River Mechanics
CH-6
Hydrodynamics of Fluid-Particle
Systems




What we know already...

 Water flow over mobile bed entrains sediment

— Movement of sediment modifies the flow, and also the
channel bed:
» Elevation, Roughness, and Slope

— Two phases:
 Liquid Phase (Mixture)
« Solid Phase

— Coupled flow and transport problem!

* Need to review some properties of sediment important in
sediment transport...



Sediment Grade Scale

Table 2.1 Sediment Grade Scale

Approximate Sieve Mesh

Size Range Openings Per Inch
Millimeters United States

Class Name Microns Inches Tyler Standard
(1) 2) (3) 4 (5) (6) (7}
Very large boulders 4,096-2,048 160-80
Large boulders 2,048-1.024 8040
Medium boulders 1,024-512 40-210)
small boulders 512-256 20-10
Large cobbles 256-128 10-5
Small cobbles 128-64 5-2.5
Very coarse gravel 64-32 2.5-1.3
Coarse gravel 32-16 1.3-06
Medium gravel 16-8 0.6-03 2-172
Fine gravel 84 0.3-0.16 5 5
Very fine gravel 4-7 0.16-0.08 9 10
Very coarse sand 2-1 2.000-1.000 2,000--1,000 16 I8
Coarse sand 1-172 1.000-0.500 1,000-500 32 35
Medium sand 1/2-1/4 0.500-0.250 500-250 60 60
Fine sand 1/4-1/8 0.250-0.125 250-125 115 120
Very fine sand 1/8-1/16 0.125-0.062 125-62 250 230
Coarse silt 1/16-1/32 0.062-0.031 62-31
Medinm silt 1/32-1/64 0.031-0.016 31-16
Fine silt 1/64-1/128 0.016-0.008 16-8
Very fine silt 1/128-1/256 0.008-0.004 84
Coarse clay 1/256-1/512 0.004—0.0020 4-2
Medium clay 1/512-1/1,024  0.0020-0.0010 2-1
Fine clay 1/1,024-1/2 048 0.0010-0.0005 1-0.5
Very fine clay 1/2,048-1/4,096  0.0005-0.00024 0.5-0.24




Size Frequency Distribution
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Figure 2,12 Cumulative semilogarithmic size-frequency graphs
for two sands.



Sediment Motion

« At velocities just above critical, grains will begin to roll
and slide intermittently along the bed:
— Material being moved called “contact load”

» At higher velocity, grains will make short jumps:

— Leaves the bed for a short instant of time and returning either to
come to rest or to continue in motion on bed

— Material being moved in this manner called “saltation load”

« Further increases in flow velocity lead to more frequent
jumps and some grains will be swept into flow and kept

In suspension for appreciable lengths
— Material being moved in this manner called “suspended load”



Classification of Sediment Load

« Three modes of transport: Suspension, saltation, and
rolling/sliding on bed

— Occur simultaneously
— Difficult to separate them, such as the difference between
saltation vs. contact load and saltation vs. suspension
— Difficulties are avoided by introducing the following terms:
 Bed Load — material moving on or near the bed
« Total Bed-Material Load or Bed Sediment Load (q.) — bed load

(ds,) + suspended load (qy.)
e Wash Load — sediment that never comes into contact with the bed

T.S. as bed load, g,

T.S. of bed material, q, < | |
total T.S. < | T.S. as suspended load, q,

T.S. as wash load, q_,



Classification of Sediment Load

* Imprecise but estimates of mode of
transport (Graf, 1971):

— Bed Load begins at u./v, > 0.10
— Suspended load begins at u./v,, > 0.40

Fig. 6.1 Scheme of the modes of transport.



Particle Motion with Linear

Resistance — Low Re Flow

« Based on Newton’s 2" Law

* Resulting equation known as BBO equation
(Basset, Boussinesq, and Oseen) — Actually
derived by Tchen (1947):

— Velocity field of infinite extent, no mutual
Interaction between particles, no particle rotation
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Particle Motion with Linear

Resistance — Larger Re Flow

 BBO equation no longer valid as resistance
becomes proportional to square of velocity:

— No theoretically sound approach for derivation of
equation at high Re

— Modification of the slow-motion equation

4ra®  dv, 4m® dv | 47’ (dvS dvj
_ _k )

3 %o 3 Pat 3 Pldt at
dv(t,) dv(t)
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Usually consider case of steady-

state motion...

Both equations from before are significantly
simplified...

v, —V)’ 47’

0=0-0-Cyatr 2! 0T (o)

v.—v) 4z’
CDazﬂp( > F 5 (P=p)g

— Need expressions of the drag coefficient to solve
this equation...

— Difficulty Is that the drag coefficient is a function
of the Re:

~ 2a(v, V)

p //
o,

Re



Usually consider case of steady-
state motion...

» For Re,<0.1 2> R = 3nudvg and Cp, = 24/Re,

_gd’*(p, - p)

VSS
181

» Over the entire range of Re,,:
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Drag Coefficient vs. Re,

— Applies to smooth, non-rotating spheres
moving in a fluid free of disturbances with
constant relative velocity...

Reynolds number, R
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Drag Coefficient vs. Re,

— To use this chart with the C-Re, axes
requires trial and error

* Instead you can use the submerged weight of the
sphere: et

F :?(75 -¥)

 Calculate F/pv? (v = kinematic viscosity)

 Locate ratio on auxiliary scale, move parallel to the
sloping lines to the C-Re, curve and read Re,



Drag Coefficient vs. Re,

— There are also approximate results generally
valid up to Re, = 2...

* Oseen (1927):

c -2 (1 + 3 pe j
Re 16

» Goldstein (1929):

Cp=2 1+£Rep—£Rep2+ a Re,’
Re, | 16 1,280 20,480




Drag Coefficient vs. Re,

— Empirical formulas for Re, > 2...

 Schiller et al. (1933):
2% (140.150Re,**")
Re

P

* Olson (1961) for Re, <100:

Cp =



Extending to More Difficult
Conditions...

— Influence of various effects which complicate the
problem (particle shape, boundary effects,
multiparticle influences, particle rotation and
roughness, turbulence)

— McNown (1951) proposed use of a Stokes number
(K) to quantify departure from earlier case for Re, <

0.1: 3
F = ,
G

— For higher Re,, usually simply assume the C
accounts for complicating effects

(7, —7)=K@Bmwd,)= K (674,2)



Particle Shape

Up to this point we have only
considered spherical particles (not
irregular shapes)

Analytical solutions only exist for low-
Reynolds number flow

McNown et al. (1950) suggested
shape factor using a, b, and c lengths
of perpendicular axes (“b” is the
maximum length, sediment falls in the
direction of “a”):

SF=—2

Jbe
For low Reynolds numbers (<0.1),
coefficient K is equal to the ratio of the
fall velocity of a sphere with the same
volume and weight as the particle to
the fall velocity of the particle
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Figure 2.3 Comparison of theoretical values of X for ellipsoids and observed values for ellipsoids
and several other shapes for Reynolds numbers less than ¢.1 {McNown, et al., 1951).



Particle Shape
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Particle Concentration

Settling velocity will differ due to 16
mutual interference of particles
— For a few closely spaced particles, it
has been observed that the settling
velocity increases (less drag) 1.4
— For particles dispersed throughout the R=9 _lod A
fluid, interference will reduce settling paiyd
velocity — called hindered settling o LT P
— McNown and Lin (1952): uniform quartz _2_33 - sl
sphere (no flocculation) experiments for o » j
Re, < 2.0 X diin=d
— Even for moderate concentrations, the
correction in the settling velocity /
becomes significant L0 ~
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Figure 2.5 Effect of concentration on fall velocity of uniform
quariz spheres (McNown and Lin, 1952).



Particle Concentration

 Maude et al. (1958) — empirical equation
proposed to be valid regardless of the
Reynolds number
K=@1-C,)"
C, =concentration
For Re, <1.0>m=45

For Re | >10* >m=2.2



Flow of a Mixture

* Newtonian — If volumetric concentration of
the particles is very small, C_<<1%

— Difference between density of mixture and
fluid, Ap << 16 kg/m?

— Transport as bed load and suspended load

— Most often encountered (or assumed) in rivers
and streams



Flow of a Mixture

* Quasi-Newtonian — If volumetric
concentration of the particles remains
small, C.<8%

— Difference between density of mixture and
fluid important, Ap < 130 kg/m?

— Transport of sediments as a concentrated
suspension



Flow of a Mixture

 Non-Newtonian — if volumetric concentration of
the particles exceeds C_>8%

— Difference between density of mixture and fluid
important, Ap > 130 kg/m?3

— Need to modify all concepts of Newtonian hydraulics
(resistance to flow, distribution of velocity, settling
velocity)

— Sometimes called hyperconcentrated suspensions
that occur when enormous guantities of sediment
enter small sloped channels due to extensive rainfall
events



Fluid Turbulence

* Experimental evidence that spherical
particles settle more slowly in a fluid with
vertical turbulence
— Reduction in fall velocity due to nonlinear

Interaction relation between drag and velocity
relative to fluid



Example

Assuming the criterion for suspended load
transport Is u./v,, > 0.40 and bed load
transport is u./v,, > 0.10, determine the
flow depth at which bed load and
suspended load transport commences in a
rectangular channel (B =5 m, S; = 0.001,

n = 0.02). Assume uniform, steady flow.
Also assume spherical particles with d;, =
2.0 mm and neglect bed form roughness.



Graf's Classification of Sediment
Transport Problems

« Determination of sedimentological rating curve, g, = f(q) for

given cross-section
« Determination of stability of bed in a given cross-section

« Determination of the stability of the channel slope (aggradation
and degradation) in a given reach

" Sedimerdological rating curve & §

q.(h)
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Ligugd rating curve

A
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serfidde diy
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Fig. 6.2 Rating curves for the | tquid discharge and the solid discharge



Graf's Classification of Sediment
Transport Problems

« Formulas used to calculate g, predict the
“capacity” for sediment transport

— If capacity Is larger than supply — net erosion
and transport occurs

— If supply is larger than capacity — deposition
and transport occurs

— If supply = capacity, then transport without
erosion or deposition

— If bed Is armoured, capacity may not be
satisified



What we know already...

« Saint-Venant equations for unsteady and non-
uniform flow over a fixed bed in a prismatic

channel with a small slope.. |

a_h + h a_U + U a_h = O B — ConStant Ulx.0) “\"\---\__\r-\_:-__: """"" “’ | wr ]
ot  ox  OX e o
ot OX ) OX ) OX B

PdR I

— For mobile bed:
« Se becomes a function of the friction coefficient for a mobile

bed (f and f")
S, =f(f,f"U,h)



Extending this to mobile bed...

— For mobile bed:
» Elevation over a mobile bed may vary, z(X,t)

» Exner expressed this change in bed elevation
using the following relationship: 5, U

ottt oox
 This relationship is usually expanded using the
continuity equation for the solid (particle) phase:

c’inr 1 aqs:O
ot (1-p) ox

P = porosity = Vi
VT

q. = C,Uh = solid discharge per unit width (volume)

- : V
C, =volume concentration of solid phase = V—S

m



Extending this to mobile bed...

— For mobile bed:

 Note that the solid discharge (q.) is a function of
the liguid discharge — sedimentological rating

curve
a_h+h8_U+U8_h:O B = constant
ot OX OX
ouU oU oh oz

L % g, = f (U, h, sediment)
ot (1-p) ox

3Unknowns: U (x,t), h(x,t), z(x,t)

2 Unknowns (Semi— Empirical): S, g,
Independent Variables: x,t



Equations of Saint-Venant-Exner

Flow over Mobile Bed

+U o

—+(0 g g .
OX OX X = f (U, h, sediment
/ qS ( )

S, =f(f',f",U,h)

>

Transport: Erosion and Deposition




Analytical Solutions

Saint-Venant-Exner equations are non-linear and
hyperbolic — impossible to derive analytical
solutions:

— Solutions are possible if you assume:
1. Quasi-Steady Flow — flow at small Froude numbers (Fr<0.6):
* Variation in liquid discharge is short-term
* Variation in bed elevation is long-term
* Bed changes occur after variation in discharge
* Flow can be assumed constant

* Solutions for this assumption allow us to analyze for
long-term bed elevation changes

2. Quasi-uniform flow:
ou

—=0
OX



Quasi-Steady/Uniform Flow

« Simplified Saint-Venant-Exner equations:
u> U°
9%

0Z
g—=-05=—-(¢ q=Uh

OX C’h

P o(U
OX’ ox\ Cq

a_zz:_\,{uzjau
OX’ C*q ) OX
oU  1({C*h)\é’z
&:_5( U J@xz




Quasi-Steady/Uniform Flow

« Simplified Saint-Venant-Exner equations:

oz &g, 1(C*h)\o°z
- p) —qS—L j =0

ot U3l U Jox?
2 2
2 k)lio0 «kpy=t% 1 CN
ot OX 30U (1-p) U

— Model is limited to large values of x and t,
x>3h/S,, and Fr < 0.6:

1og, 1 U Where K is the

0 . .
coefficient

K=K, =
30U (1-p) Se, of diffusion




Quasi-Steady/Uniform Flow

 For now we can use a power-law
expression for the solid discharge:

g, =aU™




Quasi-Steady/Uniform Flow

We can use these solutions to explain the
long-term evolution of the channel bed:

— Degradation
« Supply of solid discharge is reduced at the upstream
* Liquid discharge is increased

* Lowering of a fixed point on the channel bed at the
downstream

— Aggradation:

« Supply of solid discharge is increased at the upstream
« Liquid discharge is decreased
« Raising a fixed point on the channel bed at the downstream



blocking of sediments

Quasi-Steady/Uniform Flow

quasi-uniform flow

non-uniform flow

degradation

- degradation

raising of fixed point

supply of sediments

quasi-uniform flow
quasi-uniform flow

aggradation

aggradation

Fig. 6.4 Scheme of a degradation or an aggradation.



Degrading Channel Example

Consider the following scenario:
— Channel with mobile bed with uniform flow at depth, h = h°
— Eglscharge enters into a reservoir whose water level is lowered by
wW
— Causes a lowering of the fixed bed of Ah
— Degradation of the bed is initiated
— After long time, flow depth will return to h°
— During degradation, flow depth and discharge remain quasi-constant

 Ah=2z 00

channel reservoir

Fig. 6.5 Degradation due to lowering, Ah, of the fixed point on the bed.



Degrading Channel Exam

* Note position of x and z axes

Initial and boundary conditions:

z(X,0)=0, z(0,0)=Ah, Iim (x=2>Infinity) z(x,t)=

 Ah=2z 00

channel reservoir

eq. 6.15

Fig. 6.5 Degradation due to lowering, Ah, of the fixed point on the bed.

e



Degrading Channel Exam

For these boundary conditions!!!!

2J_

erfc(Y)zgje‘52d§
ﬂ-Y

— Solution:  z(x,t) = Aherfc

—Ah =z (0t)

reservoir

Fig. 6.5 Degradation due to lowering, Ah, of the fixed point on the bed.

e



Table for the complementary error function
(see Handbook of Mathematical Functions, 1964, National Bureau of Standards, pp. 310-311, formula 7.1.28)

Y erfc(Y) Y erfc(Y) | Y erfc(Y) |
0.00 1.00000 1.20 0.08969 2.30 0.00114
0.10 0.88754 1.30 0.06599 2.40 0.00069
0.20 0.77730 1.40 0.04772 2.50 0.00041
0.30 0.67137 1.50 0.03390 2.60 0.00024

. 0.40 0.57161 1.60 0.02365 2.70 0.00013
0.50 0.47950 1.70 0.01621 2.80 0.00008
0.60 0.39614 1.80 0.01091 2.90 0.00004
0.70 0.32220 1.90 0.00721 : 3.00 0.00002
0.80 0.25790 2.00 0.00468 3.10 0.00001
0.90 0.20309 2.10 0.00298 3.20 0.00001
1.00 0.15730 2.20 0.00186 3.30 0.00000
1.10 0.11979

= |
2 2
erflY) = Ffe-ﬁ dg 1.0:_

R

'
o= f eV d= 2002 V)| 1
0571

Y

i
e
-
prd

'5 12
Z(Y)-— _/\//

-t
. .——-i‘_

The complementary error function can be calculated ap;groxnmateq using the following expression :
erfc(Y)— (+a Y+a,Y +a, Y +a, Y +as Y +ag Y +e(Y) where ler)| <3 107’

= (0.0705230784 ; a, = 0.0422820123 : ay = 0.0092705272

a4 = (0.0001520143 ; as = 0.0002765672 ; ag = 0.0000430638




Degrading Channel Example

* For these boundary conditions!!!!

— Graf also discusses the time (t:,,,) When the
bed elevation is lowered 50% with respect to
the final elevation:

2% _ 0.5 = erfi| — 2%
Ah 2 JKt.,,,

erfc(0.48)=0.5 > %% __ — (.48
2. /Kt

Xepss = 0.48(2,[Kizp,

2
~ X50%

taows = 0.96%K




Aggrading Channel Example

« Consider the following scenario:

Channel with a mobile bed having uniform flow

Particular cross section is overloaded with sediment: Aqy IS
Increased
Aggradation of the channel bed will occur

After some time At, elevation of the bed and water surface
will increase by Ah

During aggradation, the discharge remains quasi-steady

overloading of solid discharge. Aq,

Fig. 6.6 Aggradation by overloading the supply of solid discharge, Aqgq .



Aggrading Channel Example

* Note position of x and z axes

* Initial and boundary conditions:
z(x,0)=0, z(0,t)=Ah(t), lim (x=>infinity) z(x,t)=0

overloading of solid discharge. Aq,

Fig. 6.6 Aggradation by overloading the supply of solid discharge, Aqgq .



Aggrading Channel Example

* For these boundary conditions!!!!

— Solution: 3 A et X j
Z(X,t) = Ah(t) er (ZM

K =K, (before overload)

overloading of solid discharge. Aq,

Fig. 6.6 Aggradation by overloading the supply of solid discharge, Aqgq .



Aggrading Channel Example

* For these boundary conditions!!!!

— Beneficial to define length of the zone of
aggradation:

overloading of solid discharge, Aq,

La = X0
£ _001-Y =180
Ah

L, =3.65,/Kt,,

Fig. 6.6 Aggradation by overloading the supply of solid discharge, Aqgq .



Aggrading Channel Example

* For these boundary conditions!!!!
— Volume of the supply of sediment, Aq,, during
time, At, is given by Ag, At and this quantity is
distributed over the bed of the channel:

overloading of solid discharge, Aq,

La
Ag At = (1- p)jz dx
0

AR(D) = DG

1.13(1- p)vKAt

Fig. 6.6 Aggradation by overloading the supply of solid discharge, Aqgq .



Example - Graf 6.A

A rectangular channel has a width of 5 m. At some point, the bed of
the channel changes from a fixed bed to a mobile bed with a d;; = 1
mm, p = 0.3, and s, = 2.6. The discharge of Q = 15 m3/s remains
constant and the water depth is 2.2 m.

A degradation of the channel starts at the junction between the fixed
bed and the mobile bed. Determine the time it will take to lower the
bed level down to z = 0.4Ah at a station located at L = 6R_/S;
downstream from the junction and draw the bed profile. ATso, what is
thekresulting bed profile if the length of the mobile bed is limited to
90 km?

is not valid | is valid
x=3 Ry /S,

Fig. Ex.6.A.1 Scheme of the degradation.



Example - Graf 6.A

« Note: To solve this problem, we need to be able
to calculate the solid-discharge

— We will use the Graf et al. (1968) formula for total-
load (we will learn more about this formula later):

is not valid | is valid
x=3 Ry /S,

Fig. Ex.6.A.1 Scheme of the degradation.

g, =CUh

g, =aU’

®=afr.)

O, =transport parameter = SR
\/(Ss _1)gd3

CI)A = 1039(\IJA )—2.52

¥, = shear intensity parameter = (SSS_Rl)d

e *h

b. =5

S




Example - Graf 6.A
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] = ji ]
i) | | ﬁ_!, ,-
i
. ' e —
—— ™ SO .%,1'.__
i
101 - e e e i
[ A el I 0 6 1t = 11
— }, =
2 R A R D
5 \
5 |
11 F L —
! l .
1 t = 8 s
S B 0 G [ 6 | -+——111 -
1 Dmor: = ——;l
® d=28.65 [mm) (Meyer-Pereret al,, 1934) I It i ¥ i
[ |
o d=0.785 [mm] (Gilber:, 1914) i
1 ! |
| . , ‘ ' s
0.1 L : .
0.0001 0.001 0.01 o, 0.1

Fig. 6.8 Equation of bed load, @, = f(‘.) , of Einstein (see Graf, 1971, p. 148).




Example - Graf 6.A

* To solve for the solid discharge, we need
several parameters: S_, R,
— Manning-Strickler equation for Se based on Q
(= UBh)
— Use Graf total load equation to get C_.UR;,
— Multiply C_,UR,, by h/R;, to get q.
— Calculate K assuming K = K,

1 1

1
K=K, ==b.q,
(1_ p) Se0

3




Example - Graf 6.A

1 11
K =K, ==b
o 3 SqS (1_ p) Seo
2
K =K, =1(5)£7.3><105 i j . :
3 s )(1-0.3) 0.00034

2

K=K =0511""
S



Example - Graf 6.A

 \WWe need to solve for the time it takes to
lower the bed down to z = 0.4Ah:

z(x,t) 0.4Ah _04
Ah Ah |

erfc(Y)=04—->Y =0.6=

X

2Kt
X=L=06R,/S, =20.65km
t=18.5 yrs




Example - Graf 6.A

R 117 m

St 0.00034

K 0.511 m¥s

Ah 3107 'm

1 579339310 =

Hrmin 10323.529
X Y erfc{y) z
10324 0.300 0.671 2.086
10400 0.302 0.669 2.079
10500 0.305 0.665 2.070
10750 0.312 0.659 2.047
11000 0.320 0.651 2.024
12000 0.349 0.622 1.933
13000 0.378 0.593 1.843
15000 0.435 0.538 1.671
20000 0.581 0.411 1.278
25000 0.725 0.304 0.945

| 20647 .06 0600 0.395 1.231|
30000 0.872 0.218 0.676
50000 1.453 0.040 0.124
75000 2173 0.002 0.006
50000 2E15 0.000 0.001
51200 2671 0.000 0.000

20647.06 m

z/Ah
0.671
0.669
0.666
0.659
0.651
0.622
0.593
0.538
0.411
0.304
0.396
n.21a
0.040
0.00z2
0.000
0.000

Degradation {z. m)

0.000

20000

Distance Downstream {mj}
40000 BO0O00

B0000

*

100000

1.000

2.000

3.000 +

4.000 +

5.000 -




Example - Graf 6.A

* If the mobile bed is limited to 90 km...
z =0.01Ah
Z(Axr’]t) —0.01—> erfe(Y)=0.01—>Y =1.82

X
2+ Kt
2

t=—2 _ _12x10°5=37.93yrs

4Y2K

Y =




Example - Graf 6.A

20000

Distance Downstream (m)
40000 BO000

Ry, 117 m
o 0.00034 L 20647 05 m
K 0511 m¥s
Ah 4472 m
t 12E+08 s
Xeri 10323.529
X Y erfc(Y) z z/Ah
10324 0208 0768 343  0.768
10400 0210 D786 3428  0.766
10500 0212 D764 3418 0.764
10750 0217 0769 3394 0789 0
11000 0222 0753 330 0753 0.000
12000 0242 073 3273 0732 -
13000 0262 0710 31477 0710 E 1.000 A
16000 0303 0DBE8 2999  0.668 = - o0
20000 0404  D5ER 2540  0.568 s “
25000 0505 0475 2126 0478 E 2,000 -
[ 20847 08 0417 0555 2454 0555 S
30000 0606 D332 1751 0392 2 40m -
£0000 1010 0153  0BBE 0143
75000 1514 0032 0144 0032 5 000 -

=]

1.817 0.010 0.045 0.010

80000

100000




SOLUTION :

i)

The steady flow will be considered to be guasi-uniform during the phase
degradation {see Fig. Ex. 6.A.1); therefore the parabolic model can be used :

zf
B - [{E.'_‘* = [ (6.1

ot dx’

where x is positive towards the downstream and follows the initial bed profil
z represents the bed-level variation with respect to the initial bed, 5;°. Note that tt
use of the parabolic model is limited to : Fr < 0.6 and x > 3R,/S, .

8, ———: o rp— e

.M‘xh JF__.__H,_ 1=

- -.‘. - e § 1=l SI-'
~Treriie bed
vo
eanha fivim il iy
x el e il = 1 i
e B /8

Fig. Ex.6.A.1 Scheme of the degradation.



it}

The imital and boundary conditions are given as :
z(x0)= 0O ; limz (x.t) = 0

z (0.1) =Ah(t)

The solution to eq. 6.11 15 given by :

- X
z (xt) erfe (E*u’_t ) { )

Calculation of the quasi-uniform flow in the mobile-bed channel.

The slope of the energy line, S, | 15 calculated using the Manning-Strickler formula;

U = % = K, R8s (3.16)
with K, = 21.1/d,,"" = 66.7 [m'"/s] (3.18)
h = 2.2[m] ., B=350[m] ., Ry = 117[m]
Q = 150 [nljf's] . 9g=0Q/B = 3[mza's]'
U = g/h = 1.36 [m/s]
The slope of the energy line 5, = 0.00034 [-]
The Froud number is . Fr= ,I'L_ = 0.29 [-]
v gh

It should be emphasized that the Froude number has to be small, Fr < 0.6, being
one of the conditions (see sect. 6.2.3) for the validity of the parabolic model,
eq. 6.11.



iy

Calculation of the solid discharge in the mobile-bed channel,
The solid discharge, q, = C_Uh , is calculated using the Graf et al. (1968} formula :

(6.63)

C, UR [(p,—p)p] dsg | %
f L = 1039 { TR0}
Vips—p)pl g dy

with (Ps—pip = 1.6 []
de, 1 fmm]

S, = S, = 0.00034 [-]

C, UR, = 39107 [m’/s]

R : 2.2 N .
The solid discharge is : g, = C,Uh ¢ =3.9:10° S5 =7.3.007 [ms)




iv)  The coefficient, K . in the parabolic model, eq. 6.11, 1s approximately given by :

| ! | :
KD = K = j h!,qn._ EITPE Se.a Lﬁ‘.]?
with 8.7 = 0.00034 -]
(1-p) = 0.7[-]
b, = 2(252) =5 (where B = 2.52 is the exponent in eq. 6.€

according to eq. 6.5a and eq. 6.30)
The coefficientis : K = 0.57/ [mz.l's]

Table for the complementary error function
(see Handbook of Mathemaneal Funcieons, 1964, National Bureau of Standards, pp, 310-311, formula 7.1.24

Y erfelY) Y erfelY) Y erfe(Y)
0.0 {0000 .20 (LaPa 2.30 001 14
010 (LERTSS 1.30 d.06594 2.40 (e C Y
0.20 7770 L.40 LM77 2 2.50 0O
0.30 karffivy 1.50 .pgaen 2.60 (L2
040 T 1.60 002365 2.7 L3
0.50 (47U 1.70 D62l 2.80 000008
.60 (rIwald .80 ELELF ] 2.90 300004
070 (32220 1.50 (LI 2 ] 3.00 L0002
.80 025790 2,00 das 310 (L0000
0.90 {20309 210 (L0205 3.20 LD
L0 {15730 2.20 .00 8 3.30 (LOGH0
1.0} 11979

. : i
1
erfi¥y= —== | % df




vl

In the present problem, it is asked to determine the time it takes to lower the bed
level down to z =0.4Ah, thus :

7. 0.4Ah
(r,t) _ DAadh _ 0.4
Ah Ah

The eq. 6.15 is now writlen as :

0.4 = = ) = erfc (Y
Ed{(lﬁ.‘ﬂt ) erfc (Y)
Using the table of the complementary error function yields :
2 2
- e x —_ .._I —_ A'—

At the station x = L = 6R/5, = 20.73 [km], the lowering of the bed down to a level
of z = 0.4Ah occurs at the time :
(20.73-10°Y

B i il 1 B el = 5 -
t = (1.44) (0.511) = 5.84-107 [s] = 1.62-107 [h] = [8.52 [years]

To draw the bed profile for the entire channel at this particular moment,

t = 5.84-10° [s], the calculations are repeated for different values for the distance x
(see following table).



- ——

- wm L wom wm o ow

. Calculation of the bed profile
. Ry, =117[m] . S,=000034[] : K=0511[m's]
| _ Ah = 3.11 [m] [ = 5.84-10° [s]
X x (S, /Ry) Y = x 12VKY) #fAh = erfe( Y ) 1
[m] S 1 [m]
10500 3.04 0,30 0.66735 2.073
11000 318 0.32 0.65253 2027 |
| 3000 3.76 | (.38 (1.59465 , 1.847 ‘
1 50080 4.34 (.43 (1.53923 1.675 |
2NN 5.79 0.58 0.41299 1283
2730 6. 00 0.60 - 0.396 15 1231 |
0000 868 087 ‘ 021946 0.682
40000 11.58 1.16 ! 0.10157 0316 |
L 50000 14.47 | | .45 ! 0.04070 0126 |
GO0 17.37 | |74 | (0.01405 0.044 i
| 0000 | 026 | 2.03 | (L0041 7 0,013
ROKMHD | 2315 | 2,32 - (1O O 0,003
SO000 | %05 | 2,600 ! 0.00023 0.001 |
00000 | 2894 | 2,89 | 0,044 0000



The depth of degradation of the channel bed due to a solid discharge
g, =7.3:107 [m'fs] , during a time period of t = 5.84-10" [s] is given by :

b GsAt (73107 V5.84:10°
113 [I—p]‘lrl'; ar L3 0.7) Y051

and z = 0.4Ah = 1.23 [m] .

= 3.11 [m] (6.2

The bed profile, z(x) , for t = 5.84.10" [s] = 18.52 [vears], is plotted
Fig. Ex. 6.A.2, This solution is valid only if x =3R,/S,.. For distances
x <3R./5, , the solution is only an indicative ane.

channel e channel with mobile bed
with fixed bed

bed profile after : 18.52 [years)

L=6R, /5 =273 [km]

o 13 &0 25 ELL
dimensionless diswance, x (5, 7 R.)



with fixed bed
| ¥ ¢ (ki o o
e e — e
\-“ ’\‘--
7 4 10 = bed profile after
- A ikl NN . ledilyee)
vt : - T x years
= [m] . | 50 [months)
20
ﬂ ol -~
: ;,T y ’
¥ 2?;‘1;;0 | = L=6R,/S. =207 km]
% SRR . b e 0 | vy
0 b1 i$hp 10 15 20 25 0
dimensionless distance, x(S,/R;)

Fig. Ex.6.A.2 Bed profile after /8.52 [years] of degradation.

For sake of comparison, the bed profiles, z(x) , for t = 1.76 [year] and f
= |.6 [month]) are also plotted (without giving the calculauons) in Fig. Ex. 6.A..



vi) The temporal evolution of the degradation at the station located at
x=L=6R/S, =20.73 [km] s given by :

"3
z(t) = Ah erfe ( : e ) = Aherfc ’FT;'-Q—-_;} (6.15)

20K Al 10511 At

where, Ah(t) can be evaluated by :

q,-At
Ah = (6.20)
113 (1-pyy K At

time, ¢ [ years)
0 2.3% I b E11] 40}

0.0 == |'IL-J.,_\_1_\_—— — = e i -
g I8 52

10 ©z=12[m] . Ah=31[m] O~

# [m]

20 +

1.0 S e ——

Fig. Ex.6.A.3 Evolution of the degradation at the station x = L = 6R/5, = 20.73 [km].



Calculation of the gfmu@ﬁf the degradation

K=0511 [m/s]

Ry, = 1.17 [m] ; S¢=0.00034 [-] ;
r=l= ﬁEh"rSf_,_, = 20730 [m]

i L Vo= ffl"d"Etb #ah = enfol %) Ah

| [years] [s] [-] I [m]
l 3. 1SE+07 2.58 | 0.00026 0.72
|3 9.46E+07 | 49 | 0.035072 1.25
5 1. SRE+08 115 | 0. 10248 1.61
b7 2.21E+08 0,98 0.16756 1.9
T 1.15E+08 | 0.52 | 0.24823 778
T 4TIE+08 | 0.67 | 11.34579 2,80
| 1852 S.84E+08 | 0,647 ! 0.39618 il
2 788E+08 | 0.52 ! 0.46522 1,61

30 9 46E+08 | 0.47 | 050500 1.95

35 1.10E+09 | 0.44 | 0.53711 | 427

40 1. 26E+00 041 : 0.56371 | 4.57

15 | 42E+09 ‘ 0,38 | osee2 | 4B
50 LSBE+09 | 037 ; D60Sse | 511

————— —_————




vii)

The evolution of the bed degradation can now be calculated by assuming diff
values for At =t . By using the approximate formula for the complementary
function (see before), the calculation can easily be programmed on a spreads
The table above summarizes these calculations; Fig. Ex. 6.A.3 shows the evol
of the crosion, z(t) , at the station, x = L.

This solution is however only valid (see Ribberink et Sande, 1984, p. 30) for :

@Ehil_“.q ) 53 a A
b230 Sr i T 0 00003 00— Creiils) &235 [yeans)

Calculation of the final bed profile if the channel reach with the mobile b
limited 10 a length of x; = 90 [km].

channd —— -

with fixed bed | channel with mobile bed
0 20 km] 40 60 80 w0 100
_.__*_ '0‘0 -*, | ! | I i [ # i

| 1 /ah =001

| 107

5 7 ,-

w| 2077

% ‘ -J " bed profile after : 37.9 [years)

AR
‘ 40 { i

7* 7 — =

0 3 5 10 15 20 25 3
dimensionless distance, x(S,/R;)

Fig. Ex.6.A.4 The channel-bed profile after 37.9 [years] of degradation



By assuming a very small amount of erosion, such as z = 0.01Ah , at the st
xp =90 [km], one can write :

Zlx,t) AXE
= 001 = =) = erfe(Y
Ah erf { 24 E{'cj erfe(Y)

Using the table of the complementary error function yields :

I

2
X X

X
WKL =iY'K - 35K

Il
|

Y = |82 = |

and with K =0.511 [mj.fs-;], one calculates :

(90-10"y . o
= (3.25 (0511 = 1.2-107 [s] = 33107 [h] = 37.97 [years]
To obtain the bed profile for the entire channel at this moment, t = 1.2 10" [5].
the calculations for the degradation are repeated using different values for x
{see the following table). The final bed profile, calculated in this way, is plotted in
Fig. Ex. 6.A.4.

This solution 1s valid only if x > 3R,/ §, .

The depth of the bed degradation due to a solid discharge, q, = 7.3-107 [ms] .
during a time period of t = 1.2:10° [s] . is given by the eq. 6.20 :

v 73105V 1.2:10°
q.-Al = PR H_:]__ &“..__ Ii = 4.45 [m]

; |,]3“_p}q”|'[{ Al C(113) (0.7 NOSTT

Ah



Calculation of the final bed profile

- Ry=1.17 [m]

[m]

i

105040
11000
130000
| SO0}
20000
EILLLE

SCHM

U0

SO0

S = 0.00034 [-]
Ah=445[m]  :  1=1210"[s]
X EEEJ'RI.I} T=.-¢|r'|'1"l|E] ..'-_'.f.':'ll'.l EE‘.F:I"EEY}
[l ¥ N
1.04 021 076396
1.1B | 0.22 0.75307
176 . 0.26 0.71005
4.34 0,30 066793
5.79 0.40 10,5674
£.68 0.61 (1,39091
11.58 inH] (125264
14.47 1.0 0. 15273
17.37 1,21 0.08617
20.26 | 42 0.04529
23.15 | 162 0.02214
26.03 | [.42 0.01006

K=0511[m"/s]

e e = e——




Example — Graf 6.B

A river on a bed slope of
0.0005 conveys a unit
discharge of 1.5 m?/s. The
river bed is made of granular
material of uniform size with
a dz, of 0.00032 with s_ =
2.6; the porosity of the bed is
p = 0.4. There exists a weak
transport of sediments.

At a certain station on this
river, the solid discharge is
locally increased by Aq, =
0.0001 m?/s for a time period
of At = 50 hr. Determine the
aggradation of the bed.

sw()

local increase in solid discharge, Aq,

Fig. Ex.6.B.1 Sketch of the aggradation.



SOLUTION :

i)

The flow is steady and is considered to be quasi-uniform during the period
aggradation (see Fig. Ex. 6.B.1); thus the parabolic model can be used :

2
0z _ 9T _ (6.1

ot ax’

where x is positive towards the downstream and follows the initial bed profi
z represents the bed-level variation with respect to the initial bed, S¢ . Note that |
use of the parabolic model is limited to : Fr < 0.6 and x > 3R,/S. .

local increase in solid discharge, .ﬁq‘i

Fig. Ex.6.B.1 Sketch of the aggradation.

The initial and boundary conditions are given as :

z(x,0)= 0 ; limzixt) =0

X =¥ oo

z(0,t) = Ah(t)



The solution to eq. 6.11 is given by :

. X
Z(xt)=Ah — 6.15
o= anere (37 619

Calculation of the quasi-uniform flow in the river having a mobile bed.
The normal depth is calculated using the Manning-Strickler formula :

U = = K h"’s/” (3.16)
with K, = 21.1/d,,"® = 80.7 [m"Vs] (3.18)
q = 1.5[ms)
S¢ = 0.0005 [-]
The flow depth is . h=0.895[m]
The average velocity is  : U = 1.676 [m/s]
The Froude number is . Fr= L_ = 0.566
veh

It should be remembered that the Froude number has to be small, namely Fr < 0.6.



iif)  Calculation of the solid discharge in the river having a mobile bed.

Iv)

The solid discharge, q, = C; Uh, is calculated using the relationship given by Graf
et al. (1968):

C. UR,
VI(ps—p)/plg dsy

. 152
039 { HEPREiee ) (663

with (ps—p¥p = 1.6 -]
R, = h = 0.895 [m]
The solid discharge is L oq = 1.678-10 [m?/s)
The coefficient, K , in the parabolic model, eq. 6.11, is approximately given by :
- R | l .
Ro = R =308 ) o0 (6.12¢)

with S = 8.° = 0.0005 [-]
(1-p) 0.6 [-]
b, = 2(252) = 5 (where B = 2.52 is the exponent in eq. 6.63,
according to eq. 6.5a and eq. 6.30)

The coefficient is . K = 0.932 [m‘/s]

I



The thickness of the aggradation of the bed (see Fig. Ex. 6.B.1) due to a loc
increase in solid discharge, Aq, = 0.0001 [m™/s], during a time period «
At =50 [h] = 1.8-10" [s] , is given by eq. 6.20, or :

Aq, At 0.0001)V 1.8:10°
angy = —S0At TG0 ,__1, = 0.065 [m]
113 (1-p)y K Ar  (1:13)(0.6) V0.932

The length of the zone of aggradation, L, . can be calculated with eq. 6.15 t
assuming, for example, a precision of z/Ah = 0.01 :

Z(x,t) _ 0.01Ah
Ah Ah

|
|
|
|
<
=
I

erfc [ a

2K At

Using the table of the complementary error function (see Ex. 6.A), yields :

) = erfc (Y)

X

Y = 1.821 = (—F——)
2V K At

The length of the zone of aggradation (see eq. 6.19) can now be calculated :
follows :

L,=xq = 2Y VK At = (2) (1.821) V(0.932) (1.8:10°) = 1492.3 [m]



wi)

To plot the bed profile after a time period of At=50[h]=1.8'1 0’ [s], calculation
are made using eq. 6.15 for different distances, x. (see the following table).

The resulting bed profile, z(x) , is plotted in Fig. Ex. 6.B.2.

The calculations, summarized in the following table, are valid only if x > 3h/S,
In the present case, it can be shown that :

= 3h/S, = (3)(0.895)/(5-107") = 5370 [m] >> L,= 14923 [m]

However, experimental data (see Soni et al., 1980), have shown that the calculate
value is only indicative, but nevertheless acceptable.



Calculation of the bed profile due to aggradation

| R,=h=0895[m] S; = 0.0005 [-] . K=0932[m"7s] |

| Ah = 0.065 [m] At = 1.8-10° [s] !

: X X {SE ! th Y =« HE-.JE” | JAh = E.FfL{Y} Z

| (m] (] ] | [ (m] |

: 10.0 0.01 0.01 0.98623 0064

! 50.0 0.03 0.06 093123 0.060 :

i 100.0 0.06 | 0.12 0.86296 0.056

| 300.0 017 | 0.37 0.60459 0.039

| 500.0 0.28 | 0.61 0.38813 0.025

| 700.0 0.39 | 0.85 0.22696 0.015

| 900.0 0.50 | 1.10 0.12032 0.008

i 1000.0 0.56 1.22 0.08434 0.005
1100.0 0.61 1.34 0.05761 0.004
1300.0 0.73 1.59 0.02484 0.002

| 1492.3 0.83 1.82 0.01000 0.001

15000 0.84 1.83 0.00962 0.001

16000 0.89 | 195 0.00575 0.000




L, = X, = 1492.3 [m]

z/48h =001

04 ARis .

dimensionless distance, x (S, / h)

600 800 1000 1200 1400
distance, x [m]

Fig. Ex.6.B.2 Bed profile after 50 [hours] of aggradation.




