odd number of errors) and :

 probability.(undetected errors)=probability(even number of errors).

The same idea can be applied when number of 1’s is adjusted to be odd. The

code rate (efficiency) is k/(k+1).

To implement these parity generators, simple Ex-OR gates are used at TX

and RX as shown below:

 Information bits even parity bit
 1 0 1 0 1 1 1 1

 0 1 1 0 1 0 1 0 inform even parity bit

 1 0 1 1 1 1 1 0 k bits

 1 1 0 1 0 0 0 1

EX-OR gate

 2

 k+1

 rece. Bits i if ‘0’ no error is detected

 if‘1’ error is detected

 Hence, we can conclude that error detection is not ideal. It does not

detect errors with 100% probability , since even number of errors behaves

exactly the same as no error.

Example: for even parity check code, if K=7 and bit error probability (bit

error rate BER) is 10
-3

 , find the prob.of detected and undetected errors.

688

8

268

6

448

4

628

2 1028)1()1()1()det( pCppCppCppCerrorunP

 for p<<1.
m

nC is the combination factor)!(!

!

nmn

m
C

m

n




The probability of detected errors will be:

378

7

358

5

538

3

718

1 108)1()1()1()1()(det  ppCppCppCppCerrorsectedP

P(undetected errors) < P(detected errors)

Note that, although the code used for detection is so simple (few EX-OR

gates) but still we have big advantage since probability of detecting errors is

much higher than probability of undetected errors. The advantage of error

detection is clear when used together with ARQ (Automatic Repeat Query)

systems. In these systems, two channels are used, the usual forward channel

with error detection and a backward channel. Data are transmitted through

the forward channel. These data are protected against errors with parity error

detection. If the receiver detects errors then a backward channel will be used

to inform the transmitter to retransmit(repeat) the same data so that in the

next transmission, data is received correctly since errors occur randomly

(may occur or may not occur).

 ERROR CORRECTING CODES

In order to make the receiver have the ability to detect and correct errors,

then not only a single parity bit is used, but in stead r bits are used giving

what is called the (n,k) code.

EX-OR gate

 3

Basic definitions:

1-systematic and nonsystematic codes: If information bits (a’s) are

unchanged in their values and positions at the transmitted codeword, then

this code is said to be systematic.

 Input data [D]=[a1 a2 a3 …….ak],

 Output systematic (n,k) codeword is [C]=[a1 a2 a3 …….ak c1 c2 c3 …….cr]

 However if data bits are spread or changed at the output codeword then, the

code is said to be nonsystematic:

 Output nonsystematic(7,4) codeword is [C]=[c2 a1 c3 a2 c1 a4 a3]

2- Hamming distance: it is the number of differences between

corresponding bits and the ability of error detection and correction codes

depends on this parameter. The Hamming distance between two codewords

Ci and Cj is denoted by dij which is the number of bits that differ. For a

binary (n,k) code with 2
k
 possible codewords then the minimum Hamming

distance (HD) is the min(dij). Of course

 n  dij 0.

 Example: Find the Hamming distance between the two codewords:

[C1]=[1011100] and

 [C2]=[1011001].

 Solution: Here, the no. of bits that differ is 2, hence d12=2.

Example: Find the minimum Hamming distance for the 3 codewords:

 [C1]=[1011100],

 [C2]=[1011001]

 [C3]=[1011000].

Solution: Here d12=2, d13=1 and d23=1. Hence min(dij)=1=(HD). Note that

the calculation of HD becomes more difficult if no of codewords increases.

3-Hamming weight: This is the number of 1’s in the non zero codeward Ci.

It is denoted by i . As will be shown later, and for linear codes,

min=HD=min(dij). This simplifies the calculation of HD. As an example, if

[C1]=[1011000], then 1=3, and for [C2]=[0001010], then 2=2, and so on.

4-Linear and nonlinear codes: when the r parity bits are obtained from a

linear function of the k information bits then the code is said to be linear,

otherwise it is a nonlinear code.

 4

Hamming Bound: The purpose of Hamming bound is either

1) to choose the number of parity bits (r) so that a certain error correction

capability is obtained. Or

2) to find the error correction capability (t) if the number of parity bits (r) is

known

 For binary codes, this is given by:

 2
n-k

= 2
r
  



t

j

n

jC
0

where t is the number of bits to be corrected.

Example: for a single correction code with k=4 find the no. of parity bits

that should be added.
rrr CC




4

1

4

02 . This gives 2
r
1+(4+r) and the minimum r is r=3 (take

minimum r to have max code efficiency). This is the (7,4) code. the code is

said to be perfect code.

Perfect code:in Hamming bound ,if the equality is satisfied then this

code is said to be a perfect code.

 Example if k=5 and up to 3 errors are to be corrected, find the no. of check

bits that should be added.

:
rrrrr CCCC




5

3

5

2

5

1

5

02 that gives:

2
r
 1+(5+r)+(5+r)(4+r)/2+(5+r)(4+r)(3+r)/6, then min r here is r=9, and the

code is the (14,5) non perfect code(equal sign is not satisfied).

Note: If the (n,k) codewords are trans. through a channel having error

prob=pe, then prob. of decoding a correct word at the Rx for t-error

correcting code will be:

P(correct words)=p(no error)+p(1 error)+……..p(t errors)





t

i

in

e

i

e

n

i ppCwordcorrectP
0

)1()(

and prob(erroneous word)=1-P(correct word).

Hamming code:

The first example given above is the Hamming code. It is a single error

correcting perfect code with the following parameters: n=2
r
-1, HD=3, t=1.

The (7,4), (15,11), (31,26) …..are examples of Hamming codes. Hamming

codes are encoded and decoded as a linear block codes.

 5

Notes:

1-A linear code can correct t=Int[(HD-1)/2] of random (isolated) errors and

detect (HD-1) random(isolated errors).

2- HD is the min Hamming distance= min

Linear Block Codes:

Only systematic binary codes will be described. The r parity bits are obtained

using a linear function of the a’s data. Mathematically, this can be described

by the set of equations:

 C1=h11a1+h12a2+h13a3+……..+h1kak

 C2=h21a1+h22a2+h23a3+……..+h2kak

 ………………………………….. ……………..(1)

 Cr=hr1a1+hr2a2+hr3a3 +…… .+hrkak

Where + is mod-2 addition (EX-OR), product is the AND multiplication and

hij coefficients are binary variables for a binary coding. The complete output

codeword can be written in matrix form as:

 [C]= [D][G] ………(1) , where:





















rkkkk

r

r

hhhh

hhhh

hhhh

G

.1000

.....0100

.0010

.0001

][

321

2322212

1312111

= [Ik : Pkxr] which is kxn

matrix.

This matrix is called the generator matrix of the linear block code (LBC).

Equation(1) can also be written in matrix form as:

 [H] [C]
T
=[0] ………………………(2)

 where: [C]=[a1 a2 a3 …….ak c1 c2 c3 …….cr] and [H] matrix is in fact

related with [G] matrix by:

 [H]=[-P
T
 : Ir], and for binary coding this – sign drops out. This rxn [H]

matrix is called the parity check matrix. As will be shown, encoding can be

done either using eq(1) ([G] matrix) or eq(2) ([H] matrix), but decoding is

done using [H] matrix only.

 6

Encoding of Linear Block codes:

Example: a given binary (7,4) Hamming code with a parity check matrix:



















1000111

0101011

0011101

][H , find: 1) encoding circuit 2) all possible

codewords 3) error correction capability.

Solution : using eq(2), [H][C]
T
=[0] will give:

 C1=a1+a3+a4, C2=a1+a2+a4, C3=a1+a2+ a3.

 Data reg.

 Output codeword

 Parity reg.

Above equations for C’s are used to find the code table for this code as:

 a 1 a2 a3 a4 c1 c2 c3 i

 ……………………………………………………….

 0 0 0 0 0 0 0 --

 0 0 0 1 1 1 0 3

 0 0 1 0 1 0 1 3

 0 0 1 1 0 1 1 4

 0 1 0 0 0 1 1 3

 0 1 0 1 1 0 1 4

 0 1 1 0 1 1 0 4

 0 1 1 1 0 0 0 3

 1 0 0 0 1 1 1 4

 1 0 0 1 0 0 1 3

 1 0 1 0 0 1 0 3

 1 0 1 1 1 0 0 4

 1 1 0 0 1 0 0 3

 1 1 0 1 0 1 0 4

 1 1 1 0 0 0 1 4

 1 1 1 1 1 1 1 7

a1 a2 a3 a4

C1 C2 C3

 7

 i(min)=3=HD, i.e. t= int(3-1)/2=1 bit. Hence, this is a single error

correcting code(Hamming code).

Example: Find the generator matrix for the previous LBC.

Solution:





















0111000

1010100

1100010

1110001

][][T

k PIG

Note that the equation [C]=[D][G] gives:

[C]=[a1 a2 a3 a4 (a1+a3+a4) (a1+a2+a4) (a1+a2+a3)]=[a1 a2 a3 a4 c1 c2 c3]

as obtained before.

 Decoding of linear block codes:

If [R]=[C]+[E] is the received codeword, where [E] is the error word, if

[E]=[0] then no error occurs but if [E]=[0 0 …0 0 1 0] then single error

occurs at 2
nd

 position(from the right), or if [E]=[0 0 0…0 1 0 0 1 0 1] then

triple errors occur at 1
st
, 3

rd
 and 6

th
 positions. Depending on t not all of these

errors can be corrected. If [R] is multiplied by [H] (the receiver must know

[H]) then:

 [H] [R]
T
=[H][C]

T
+ [H] [E]

T
= [H][E]

T
 since [H][C]

T
 is set to [0] at the TX.

Then define [S] vector :

 [S]=[H] [R]
T
= [H][E]

T
……………..(3)

 This [S] r-vector is called the syndrome. If [S]=[0], the RX decides on no

error but if [S][0], then the receiver must use [S] to find [E] and hence the

corrected [C]=[R]+[E] binary coding). Of course, [S] is calculated from [R].

The problem is now how to find [E] from [S]?. In Eqs(4) we have n

unknowns in r equations (n>r). To solve this problem, maximum likelihood

criterion is used. i.e, most probable error words are chosen and usually the

most probable errors are those with less number of errors. So the RX finds

[E] that matches [S] such that the less number of errors solution is chosen.

Simple decoding procedure for single error: For single error Hamming

codes, above mathematical solution is reduced into comparing the [S] r-

vector with all columns of the [H] matrix (2
r
-1 non zero and non repeated

columns). That column similar to [S] is the position of error. This is

mathematically equivalent to multiply [H][E]
T
 such that [E] has only one

nonzero element at the ith position or at the ith column. Hence, for single

error correction, the parity check matrix [H] must satisfy the following:

i. No all zero columns so as not to mix with the no error case.

 8

ii. No repeated columns so that the decoder can decode any received

word correctly with single error assumption.

Example: For previous example,[1]-Find the corrected word at the receiver,

for the previous example, if the received word [R]=[1001111]. [2]-Find the

syndrome vector if double errors occur at 1
st
 and last positions, comment.

[3]- Draw the decoder cct used to find the syndrome vector[S].

Solution:[1] If the received word is [R]=[1001111]

then,  SRH T 

































































0

1

1

1

1

1

1

0

0

1

1000111

0101011

0011101

]][[

which is similar to the 4
th

 column in [H].

Hence the corrected word=[R]+[0001000]= [1 0 0 0 1 1 1]

which checks with the table shown besides.

[2]-To find the syndrome vector[S] for double errors, then [S]=[H][E]
T
.

Where [E]=[1000001] corresponding to double errors at 1
st
 and last

positions. Then:

































































0

1

1

1

0

0

0

0

0

1

1000111

0101011

0011101

]][[][TEHS

Note that the syndrome for single error at the 4
th

 position is the same as the

syndrome for double errors at 1
st
 and last positions. This indicates that the

code is only capable of correcting single error as expected.

[3]- To draw the decoder cct, then :

 9

































































3

2

1

7

6

5

4

3

2

1

1000111

0101011

0011101

]][[][

s

s

s

r

r

r

r

r

r

r

RHS T

 which gives:

s1=r1+r3+r4+r5, s2=r1+r2+r4+r6, s3=r1+r2+r3+r7 implemented as shown:

 receiver register

 r1 r2 r3 r4 r5 r6 r7

 s1 s2 s3

 Example:

The generator matrix of a LBC is given by:



















1011100100

0110110010

0011011001

][G

a-Use Hamming bound to find error correction capability. b-Find the

parity check matrix. c-find the code table, Hamming weight and the error

correction capability then compare with part(a). d-If the received word is

[R]=[1011110011], find the corrected word at the Rx.

Solution: (a) n=10, k=3, r=7 , (10,3) code. Using Hamming bound, then:

1010

2

10

1

10

0

72 tCCCC  that gives 128>1+10+(10*9/2), i.e t=2

double error correction.

 11

b-































1000000100

0100000010

0010000111

0001000101

0000100110

0000010011

0000001001

][][IPH T

with no ‘zero’ or repeated

columns.

The equation [H][C]
T
=[0] gives c1=a1, c2=a1+a2 and c3=a2+a3, c4=a1+a3,

c5=a1+a2+a3 c6=a2, c7=a3.
a1 a2 a3 c1 C2 c3 c4 c5 c6 c7 wi

0 0 0 0 0 0 0 0 0 0 ---

0 0 1 0 0 1 1 1 0 1 5

0 1 0 0 1 1 0 1 1 0 5

0 1 1 0 1 0 1 0 1 1 6

1 0 0 1 1 0 1 1 0 0 5

1 0 1 1 1 1 0 0 0 1 6

1 1 0 1 0 1 1 0 1 0 6

1 1 1 1 0 0 0 1 1 1 7

i(min)=5=HD, i.e. t= int(5-1)/2=2 bits. Hence, this is a double error

correcting code which checks with part(a).

d-If [R]=[1011110011], then:



































































































0

1

0

0

0

0

0

1

1

0

0

1

1

1

1

0

1

1000000100

0100000010

0010000111

0001000101

0000100110

0000010011

0000001001

]][[][TRHS

which is similar to the 9
th

. column in [H](from the left), hence corrected

word will be [1011110001].

