
CHAPTER 4 

 

WELL HYDRAULICS 
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STEADY ONE-DIRECTIONAL FLOW: 
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A. Confined Aquifer 

                                                             

      

 

 

   

       

 

 

This states the h decreases linearly, with flow in X direction  

. 

 





B. Unconfined Aquifer 

 

• Sol. of Laplace equation for unconfined aquifer          

not possible. 

 

• WT. in 2D flow represents a flow line 

 

• Shape of WT determines the flow distribution,           

but at the same time flow distribution governs          

WT shape. 

 



To obtain the solution, Dupuit Assumptions -- 

sin 5 ° 0.0872 

0.3% 

tan 5 ° 0.0875 

sin 10 ° 0.1737 

1.6% 

tan 10 ° 0.1763 

sin 20 ° 0.3420 

6.4% 

tan 20 ° 0.3640 
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sin  = tan   

1. Velocity of flow is proportional to the tangent of 

      hyd. grad. 
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2. Flow is horizontal and uniform in a vertical section. 

      Flux per unit width at a section 

If 



 

• This indicates W.T. of parabolic form. 

 

• Dupuit assumptions become increasingly 

poor approximations to actual flow. 

   

• Actual W.T. deviates more and more from 

computed W.T. in the flow direction.  

  

• W.T. actually approaches the boundary  

tangentially above water surface and forms a 

seepage face. 

 



sin  = tan   

This indicates that W.T. is not of parabolic  

form; however, for flat slopes, where 

 

 

 

It closely predicts W.T. position except near the  

outflow. 

 





STEADY RADIAL FLOW TO A WELL: 

A. Confined Aquifer 

 

 

 

 

 

 

When well is pumped, water is removed from  

aquifer surrounding the well and W.T. or P.S.  

lowered depending upon the type of aquifer. 



Drawdown - Distance the water 

                      level is lowered. 

 

 

 

 

 

Cone of Depression - 3D 

Area of Influence - 2D 

Radius of Influence - 1D 



Assumptions for Well Flow Equations 

bottomaquifer  above head cPiezometri h

1. Const. Discharge 

2. Fully Penetrating Well 

3. Homogeneous, isotropic, horz. aquifer with  

      infinite horz. extent 

4. Water released immediately from aquifer storage 

due to W.T. or P.S. decline 





For Infinite Aquifer 

Value of h must be measured in steady 

state condition only.  Not a very 

practical method of determining K. 
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B. Unconfined Aquifer 
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If h is constant, i.e., steady state cond. - 

 

Av. thickness

 

 

If aquifer is infinite  h2 h0  (orig. static water level) and 

h1  hw 

 



 



 



C. Well Flow in Uniform Recharge 

Equilibrium cond. or steady state cond. can be  

reached in unconfined aquifers due to recharge  

from rainfall or irrigation. 



 

•  Uniform Recharge Rate 

         = w    cfs/ft2 

•  Well Flow 

 

 

 

•  Horizontal flow    thru vertical cylinder (r < ro) 

 
 

•  Also, flux q 
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Q =  r 0 ² w 

 

r 0 = radius of influence  



Integrating and Substituting 
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If w known, compute  r0 for given Q and , or estimate w if 

other parameters known, or estimate  if w and other 

parameters known. 

 

 

 

Note: 
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D. Well in a Uniform Flow  

•  P - Stagnation Point 



Uniform Flow 

stream lines 



•  Used in Well Head Protection Plan (WHPA) 

•Circular area of influence for radial flow becomes  

    distorted.  Wenzel -                                                                                                                           
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•  Boundary of the flow area - 

 

                                                     

•  Origin at well 

 b - aquifer thickness 

 Q – discharge 

 i - natural piez. slope  

 K - Perm    



•  Boundary asymptotically approaches as  
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•  Boundary of contributing area extends to stagnation  

    point P, where 

 

 

 

 

•  Boundary equation, Y and X applicable to unconfined  

    aquifer, replace b by h0 - sat. aquifer thickness, if   

    drawdown is small compared to aquifer thickness. 



E.  Flow to Parallel Streams (Drainage Flow or Base Flow)  
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Unsteady Radial Flow to a Well 
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•  Extensive Confined Aquifer 

  

 

 

 

 

 

•  Polar coordinate system 
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Application  
1. To find the aquifer parameters or formation 

constants  S & T 

2. To determine drawdown for specified Q, S, T, & t 

 

 Assumptions 

1. Extensive confined aquifer 

2. Homogeneous and isotropic aquifer 

3. Well penetrates the entire aquifer 

4. Well diameter is small 

5. Water is removed instantaneously  

      from storage with decline in head 



A. Theis Method 
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Converting to field units 
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Match the two curves.  Locate a match point and obtain 

all coordinates.  Solve for S & T. 

 

 S, r2/t 

 W(u), u 

(1) Insert s, W(u), and Q in Eq. (1) ---- T 

(2)  Substitute r2/t, u, T in Eq. (2) ---  S 



For metric system: 
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For small r and large t, u is small so that series terms  

become negligible after the first two terms.  

 

                                                  

 

                                                 

B. Jacob-Cooper Method 
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Thus, a plot of s vs. t forms a st. line.  

Plot drawdown, s, from an OBS. well against time, t0   

Slope of the line gives S & T  values. 

 



 

 

 

 

                                              

 

       All parameters constant  except t 
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Field Units  

To avoid large errors,  u < 0.01 in this method. 
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Distance - Drawdown Method  
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Jacob Method: 
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Time - drawdown measurements during pumping and  

time-recovery measurements during recovery provide two  

sets of data from an aquifer test. 

 

• Values of T & S serve to check calculations during  

     pumping. 

 

• If an obs. well available, take water level recovery data 

to obtain T & S. 

 

• Where no obs. available, water level recovery data 

from pumped well used to calculate T only. 

 

Recovery Method 



Recovery Method  



A. Residual Drawdown Method  

•  Recovery measured in pumped well  

 

 

 

 

 

•  For small r and large t'  , integrals approximated by     

   first two terms in series. 

 

stopped pumping since time t

began pumping since time  t

Find T in pumped well 

Drawdown Recovery 

   )()(
44

44

22

uWuW
T

Q
du

u

e
du

u

e

T

Q
hhs

tT

sr

u

Tt

sr

u

o


















 




 


s´ 



'4
'

4

2

2

t

sr
u

t

sr
u











over 1 log cycle, log        , log 10 = 1 
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•  Recovery measured in observation well 

•  Plot             , recovery, with  

•  Use Jacob method 

B. Time - Recovery Method  
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Find S & T in  observation well 
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give close values of S and T. 

 



 



Leaky Aquifers  

Drawdown,        

        

        S 
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log  

t  

•  Due to recharge the top of the curve is flat. 



Hantush & Jacob Method for Leaky Aquifers 
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Assumptions: 
 

 

 

1. Leakage is vertical 

 

2. Leakage  Drawdown 

 

3. Water level in upper supply aquifer is constant 

 

4. W.T. & P.S. are initially same 
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•Superimpose the s - t  curve on well function curve.  
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Unconfined Aquifers 
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•  Exact solution difficult because: 

 - T varies w/ r and t with decline of W.T. 

 - vertical flow component significant, especially near 

              well casing. 

 

•  If s  is small compared to , Theis or Jacob solutions can  

    be used for unconfined aquifers.  

 

•  Jacob suggested that more accurate values of S & T obtained by   

    subtracting             from each drawdown, s. 

 

 



Bolton Equation  
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Delayed drainage  

When a well is pumped, water continuously withdraws 

 from storage within the aquifer as cone of depression  

progresses radially outward from the well. 

 

• Since no recharge source is there, no steady-state flow, 

and head will continue to decline as long as aquifer is 

infinite. 

 

• However, rate of decline of head decreases as cone of 

depression spreads. 

 



    S,  

Storage 

Coeff.  

T, time of pumping  

•  Water is released from storage by gravity drainage of  

   pores in the portion of the aquifer drained by pumping and   

   by the compaction of aquifer and the expansion of water. 

 

•  Gravity drainage of water from sediments is not  

    immediate; S varies and increases at a diminishing rate    

    with time. 

 



• First, water is released instantaneously from storage by 

compaction of aquifer and expansion of water. 

 

• After a short time, cone of depression grows at a slow 

rate as water is released from storage by gravity 

drainage reaches the cone. 

 

• Finally, rate of cone expansion increases and cone 

continues to expand as gravity drainage keeps pace 

with declining water levels. 

 



S – t Curve for Delayed Drainage 

log  

log  

t 
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Well Flow near Aquifer Boundaries 

Image 

Finite Aq.  Infinite Aq. 

•Impermeable or negative boundary 

•Permeable or positive boundary 

 

Solution of boundary problem in well flow is simplified by  

applying the method of images. 

  

Image - an imaginary well introduced to create a hyd flow  

system which will be equivalent to the effects of a known  

flow system. 

 

 



a.   Well near a stream - Permeable   Boundary  



 

 

 

 

 

 

 
 
•  This system is converted to a discharging real well 

   and a recharge imaginary well in an extensive aquifer. 



b.  Well near an Impermeable Boundary  





c.     Aquifer Bounded by Two Impermeable   

Boundaries 

•  I1 and I2 provide required flow, but I3 required balance  

  drawdowns along the extensions of the boundaries. 

 

 



d.  Impermeable Boundary  to a stream  



Determination of a Boundary 

Discharge. 

Real Well  

r 3  

r  2 r  1 

r 4  

Discharge. 

Image Well  a  

Obs. Well 1  

Obs. Well 2 

-Need 2 or more observation wells  

Obs. well 3 
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Assume the wells are pumped individually.  At a given 

time interval 
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or u1 = u2 
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Where t1 - time since pumping began for a given value of 

(ho - h) to occur, before the boundary becomes effective. 

 

    t2   -time since pumping began, after the boundary   

          becomes effective, when the divergence of the   

          drawdown curve caused by the influence of image   

          well = to particular value of drawdown at t1. 
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Rate-of-Rise Techniques 

Special Techniques: 

• Determine local K around a well, without pumping the 

well. 

  
Rate-of-Rise Techniques 

• Slug Test 

• Auger-Hole Method 

• Piezometer Method  



• Water is suddenly removed by a bucket, bailer, or 

cylinder, causing sudden lowering of water levels 

around the well. 

  

 

• Rise of water level with time is measured and K is 

obtained. 

  

 

• Remove enough water to lower water in the well 10 to 

50 cm. 



Advantages 

1. Pumping not needed. 

 

2. Observation wells not required. 

 

3. Tests completed in short time. 

 

4. Provides good preliminary estimate of K.  

 

5. Test useful where continuous Q is difficult, where 
obs. wells not available, and where interference from 
other wells. 

 



Disadvantages 

1. K measured on small area of aquifer. 

2. S generally not evaluated. 

 

Step - Type Pumping Test 
 

Rorabaugh (1953) AGU Tran. 

Sternberg (1967) J. Groundwater 
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Q 0  

Q 1 

Q 2  

Q 3  

t 1  

t 2  

t 3  

t  

Time, t  

Discharge, Q  

Discharge increased in steps of time.  Theis Eq. 



Partially Penetrating Wells 

Q p  

L e  

D

  

2 r w  

•  A well having length of water entry less than the aquifer is  

   known as partially penetrating well. 

 

•  Flow pattern to such wells differs from radial flow around  

    fully penetrating wells. 

 



Q p  

L e  

Q p  

L e  



•  If                 , then  

    and if                      , then  

    where  Q - well discharge 

   - drawdown at the well 

   - refers to P.P.W.  

QQ
p
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p
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  hh
p
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•  Average length of flow line in a P.P.W. > that in F.P.W. so    

   that a greater resistance to flow is encountered.  Consider two   

   wells  – P.P.W. and F.P.W. 
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Sp - a dimensionless term,   
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Drawdown of P.S. at the well 

 

r0= radius of influence 

(1) 

D

Le



•  For screen at top or bottom, use equation 1 and figure  

    to compute        . 

 

•  For screen at center, use        for obtaining       . 

•  Example: 
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Well Losses 

ewiw
SSS 

Drawdown at a well = Aquifer drawdown and drawdown  

                                      caused by flow thru well screen and  

                                      flow inside the well to pump intake. 

 

 

 

             Total head loss = formation loss + well loss  

Laminar flow Turbulent flow 



Since flow in aquifer is laminar,  

 

flow in well screen is turbulent, 
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•  For steady flow in a confined aquifer 

 



• For low Q, well losses may be neglected,  

 

• For high Q, well losses may represent a sizable fraction 

of total drawdown. 

 

• For screen size compatible with surrounding porous  

 media and which is not clogged, well loss caused by  

 water entering is small than the portion resulting from  

 axial movement within the well. 
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•                            , const. varies depending upon geology  

    - 0(2000). 

 

Unsteady flow for a confined aquifer 
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Empirical formulas developed in field 



3 cfs  

Q = 1 cfs  

t, days  
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Sp. Cap.  

•Hence, the concept that 

       Q ~ siw  implying a constant S.C.  

       Can introduce sizable errors. 
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Multiple Well System  

To determine drawdowns (or interference) in a well field. 
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Determine drawdowns at various points from known Q’s  

and add them together.   

 

At a point, Total drawdown. 

 

 

 

 

 

 



 

 

At a distance of 2D from a well, the effect of partial  

penetration is negligible on the flow pattern and  

drawdown. 

 

 

 D = Average aquifer thickness 






















