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What we know already… 

• Water flow over mobile bed entrains sediment  

– Movement of sediment modifies the flow, and also the 

channel bed:  

• Elevation, Roughness, and Slope 

– Two phases: 

• Liquid Phase (Mixture) 

• Solid Phase 

– Coupled flow and transport problem! 

• Need to review some properties of sediment important in 

sediment transport… 



Sediment Grade Scale 



Size Frequency Distribution 

1684

1684

50

/ ddDeviationGeometric

dddMeanGeometric

d

g

g









Sediment Motion 

• At velocities just above critical, grains will begin to roll 
and slide intermittently along the bed:  
– Material being moved called “contact load” 

• At higher velocity, grains will make short jumps: 
– Leaves the bed for a short instant of time and returning either to 

come to rest or to continue in motion on bed 

– Material being moved in this manner called “saltation load” 

• Further increases in flow velocity lead to more frequent 
jumps and some grains will be swept into flow and kept 
in suspension for appreciable lengths 
– Material being moved in this manner called “suspended load” 



Classification of Sediment Load 

• Three modes of transport: Suspension, saltation, and 
rolling/sliding on bed 
– Occur simultaneously 

– Difficult to separate them, such as the difference between 
saltation vs. contact load and saltation vs. suspension 

– Difficulties are avoided by introducing the following terms: 

• Bed Load – material moving on or near the bed 

• Total Bed-Material Load or Bed Sediment Load (qs) – bed load 
(qsb) + suspended load (qss) 

• Wash Load – sediment that never comes into contact with the bed 



Classification of Sediment Load 

• Imprecise but estimates of mode of 

transport (Graf, 1971): 

– Bed Load begins at u*/vss > 0.10 

– Suspended load begins at u*/vss > 0.40 



Particle Motion with Linear 

Resistance – Low Re Flow 
• Based on Newton’s 2nd Law 

• Resulting equation known as BBO equation 

(Basset, Boussinesq, and Oseen) – Actually 

derived by Tchen (1947): 

– Velocity field of infinite extent, no mutual 

interaction between particles, no particle rotation 
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Particle Motion with Linear 

Resistance – Larger Re Flow 
• BBO equation no longer valid as resistance 

becomes proportional to square of velocity: 

– No theoretically sound approach for derivation of 

equation at high Re 

– Modification of the slow-motion equation 

 

 

 g
a

tt

dt

tdv

dt

tdv

dt
avv

aC

dt

dv

dt

dva
k

dt

dva

dt

dva

s

t

t

s

s
D

ss
s

o










































3

4

)()(

6

2

3

4

3

4

3

4

3

1

11

1

22

2

333



Usually consider case of steady-

state motion… 
• Both equations from before are significantly 

simplified… 

 

 

 

– Need expressions of the drag coefficient to solve 

this equation… 

– Difficulty is that the drag coefficient is a function 

of the Re: 
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Usually consider case of steady-

state motion… 
• For Rep<0.1  R = 3dvs and CD = 24/Rep 

 

 

 

• Over the entire range of Rep: 
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Drag Coefficient vs. Rep 

– Applies to smooth, non-rotating spheres 

moving in a fluid free of disturbances with 

constant relative velocity… 



Drag Coefficient vs. Rep 

– To use this chart with the CD-Rep axes 

requires trial and error 

• Instead you can use the submerged weight of the 

sphere: 

 

• Calculate F/n2 (n = kinematic viscosity) 

• Locate ratio on auxiliary scale, move parallel to the 

sloping lines to the CD-Rep curve and read Rep  
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Drag Coefficient vs. Rep 

– There are also approximate results generally 

valid up to Rep = 2… 

• Oseen (1927): 

 

 

• Goldstein (1929): 
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Drag Coefficient vs. Rep 

– Empirical formulas for Rep > 2… 

• Schiller et al. (1933): 

 

 

• Olson (1961) for Rep <100: 
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Extending to More Difficult 

Conditions… 

– Influence of various effects which complicate the 

problem (particle shape, boundary effects, 

multiparticle influences, particle rotation and 

roughness, turbulence) 

– McNown (1951) proposed use of a Stokes number 

(K) to quantify departure from earlier case for Rep < 

0.1: 

 

 

– For higher Rep, usually simply assume the CD 

accounts for complicating effects 
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Particle Shape 

• Up to this point we have only 
considered spherical particles (not 
irregular shapes) 

• Analytical solutions only exist for low-
Reynolds number flow 

• McNown et al. (1950) suggested 
shape factor using a, b, and c lengths 
of perpendicular axes (“b” is the 
maximum length, sediment falls in the 
direction of “a”): 

 

 

• For low Reynolds numbers (<0.1), 
coefficient K is equal to the ratio of the 
fall velocity of a sphere with the same 
volume and weight as the particle to 
the fall velocity of the particle 
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Particle Shape 



Particle Concentration 

• Settling velocity will differ due to 
mutual interference of particles 

– For a few closely spaced particles, it 
has been observed that the settling 
velocity increases (less drag) 

– For particles dispersed throughout the 
fluid, interference will reduce settling 
velocity – called hindered settling 

– McNown and Lin (1952): uniform quartz 
sphere (no flocculation) experiments for 
Rep < 2.0 

– Even for moderate concentrations, the 
correction in the settling velocity 
becomes significant 

 

 



Particle Concentration 

• Maude et al. (1958) – empirical equation 

proposed to be valid regardless of the 

Reynolds number 
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Flow of a Mixture 

• Newtonian – if volumetric concentration of 

the particles is very small, Cs<<1% 

– Difference between density of mixture and 

fluid, D << 16 kg/m3 

– Transport as bed load and suspended load  

– Most often encountered (or assumed) in rivers 

and streams 



Flow of a Mixture 

• Quasi-Newtonian – if volumetric 

concentration of the particles remains 

small, Cs<8% 

– Difference between density of mixture and 

fluid important, D < 130 kg/m3 

– Transport of sediments as a concentrated 

suspension 



Flow of a Mixture 

• Non-Newtonian – if volumetric concentration of 

the particles exceeds  Cs>8% 

– Difference between density of mixture and fluid 

important, D > 130 kg/m3 

– Need to modify all concepts of Newtonian hydraulics 

(resistance to flow, distribution of velocity, settling 

velocity) 

– Sometimes called hyperconcentrated suspensions 

that occur when enormous quantities of sediment 

enter small sloped channels due to extensive rainfall 

events 



Fluid Turbulence 

• Experimental evidence that spherical 

particles settle more slowly in a fluid with 

vertical turbulence 

– Reduction in fall velocity due to nonlinear 

interaction relation between drag and velocity 

relative to fluid 

 



Example 

 Assuming the criterion for suspended load 

transport is u*/vss > 0.40 and bed load 

transport is u*/vss > 0.10, determine the 

flow depth at which bed load and 

suspended load transport commences in a 

rectangular channel (B = 5 m, Sf = 0.001, 

n = 0.02). Assume uniform, steady flow. 

Also assume spherical particles with d50 = 

2.0 mm and neglect bed form roughness. 



Graf’s Classification of Sediment 

Transport Problems 
• Determination of sedimentological rating curve, qs = f(q) for 

given cross-section 

• Determination of stability of bed in a given cross-section 

• Determination of the stability of the channel slope (aggradation 

and degradation) in a given reach 



Graf’s Classification of Sediment 

Transport Problems 

• Formulas used to calculate qs predict the 
“capacity” for sediment transport 

– If capacity is larger than supply – net erosion 
and transport occurs 

– If supply is larger than capacity – deposition 
and transport occurs 

– If supply = capacity, then transport without 
erosion or deposition 

– If bed is armoured, capacity may not be 
satisified 

 



What we know already… 

• Saint-Venant equations for unsteady and non-

uniform flow over a fixed bed in a prismatic 

channel with a small slope… 

 

 

 

 

– For mobile bed: 

• Se becomes a function of the friction coefficient for a mobile 

bed (f’ and f”) 
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Extending this to mobile bed… 

– For mobile bed: 

• Elevation over a mobile bed may vary, z(x,t) 

• Exner expressed this change in bed elevation 

using the following relationship: 

 

• This relationship is usually expanded using the 

continuity equation for the solid (particle) phase: 
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Extending this to mobile bed… 

– For mobile bed: 

• Note that the solid discharge (qs) is a function of 

the liquid discharge – sedimentological rating 

curve 
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Equations of Saint-Venant-Exner 
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Analytical Solutions 

• Saint-Venant-Exner equations are non-linear and 
hyperbolic – impossible to derive analytical 
solutions: 

– Solutions are possible if you assume: 
1. Quasi-Steady Flow – flow at small Froude numbers (Fr<0.6): 

  * Variation in liquid discharge is short-term 

  * Variation in bed elevation is long-term 

  * Bed changes occur after variation in discharge 

  * Flow can be assumed constant 

  * Solutions for this assumption allow us to analyze for  
  long-term bed elevation changes 

2. Quasi-uniform flow: 
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Quasi-Steady/Uniform Flow 

• Simplified Saint-Venant-Exner equations: 
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Quasi-Steady/Uniform Flow 

• Simplified Saint-Venant-Exner equations: 

 

 

 

 

– Model is limited to large values of x and t,        

x>3h/Se, and Fr < 0.6: 
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Quasi-Steady/Uniform Flow 

• For now we can use a power-law 

expression for the solid discharge: 
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Quasi-Steady/Uniform Flow 
• We can use these solutions to explain the 

long-term evolution of the channel bed: 

– Degradation  

• Supply of solid discharge is reduced at the upstream 

• Liquid discharge is increased 

• Lowering of a fixed point on the channel bed at the 

downstream 

– Aggradation: 

• Supply of solid discharge is increased at the upstream 

• Liquid discharge is decreased 

• Raising a fixed point on the channel bed at the downstream 

 

 

 

 



Quasi-Steady/Uniform Flow 



Degrading Channel Example 
• Consider the following scenario: 

– Channel with mobile bed with uniform flow at depth, h = ho 

– Discharge enters into a reservoir whose water level is lowered by 
Dhw 

– Causes a lowering of the fixed bed of Dh 

– Degradation of the bed is initiated  

– After long time, flow depth will return to ho 

– During degradation, flow depth and discharge remain quasi-constant 



Degrading Channel Example 

• Note position of x and z axes 

• Initial and boundary conditions: 

z(x,0)=0, z(0,t)=Dh, lim (xinfinity) z(x,t)=0 

 



Degrading Channel Example 

• For these boundary conditions!!!! 

– Solution: 
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Degrading Channel Example 

• For these boundary conditions!!!! 

– Graf also discusses the time (t50%) when the 

bed elevation is lowered 50% with respect to 

the final elevation: 
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Aggrading Channel Example 
• Consider the following scenario: 

– Channel with a mobile bed having uniform flow 

– Particular cross section is overloaded with sediment: Dqs is 
increased 

– Aggradation of the channel bed will occur 

– After some time Dt, elevation of the bed and water surface 
will increase by Dh 

– During aggradation, the discharge remains quasi-steady 



Aggrading Channel Example 

• Note position of x and z axes 

• Initial and boundary conditions: 

z(x,0)=0, z(0,t)=Dh(t), lim (xinfinity) z(x,t)=0 

 



Aggrading Channel Example 

• For these boundary conditions!!!! 

– Solution: 
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Aggrading Channel Example 

• For these boundary conditions!!!! 

– Beneficial to define length of the zone of 

aggradation: 
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Aggrading Channel Example 

• For these boundary conditions!!!! 

– Volume of the supply of sediment, Dqs, during 

time, Dt, is given by Dqs Dt and this quantity is 

distributed over the bed of the channel: 
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Example - Graf 6.A 

 A rectangular channel has a width of 5 m. At some point, the bed of 
the channel changes from a fixed bed to a mobile bed with a d50 = 1 
mm, p = 0.3, and ss = 2.6. The discharge of Q = 15 m3/s remains 
constant and the water depth is 2.2 m.  

 A degradation of the channel starts at the junction between the fixed 
bed and the mobile bed. Determine the time it will take to lower the 
bed level down to z = 0.4Dh at a station located at L = 6Rh/Sf 
downstream from the junction and draw the bed profile. Also, what is 
the resulting bed profile if the length of the mobile bed is limited to 
90 km? 



Example - Graf 6.A 

• Note: To solve this problem, we need to be able 
to calculate the solid-discharge 
– We will use the Graf et al. (1968) formula for total-

load (we will learn more about this formula later): 
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Example - Graf 6.A 



Example - Graf 6.A 

• To solve for the solid discharge, we need 

several parameters: Se, Rh 

– Manning-Strickler equation for Se based on Q 

(= UBh) 

– Use Graf total load equation to get CsURh 

– Multiply CsURh by h/Rh to get qs 

– Calculate K assuming K = Ko 
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Example - Graf 6.A 
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Example - Graf 6.A 

• We need to solve for the time it takes to 

lower the bed down to z = 0.4Dh: 
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Example - Graf 6.A 



Example - Graf 6.A 

• If the mobile bed is limited to 90 km… 
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Example - Graf 6.A 





























Example – Graf 6.B 

 A river on a bed slope of 
0.0005 conveys a unit 
discharge of 1.5 m2/s. The 
river bed is made of granular 
material of uniform size with 
a d50 of 0.00032 with ss = 
2.6; the porosity of the bed is 
p = 0.4. There exists a weak 
transport of sediments. 

 At a certain station on this 
river, the solid discharge is 
locally increased by Dqs = 
0.0001 m2/s for a time period 
of Dt = 50 hr. Determine the 
aggradation of the bed. 



 



 












