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CHANNEL CODING 
Introduction:   

The purpose of channel coding is-  

1-either to protect information from channel noise, distortion and jamming, 

which is the subject of error detecting and correcting codes. Or, 

2-to protect information from the 3
rd

 party (enemy) which is the subject of 

encryption, scrambling. 

In this course, only error detecting and correcting codes are discussed. 
 

ERROR DETECTING AND CORRECTING CODES 
 

Concept: 

The basic idea behind error detecting or correcting codes is to add extra bits 

(or digits) to the information such that the receiver can use it to detect or 

correct errors with limited capabilities. These extra redundant bits are called 

parity or check or correction bits. So, if for each k digits, r parity digits are 

added then, the transmitted k+r=n digits will have r redundant digits and the 

code is called (n,k) code with code efficiency or rate of (k/n). In general, the 

ability of detection or correction depends on the techniques used and the n, k 

parameters. 
 

ERROR DETECTING CODES 
 

Simple error detecting codes: 

The simplest error detection schemes are the well- known even and odd 

parity generators. For even parity, an extra bit is added for each k 

information bits such that the total number of 1’s is even. At the receiver, an 

error is detected if the number of 1’s is odd.  However, if the number of 1’s 

is even, then either no error occurs or  even number of errors occur. Hence: 

       probability(detecting errors)=probability(odd number of errors) and : 

       probability.(undetected errors)=probability(even number of errors). 

The same idea can be applied when number of 1’s is adjusted to be odd. The 

code rate (efficiency) is k/(k+1). 

To implement these parity generators, simple Ex-OR gates are used at TX 

and RX as shown below: 

           Information bits   even parity bit 
            1 0 1 0 1 1 1           1 

            0 1 1 0 1 0 1           0           inform                                        even parity bit 

            1 0 1 1 1 1 1           0           k bits                                                                                                   

            1 1 0 1 0 0 0           1 

 

EX-OR gate 
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                                                k+1 

                                          rece. Bits                             i         if ‘0’ no error is detected   

                                                                                          if‘1’ error is detected 

         Hence, we can conclude that error detection is not ideal. It does not 

detect errors with 100% probability , since even number of errors behaves 

exactly the same as no error.  

Example: for even parity check code, if K=7 and bit error probability (bit 

error rate BER) is 10
-3  

 , find the prob.of detected and undetected errors. 
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The probability of detected errors will be: 
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P(undetected errors) < P(detected errors) 

 

Note that, although the code used for detection is so simple (few EX-OR 

gates) but still we have big advantage since probability of detecting errors is 

much higher than probability of undetected errors. The advantage of error 

detection is clear when used together with ARQ (Automatic Repeat Query) 

systems. In these systems, two channels are used, the usual forward channel 

with error detection and a backward channel. Data are transmitted through 

the forward channel. These data are protected against errors with parity error 

detection. If the receiver detects errors then a backward channel will be used 

to inform the transmitter to retransmit(repeat) the same data so that in the 

next transmission, data is received correctly since errors occur randomly 

(may occur or may not occur). 
 

 ERROR CORRECTING CODES  
 

In order to make the receiver have the ability to detect and correct errors, 

then not only a single parity bit is used, but in stead r bits are used giving 

what is called the (n,k) code. 

 

 

 

 

EX-OR gate 
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Basic definitions:  

 

1-systematic and nonsystematic codes: If information bits ( a’s) are 

unchanged in their values and positions at the transmitted codeword, then 

this code is said to be systematic. 

   Input data [D]=[a1 a2  a3 …….ak],  

   Output systematic (n,k) codeword is [C]=[ a1 a2  a3 …….ak c1 c2 c3 …….cr]  

 However if data bits are spread or changed at the output codeword then, the 

code is said to be nonsystematic: 

  Output nonsystematic(7,4) codeword is [C]=[c2 a1 c3 a2 c1 a4 a3]  

 

2- Hamming distance: it is the number of differences between 

corresponding bits and the ability of error detection and correction codes 

depends on this parameter. The Hamming distance between two codewords 

Ci and Cj is denoted by dij which is the number of bits that differ. For a 

binary (n,k) code with 2
k
 possible codewords then the minimum Hamming 

distance (HD) is the min(dij). Of course  

 n  dij 0. 
 

  Example: Find the Hamming distance between the two codewords:               

[C1]=[1011100] and 

 [C2]=[1011001]. 

  Solution: Here, the no. of bits that differ is 2, hence d12=2. 

 

Example: Find the minimum Hamming distance for the 3 codewords: 

  [C1]=[1011100], 

  [C2]=[1011001]  

  [C3]=[1011000].  

Solution: Here d12=2, d13=1 and d23=1. Hence min(dij)=1=(HD). Note that 

the calculation of HD becomes more difficult if no of codewords increases. 

 

3-Hamming weight: This is the number of 1’s in the non zero codeward Ci. 

It is denoted by i . As will be shown later, and for linear codes, 

min=HD=min(dij). This simplifies the calculation of HD. As an example, if 

[C1]=[1011000], then 1=3, and for [C2]=[0001010], then 2=2, and so on.   

 

4-Linear and nonlinear codes: when the r parity bits are obtained from a 

linear function of the k information bits then the code is said to be linear, 

otherwise it is a nonlinear code. 
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Hamming Bound: The purpose of Hamming bound is either 

1) to choose the number of parity bits ( r) so that a certain error correction 

capability is obtained. Or  

2) to find the error correction capability (t) if the number of parity bits (r ) is 

known  

 For binary codes, this is given by: 

                                            2
n-k 

= 2
r
   



t

j

n

jC
0

      

where t is the number of bits to be corrected. 

Example: for a single correction code with k=4 find the no. of parity bits 

that should be added.  
rrr CC




4

1

4

02 . This gives 2
r
1+(4+r) and the minimum r is r=3 ( take 

minimum r to have max code efficiency). This is the (7,4) code. the code is 

said to be perfect code. 

Perfect code:in Hamming bound ,if the equality is satisfied then this 

code is said to be a perfect code. 

 Example if k=5 and up to 3 errors are to be corrected, find the no. of check 

bits that should be added.  

: 
rrrrr CCCC




5

3

5

2

5

1

5

02 that gives: 

2
r
 1+(5+r)+(5+r)(4+r)/2+(5+r)(4+r)(3+r)/6, then min r here is r=9, and the 

code is the (14,5) non perfect code(equal sign is not satisfied ). 
 

Note: If the (n,k) codewords are trans. through a channel having error 

prob=pe, then prob. of decoding a correct word at the Rx for t-error 

correcting code will be: 

P(correct words)=p(no error)+p(1 error)+……..p(t errors)  





t

i

in

e

i

e

n

i ppCwordcorrectP
0

)1()(
   

and prob(erroneous word)=1-P(correct word).  
 

Hamming code: 

The first example given above is the Hamming code. It is a single error 

correcting perfect code with the following parameters: n=2
r
-1, HD=3, t=1. 

The (7,4), (15,11), (31,26) …..are examples of Hamming codes. Hamming 

codes are encoded and decoded as a linear block codes. 
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Notes:  

1-A linear code can correct t=Int[(HD-1)/2] of random (isolated) errors and 

detect (HD-1) random(isolated errors). 

2- HD is the min Hamming distance= min 
 

Linear Block Codes:      

Only systematic binary codes will be described. The r parity bits are obtained 

using a linear function of the a’s data. Mathematically, this can be described 

by the set of equations: 

 

   C1=h11a1+h12a2+h13a3+……..+h1kak 

   C2=h21a1+h22a2+h23a3+……..+h2kak 

    …………………………………..          ……………..(1) 

   Cr=hr1a1+hr2a2+hr3a3 +…… .+hrkak 

 

Where + is mod-2 addition (EX-OR), product is the AND multiplication and 

hij coefficients are binary variables for a binary coding. The complete output 

codeword can be written in matrix form as: 

 

              [C]= [D][G] ………(1)          , where: 
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
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G

.1000

.....0100

.0010

.0001

][

321

2322212

1312111

= [ Ik : Pkxr ] which is  kxn 

matrix. 

This matrix is called the generator matrix of the linear block code (LBC). 

Equation(1) can also be written in matrix form as: 

 

                                [ H ] [C]
T
=[0] ………………………(2) 

 

 where:   [C]=[ a1 a2  a3 …….ak c1 c2 c3 …….cr] and [ H ] matrix is in fact 

related with [G] matrix by: 

 

      [ H ]=[-P
T
 : Ir], and for binary coding this – sign drops out. This rxn [H] 

matrix is called the parity check matrix. As will be shown, encoding can be 

done either using eq(1) ( [G] matrix ) or eq(2) ([H] matrix), but decoding is 

done using [H] matrix only. 
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Encoding of Linear Block codes: 

Example: a given binary (7,4) Hamming code with a parity check matrix: 
 

    


















1000111

0101011

0011101

][H  , find: 1) encoding circuit 2) all possible 

codewords 3) error correction capability. 

Solution : using eq(2), [H][C]
T
=[0] will give: 

 C1=a1+a3+a4, C2=a1+a2+a4, C3=a1+a2+ a3. 
 

                                                                                                                  Data reg. 

  

 

       Output codeword           

 

            

 

 

                                                                                                                  Parity reg. 

 

                                                                                                                   

Above equations for C’s are used to find the code table for this code as: 

               a 1     a2      a3      a4      c1       c2      c3           i 

                      ……………………………………………………….                

                         0     0     0      0     0        0     0      --  

                0     0     0      1     1      1     0      3  

                0     0     1      0     1      0     1      3  

                0     0     1      1     0      1     1      4 

                0     1     0      0     0      1     1      3 

                0     1     0      1     1      0     1      4 

                0     1     1      0     1      1     0      4 

                0     1     1      1     0      0     0      3                  

                1     0     0      0     1      1     1      4 

                1     0     0      1     0      0     1      3 

                1     0     1      0     0      1     0      3 

                1     0     1      1     1      0     0      4 

                1     1     0      0     1      0     0      3 

                1     1     0      1     0      1     0      4     

                1     1     1      0     0      0     1      4 

                1     1     1      1     1      1     1      7 

a1 a2 a3 a4 

C1 C2 C3 
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 i(min)=3=HD, i.e. t= int(3-1)/2=1 bit. Hence, this is a single error 

correcting code( Hamming code). 

 

Example: Find the generator matrix for the previous LBC. 

Solution: 

      





















0111000

1010100

1100010

1110001

][][ T

k PIG  

Note that the equation [C]=[D][G] gives: 

[C]=[a1  a2  a3  a4  (a1+a3+a4)  (a1+a2+a4)   (a1+a2+a3)]=[ a1  a2  a3  a4 c1 c2 c3] 

as obtained before. 

 

 Decoding of linear block codes: 

If [R]=[C]+[E] is the received codeword, where [E] is the error word, if 

[E]=[0] then no error occurs but if [E]=[0 0 …0 0 1 0] then single error 

occurs at 2
nd

 position( from the right), or if [E]=[0 0 0…0 1 0 0 1 0 1] then 

triple errors occur at 1
st
, 3

rd
 and 6

th
  positions. Depending on t not all of these 

errors can be corrected. If [R] is multiplied by [H] ( the receiver must know 

[H] ) then: 

  [H] [R]
T
=[H][C]

T
+ [H] [E]

T
= [H][E]

T
 since [H][C]

T
 is set to [0] at the TX. 

Then define [S]  vector : 

   [S]=[H] [R]
T
= [H][E]

T   
……………..(3) 

   This [S] r-vector is called the syndrome. If [S]=[0], the RX decides on no 

error but if [S][0], then the receiver must use [S] to find [E] and hence the 

corrected [C]=[R]+[E] binary coding). Of course, [S] is calculated from [R]. 

The problem is now how to find [E] from [S]?. In Eqs(4) we have n 

unknowns in r equations (n>r). To solve this problem, maximum likelihood 

criterion is used. i.e, most probable error words are chosen and usually the 

most probable errors are those with less number of errors. So the RX finds 

[E]  that matches [S] such that the less number of errors solution is chosen. 
 

Simple decoding procedure for single error: For single error Hamming 

codes, above mathematical solution is reduced into comparing the [S] r-

vector with all columns of the [H] matrix (2
r
-1 non zero and non repeated 

columns). That column similar to [S] is the position of error. This is 

mathematically equivalent to multiply [H][E]
T
 such that [E] has only one 

nonzero element at the ith position or at the ith column. Hence, for single 

error correction, the parity check matrix [H] must satisfy the following: 

i. No all zero columns so as not to mix with the no error case. 



 8 

ii. No repeated columns so that the decoder can decode any received 

word correctly with single error assumption.    

 

Example: For previous example,[1]-Find the corrected word at the receiver, 

for the previous example, if the received word  [R]=[1001111]. [2]-Find the 

syndrome vector if double errors occur at 1
st
 and last positions, comment. 

[3]- Draw the decoder cct used to find the syndrome vector[S]. 

Solution:[1] If the received word is [R]=[1001111] 

then,  SRH T 
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
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
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
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





0

1

1

1

1

1

1

0

0

1

1000111

0101011

0011101

]][[  

 

which is similar to the 4
th

 column in [H]. 

Hence the corrected word=[R]+[0001000]=  [1 0 0 0 1 1 1] 

which checks with the table shown  besides. 

 

[2]-To find the syndrome vector[S] for double errors, then [S]=[H][E]
T
. 

Where [E]=[1000001] corresponding to double errors at 1
st
 and last 

positions. Then: 


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
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
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










































0

1

1

1

0

0

0

0
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1

1000111

0101011

0011101

]][[][ TEHS
 

 

 

Note that the syndrome for single error at the 4
th

 position is the same as the 

syndrome for double errors at 1
st
 and last positions. This indicates that the 

code is only capable of correcting single error as expected. 

[3]- To draw the decoder cct, then : 
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












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
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
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


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



































3

2

1

7

6

5

4

3

2

1

1000111

0101011

0011101

]][[][

s

s

s

r

r

r

r

r

r

r

RHS T

 which gives: 

s1=r1+r3+r4+r5,  s2=r1+r2+r4+r6, s3=r1+r2+r3+r7  implemented as shown: 

 
                     receiver register 

                                                r1             r2        r3        r4        r5        r6      r7 

 

 

 

 

 

 

 

                                                           s1                                s2                               s3 

 Example:  

The generator matrix of a LBC is given by: 

         


















1011100100

0110110010

0011011001

][G
 

 

a-Use Hamming bound to find error correction capability. b-Find the 

parity check matrix. c-find the code table, Hamming weight and the error 

correction capability then compare with part(a). d-If the received word is 

[R]=[1011110011], find the corrected word at the Rx.  

 

Solution: (a) n=10, k=3, r=7 , (10,3) code. Using Hamming bound, then: 

 
1010

2

10

1

10

0

7 ...........2 tCCCC   that gives 128>1+10+(10*9/2), i.e t=2 

double error correction. 
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b- 

 































1000000100

0100000010

0010000111

0001000101

0000100110

0000010011

0000001001

][][ IPH T

with no ‘zero’ or repeated 

columns. 

The equation [H][C]
T
=[0] gives  c1=a1, c2=a1+a2 and c3=a2+a3, c4=a1+a3, 

c5=a1+a2+a3 c6=a2, c7=a3. 
a1 a2 a3 c1 C2 c3 c4 c5 c6 c7 wi 

0 0 0 0 0 0 0 0 0 0 --- 

0 0 1 0 0 1 1 1 0 1 5 

0 1 0 0 1 1 0 1 1 0 5 

0 1 1 0 1 0 1 0 1 1 6 

1 0 0 1 1 0 1 1 0 0 5 

1 0 1 1 1 1 0 0 0 1 6 

1 1 0 1 0 1 1 0 1 0 6 

1 1 1 1 0 0 0 1 1 1 7 

i(min)=5=HD, i.e. t= int(5-1)/2=2 bits. Hence, this is a double error 

correcting code which checks with part(a).  
                                                                                         

d-If [R]=[1011110011], then: 



































































































0

1

0

0

0

0

0

1

1

0

0

1

1

1

1

0

1

1000000100

0100000010

0010000111

0001000101

0000100110

0000010011

0000001001

]][[][ TRHS

 

 

which is similar to the 9
th

. column in [H](from the left),  hence corrected 

word will be [1011110001]. 
  


