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Preface

This book introduces important concepts in the analysis and design of control systems.
Readers will find it to be a clear and understandable textbook for control system courses
at colleges and universities. It is written for senior electrical, mechanical, aerospace, or
chemical engineering students. The reader is expected to have fulfilled the following
prerequisites: introductory courses on differential equations, Laplace transforms, vector-
matrix analysis, circuit analysis, mechanics, and introductory thermodynamics.

The main revisions made in this edition are as follows:

• The use of MATLAB for obtaining responses of control systems to various inputs
has been increased.

• The usefulness of the computational optimization approach with MATLAB has been
demonstrated.

• New example problems have been added throughout the book.
• Materials in the previous edition that are of secondary importance have been deleted

in order to provide space for more important subjects. Signal flow graphs were
dropped from the book. A chapter on Laplace transform was deleted. Instead,
Laplace transform tables, and partial-fraction expansion with MATLAB are pre-
sented in Appendix A and Appendix B, respectively.

• A short summary of vector-matrix analysis is presented in Appendix C; this will help
the reader to find the inverses of n x n matrices that may be involved in the analy-
sis and design of control systems.

This edition of Modern Control Engineering is organized into ten chapters.The outline of
this book is as follows: Chapter 1 presents an introduction to control systems. Chapter 2



deals with mathematical modeling of control systems.A linearization technique for non-
linear mathematical models is presented in this chapter. Chapter 3 derives mathematical
models of mechanical systems and electrical systems. Chapter 4 discusses mathematical
modeling of fluid systems (such as liquid-level systems, pneumatic systems, and hydraulic
systems) and thermal systems.

Chapter 5 treats transient response and steady-state analyses of control systems.
MATLAB is used extensively for obtaining transient response curves. Routh’s stability
criterion is presented for stability analysis of control systems. Hurwitz stability criterion
is also presented.

Chapter 6 discusses the root-locus analysis and design of control systems, including
positive feedback systems and conditionally stable systems Plotting root loci with MAT-
LAB is discussed in detail. Design of lead, lag, and lag-lead compensators with the root-
locus method is included.

Chapter 7 treats the frequency-response analysis and design of control systems.The
Nyquist stability criterion is presented in an easily understandable manner.The Bode di-
agram approach to the design of lead, lag, and lag-lead compensators is discussed.

Chapter 8 deals with basic and modified PID controllers. Computational approaches
for obtaining optimal parameter values for PID controllers are discussed in detail, par-
ticularly with respect to satisfying requirements for step-response characteristics.

Chapter 9 treats basic analyses of control systems in state space. Concepts of con-
trollability and observability are discussed in detail.

Chapter 10 deals with control systems design in state space.The discussions include
pole placement, state observers, and quadratic optimal control. An introductory dis-
cussion of robust control systems is presented at the end of Chapter 10.

The book has been arranged toward facilitating the student’s gradual understanding 
of control theory. Highly mathematical arguments are carefully avoided in the presen-
tation of the materials. Statement proofs are provided whenever they contribute to the
understanding of the subject matter presented.

Special effort has been made to provide example problems at strategic points so that
the reader will have a clear understanding of the subject matter discussed. In addition,
a number of solved problems (A-problems) are provided at the end of each chapter,
except Chapter 1. The reader is encouraged to study all such solved problems carefully;
this will allow the reader to obtain a deeper understanding of the topics discussed. In
addition, many problems (without solutions) are provided at the end of each chapter,
except Chapter 1. The unsolved problems (B-problems) may be used as homework or
quiz problems.

If this book is used as a text for a semester course (with 56 or so lecture hours), a good
portion of the material may be covered by skipping certain subjects. Because of the
abundance of example problems and solved problems (A-problems) that might answer
many possible questions that the reader might have, this book can also serve as a self-
study book for practicing engineers who wish to study basic control theories.

I would like to thank the following reviewers for this edition of the book: Mark Camp-
bell, Cornell University; Henry Sodano, Arizona State University; and Atul G. Kelkar,
Iowa State University. Finally, I wish to offer my deep appreciation to Ms.Alice Dworkin,
Associate Editor, Mr. Scott Disanno, Senior Managing Editor, and all the people in-
volved in this publishing project, for the speedy yet superb production of this book.

Katsuhiko Ogata

x Preface



1

Introduction 
to Control Systems

1–1 INTRODUCTION

Control theories commonly used today are classical control theory (also called con-
ventional control theory), modern control theory, and robust control theory. This book
presents comprehensive treatments of the analysis and design of control systems based
on the classical control theory and modern control theory.A brief introduction of robust
control theory is included in Chapter 10.

Automatic control is essential in any field of engineering and science. Automatic
control is an important and integral part of space-vehicle systems, robotic systems, mod-
ern manufacturing systems, and any industrial operations involving control of temper-
ature, pressure, humidity, flow, etc. It is desirable that most engineers and scientists are
familiar with theory and practice of automatic control.

This book is intended to be a text book on control systems at the senior level at a col-
lege or university. All necessary background materials are included in the book. Math-
ematical background materials related to Laplace transforms and vector-matrix analysis
are presented separately in appendixes.

Brief Review of Historical Developments of Control Theories and Practices.
The first significant work in automatic control was James Watt’s centrifugal gover-
nor for the speed control of a steam engine in the eighteenth century. Other
significant works in the early stages of development of control theory were due to

1



2 Chapter 1 / Introduction to Control Systems

Minorsky, Hazen, and Nyquist, among many others. In 1922, Minorsky worked on
automatic controllers for steering ships and showed how stability could be deter-
mined from the differential equations describing the system. In 1932, Nyquist
developed a relatively simple procedure for determining the stability of closed-loop
systems on the basis of open-loop response to steady-state sinusoidal inputs. In 1934,
Hazen, who introduced the term servomechanisms for position control systems,
discussed the design of relay servomechanisms capable of closely following a chang-
ing input.

During the decade of the 1940s, frequency-response methods (especially the Bode
diagram methods due to Bode) made it possible for engineers to design linear closed-
loop control systems that satisfied performance requirements. Many industrial control
systems in 1940s and 1950s used PID controllers to control pressure, temperature, etc.
In the early 1940s Ziegler and Nichols suggested rules for tuning PID controllers, called
Ziegler–Nichols tuning rules. From the end of the 1940s to the 1950s, the root-locus
method due to Evans was fully developed.

The frequency-response and root-locus methods, which are the core of classical con-
trol theory, lead to systems that are stable and satisfy a set of more or less arbitrary per-
formance requirements. Such systems are, in general, acceptable but not optimal in any
meaningful sense. Since the late 1950s, the emphasis in control design problems has been
shifted from the design of one of many systems that work to the design of one optimal
system in some meaningful sense.

As modern plants with many inputs and outputs become more and more complex,
the description of a modern control system requires a large number of equations. Clas-
sical control theory, which deals only with single-input, single-output systems, becomes
powerless for multiple-input, multiple-output systems. Since about 1960, because the
availability of digital computers made possible time-domain analysis of complex sys-
tems, modern control theory, based on time-domain analysis and synthesis using state
variables, has been developed to cope with the increased complexity of modern plants
and the stringent requirements on accuracy, weight, and cost in military, space, and in-
dustrial applications.

During the years from 1960 to 1980, optimal control of both deterministic and sto-
chastic systems, as well as adaptive and learning control of complex systems, were fully
investigated. From 1980s to 1990s, developments in modern control theory were cen-
tered around robust control and associated topics.

Modern control theory is based on time-domain analysis of differential equation
systems. Modern control theory made the design of control systems simpler because
the theory is based on a model of an actual control system. However, the system’s
stability is sensitive to the error between the actual system and its model. This
means that when the designed controller based on a model is applied to the actual
system, the system may not be stable. To avoid this situation, we design the control
system by first setting up the range of possible errors and then designing the con-
troller in such a way that, if the error of the system stays within the assumed
range, the designed control system will stay stable. The design method based on this
principle is called robust control theory.This theory incorporates both the frequency-
response approach and the time-domain approach. The theory is mathematically very
complex.
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Because this theory requires mathematical background at the graduate level, inclu-
sion of robust control theory in this book is limited to introductory aspects only. The
reader interested in details of robust control theory should take a graduate-level control
course at an established college or university.

Definitions. Before we can discuss control systems, some basic terminologies must
be defined.

Controlled Variable and Control Signal or Manipulated Variable. The controlled
variable is the quantity or condition that is measured and controlled.The control signal
or manipulated variable is the quantity or condition that is varied by the controller so
as to affect the value of the controlled variable. Normally, the controlled variable is the
output of the system. Control means measuring the value of the controlled variable of
the system and applying the control signal to the system to correct or limit deviation of
the measured value from a desired value.

In studying control engineering, we need to define additional terms that are neces-
sary to describe control systems.

Plants. A plant may be a piece of equipment, perhaps just a set of machine parts
functioning together, the purpose of which is to perform a particular operation. In this
book, we shall call any physical object to be controlled (such as a mechanical device, a
heating furnace, a chemical reactor, or a spacecraft) a plant.

Processes. The Merriam–Webster Dictionary defines a process to be a natural, pro-
gressively continuing operation or development marked by a series of gradual changes
that succeed one another in a relatively fixed way and lead toward a particular result or
end; or an artificial or voluntary, progressively continuing operation that consists of a se-
ries of controlled actions or movements systematically directed toward a particular re-
sult or end. In this book we shall call any operation to be controlled a process. Examples
are chemical, economic, and biological processes.

Systems. A system is a combination of components that act together and perform
a certain objective. A system need not be physical. The concept of the system can be
applied to abstract, dynamic phenomena such as those encountered in economics. The
word system should, therefore, be interpreted to imply physical, biological, economic, and
the like, systems.

Disturbances. A disturbance is a signal that tends to adversely affect the value 
of the output of a system. If a disturbance is generated within the system, it is called
internal, while an external disturbance is generated outside the system and is 
an input.

Feedback Control. Feedback control refers to an operation that, in the presence
of disturbances, tends to reduce the difference between the output of a system and some
reference input and does so on the basis of this difference. Here only unpredictable dis-
turbances are so specified, since predictable or known disturbances can always be com-
pensated for within the system.
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1–2 EXAMPLES OF CONTROL SYSTEMS

In this section we shall present a few examples of control systems.

Speed Control System. The basic principle of a Watt’s speed governor for an en-
gine is illustrated in the schematic diagram of Figure 1–1. The amount of fuel admitted
to the engine is adjusted according to the difference between the desired and the actual
engine speeds.

The sequence of actions may be stated as follows: The speed governor is ad-
justed such that, at the desired speed, no pressured oil will flow into either side of
the power cylinder. If the actual speed drops below the desired value due to
disturbance, then the decrease in the centrifugal force of the speed governor causes
the control valve to move downward, supplying more fuel, and the speed of the
engine increases until the desired value is reached. On the other hand, if the speed
of the engine increases above the desired value, then the increase in the centrifu-
gal force of the governor causes the control valve to move upward. This decreases 
the supply of fuel, and the speed of the engine decreases until the desired value is
reached.

In this speed control system, the plant (controlled system) is the engine and the
controlled variable is the speed of the engine. The difference between the desired
speed and the actual speed is the error signal. The control signal (the amount of fuel)
to be applied to the plant (engine) is the actuating signal. The external input to dis-
turb the controlled variable is the disturbance. An unexpected change in the load is
a disturbance.

Temperature Control System. Figure 1–2 shows a schematic diagram of tem-
perature control of an electric furnace.The temperature in the electric furnace is meas-
ured by a thermometer, which is an analog device.The analog temperature is converted

Oil under
pressure

Power
cylinder

Close
Open

Pilot
valve

Control
valve

Fuel

Engine Load

Figure 1–1
Speed control
system.
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Interface
Controller

InterfaceAmplifier

A/D
converter

Programmed
input

Electric
furnace

Relay
Figure 1–2
Temperature control
system.

to a digital temperature by an A/D converter. The digital temperature is fed to a con-
troller through an interface.This digital temperature is compared with the programmed
input temperature, and if there is any discrepancy (error), the controller sends out a sig-
nal to the heater, through an interface, amplifier, and relay, to bring the furnace tem-
perature to a desired value.

Business Systems. A business system may consist of many groups. Each task
assigned to a group will represent a dynamic element of the system. Feedback methods
of reporting the accomplishments of each group must be established in such a system for
proper operation. The cross-coupling between functional groups must be made a mini-
mum in order to reduce undesirable delay times in the system. The smaller this cross-
coupling, the smoother the flow of work signals and materials will be.

A business system is a closed-loop system.A good design will reduce the manageri-
al control required. Note that disturbances in this system are the lack of personnel or ma-
terials, interruption of communication, human errors, and the like.

The establishment of a well-founded estimating system based on statistics is manda-
tory to proper management. It is a well-known fact that the performance of such a system
can be improved by the use of lead time, or anticipation.

To apply control theory to improve the performance of such a system, we must rep-
resent the dynamic characteristic of the component groups of the system by a relative-
ly simple set of equations.

Although it is certainly a difficult problem to derive mathematical representations
of the component groups, the application of optimization techniques to business sys-
tems significantly improves the performance of the business system.

Consider, as an example, an engineering organizational system that is composed of
major groups such as management, research and development, preliminary design, ex-
periments, product design and drafting, fabrication and assembling, and tesing. These
groups are interconnected to make up the whole operation.

Such a system may be analyzed by reducing it to the most elementary set of com-
ponents necessary that can provide the analytical detail required and by representing the
dynamic characteristics of each component by a set of simple equations. (The dynamic
performance of such a system may be determined from the relation between progres-
sive accomplishment and time.)
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Required
product
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Product
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Fabrication
and

assembling
Testing

Product

Figure 1–3
Block diagram of an engineering organizational system.

A functional block diagram may be drawn by using blocks to represent the func-
tional activities and interconnecting signal lines to represent the information or
product output of the system operation. Figure 1–3 is a possible block diagram for
this system.

Robust Control System. The first step in the design of a control system is to
obtain a mathematical model of the plant or control object. In reality, any model of a
plant we want to control will include an error in the modeling process.That is, the actual
plant differs from the model to be used in the design of the control system.

To ensure the controller designed based on a model will work satisfactorily when
this controller is used with the actual plant, one reasonable approach is to assume
from the start that there is an uncertainty or error between the actual plant and its
mathematical model and include such uncertainty or error in the design process of the
control system. The control system designed based on this approach is called a robust
control system.

Suppose that the actual plant we want to control is (s) and the mathematical model
of the actual plant is G(s), that is,

(s)=actual plant model that has uncertainty ¢(s)

G(s)=nominal plant model to be used for designing the control system 

(s) and G(s) may be related by a multiplicative factor such as

or an additive factor

or in other forms.
Since the exact description of the uncertainty or error ¢(s) is unknown, we use an

estimate of ¢(s) and use this estimate, W(s), in the design of the controller. W(s) is a
scalar transfer function such that

where is the maximum value of for and is called the H
infinity norm of W(s).

0 � v � q�W(jv)���W(s)��q

��¢(s)��q 6 ��W(s)��q = max
0�v�q

 �W(jv)�

G
�

(s) = G(s) + ¢(s)

G
�

(s) = G(s)[1 + ¢(s)]

G
�

G
�

G
�
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Using the small gain theorem, the design procedure here boils down to the deter-
mination of the controller K(s) such that the inequality

is satisfied, where G(s) is the transfer function of the model used in the design process,
K(s) is the transfer function of the controller, and W(s) is the chosen transfer function
to approximate ¢(s). In most practical cases, we must satisfy more than one such
inequality that involves G(s), K(s), and W(s)’s. For example, to guarantee robust sta-
bility and robust performance we may require two inequalities, such as

for robust stability

for robust performance

be satisfied. (These inequalities are derived in Section 10–9.) There are many different
such inequalities that need to be satisfied in many different robust control systems.
(Robust stability means that the controller K(s) guarantees internal stability of all
systems that belong to a group of systems that include the system with the actual plant.
Robust performance means the specified performance is satisfied in all systems that be-
long to the group.) In this book all the plants of control systems we discuss are assumed
to be known precisely, except the plants we discuss in Section 10–9 where an introduc-
tory aspect of robust control theory is presented.

1–3 CLOSED-LOOP CONTROL VERSUS OPEN-LOOP CONTROL

Feedback Control Systems. A system that maintains a prescribed relationship
between the output and the reference input by comparing them and using the difference
as a means of control is called a feedback control system. An example would be a room-
temperature control system. By measuring the actual room temperature and comparing
it with the reference temperature (desired temperature), the thermostat turns the heat-
ing or cooling equipment on or off in such a way as to ensure that the room tempera-
ture remains at a comfortable level regardless of outside conditions.

Feedback control systems are not limited to engineering but can be found in various
nonengineering fields as well. The human body, for instance, is a highly advanced feed-
back control system. Both body temperature and blood pressure are kept constant by
means of physiological feedback. In fact, feedback performs a vital function: It makes
the human body relatively insensitive to external disturbances, thus enabling it to func-
tion properly in a changing environment.

ß Ws(s)

1 + K(s)G(s)
ß

q

6 1

ßWm(s)K(s)G(s)

1 + K(s)G(s)
ß

q

6 1

ß W(s)

1 + K(s)G(s)
ß

q

6 1
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Closed-Loop Control Systems. Feedback control systems are often referred to
as closed-loop control systems. In practice, the terms feedback control and closed-loop
control are used interchangeably. In a closed-loop control system the actuating error
signal, which is the difference between the input signal and the feedback signal (which
may be the output signal itself or a function of the output signal and its derivatives
and/or integrals), is fed to the controller so as to reduce the error and bring the output
of the system to a desired value.The term closed-loop control always implies the use of
feedback control action in order to reduce system error.

Open-Loop Control Systems. Those systems in which the output has no effect
on the control action are called open-loop control systems. In other words, in an open-
loop control system the output is neither measured nor fed back for comparison with the
input. One practical example is a washing machine. Soaking, washing, and rinsing in the
washer operate on a time basis. The machine does not measure the output signal, that
is, the cleanliness of the clothes.

In any open-loop control system the output is not compared with the reference input.
Thus, to each reference input there corresponds a fixed operating condition; as a result,
the accuracy of the system depends on calibration. In the presence of disturbances, an
open-loop control system will not perform the desired task. Open-loop control can be
used, in practice, only if the relationship between the input and output is known and if
there are neither internal nor external disturbances. Clearly, such systems are not feed-
back control systems. Note that any control system that operates on a time basis is open
loop. For instance, traffic control by means of signals operated on a time basis is another
example of open-loop control.

Closed-Loop versus Open-Loop Control Systems. An advantage of the closed-
loop control system is the fact that the use of feedback makes the system response rela-
tively insensitive to external disturbances and internal variations in system parameters.
It is thus possible to use relatively inaccurate and inexpensive components to obtain the
accurate control of a given plant, whereas doing so is impossible in the open-loop case.

From the point of view of stability, the open-loop control system is easier to build be-
cause system stability is not a major problem. On the other hand, stability is a major
problem in the closed-loop control system, which may tend to overcorrect errors and
thereby can cause oscillations of constant or changing amplitude.

It should be emphasized that for systems in which the inputs are known ahead of
time and in which there are no disturbances it is advisable to use open-loop control.
Closed-loop control systems have advantages only when unpredictable disturbances
and/or unpredictable variations in system components are present. Note that the
output power rating partially determines the cost, weight, and size of a control system.
The number of components used in a closed-loop control system is more than that for
a corresponding open-loop control system. Thus, the closed-loop control system is
generally higher in cost and power.To decrease the required power of a system, open-
loop control may be used where applicable. A proper combination of open-loop and
closed-loop controls is usually less expensive and will give satisfactory overall system
performance.

Most analyses and designs of control systems presented in this book are concerned
with closed-loop control systems. Under certain circumstances (such as where no
disturbances exist or the output is hard to measure) open-loop control systems may be



desired. Therefore, it is worthwhile to summarize the advantages and disadvantages of
using open-loop control systems.

The major advantages of open-loop control systems are as follows:

1. Simple construction and ease of maintenance.
2. Less expensive than a corresponding closed-loop system.
3. There is no stability problem.
4. Convenient when output is hard to measure or measuring the output precisely is

economically not feasible. (For example, in the washer system, it would be quite ex-
pensive to provide a device to measure the quality of the washer’s output, clean-
liness of the clothes.)

The major disadvantages of open-loop control systems are as follows:

1. Disturbances and changes in calibration cause errors, and the output may be
different from what is desired.

2. To maintain the required quality in the output, recalibration is necessary from
time to time.

1–4 DESIGN AND COMPENSATION OF CONTROL SYSTEMS

This book discusses basic aspects of the design and compensation of control systems.
Compensation is the modification of the system dynamics to satisfy the given specifi-
cations. The approaches to control system design and compensation used in this book
are the root-locus approach, frequency-response approach, and the state-space ap-
proach. Such control systems design and compensation will be presented in Chapters
6, 7, 9 and 10. The PID-based compensational approach to control systems design is
given in Chapter 8.

In the actual design of a control system, whether to use an electronic, pneumatic, or
hydraulic compensator is a matter that must be decided partially based on the nature of
the controlled plant. For example, if the controlled plant involves flammable fluid, then
we have to choose pneumatic components (both a compensator and an actuator) to
avoid the possibility of sparks. If, however, no fire hazard exists, then electronic com-
pensators are most commonly used. (In fact, we often transform nonelectrical signals into
electrical signals because of the simplicity of transmission, increased accuracy, increased
reliability, ease of compensation, and the like.)

Performance Specifications. Control systems are designed to perform specific
tasks. The requirements imposed on the control system are usually spelled out as per-
formance specifications. The specifications may be given in terms of transient response
requirements (such as the maximum overshoot and settling time in step response) and
of steady-state requirements (such as steady-state error in following ramp input) or may
be given in frequency-response terms. The specifications of a control system must be
given before the design process begins.

For routine design problems, the performance specifications (which relate to accura-
cy, relative stability, and speed of response) may be given in terms of precise numerical
values. In other cases they may be given partially in terms of precise numerical values and
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partially in terms of qualitative statements. In the latter case the specifications may have
to be modified during the course of design, since the given specifications may never be
satisfied (because of conflicting requirements) or may lead to a very expensive system.

Generally, the performance specifications should not be more stringent than neces-
sary to perform the given task. If the accuracy at steady-state operation is of prime im-
portance in a given control system, then we should not require unnecessarily rigid
performance specifications on the transient response, since such specifications will
require expensive components. Remember that the most important part of control
system design is to state the performance specifications precisely so that they will yield
an optimal control system for the given purpose.

System Compensation. Setting the gain is the first step in adjusting the system
for satisfactory performance. In many practical cases, however, the adjustment of the
gain alone may not provide sufficient alteration of the system behavior to meet the given
specifications. As is frequently the case, increasing the gain value will improve the
steady-state behavior but will result in poor stability or even instability. It is then nec-
essary to redesign the system (by modifying the structure or by incorporating addi-
tional devices or components) to alter the overall behavior so that the system will
behave as desired. Such a redesign or addition of a suitable device is called compensa-
tion. A device inserted into the system for the purpose of satisfying the specifications
is called a compensator. The compensator compensates for deficient performance of the
original system.

Design Procedures. In the process of designing a control system, we set up a
mathematical model of the control system and adjust the parameters of a compensator.
The most time-consuming part of the work is the checking of the system performance
by analysis with each adjustment of the parameters.The designer should use MATLAB
or other available computer package to avoid much of the numerical drudgery neces-
sary for this checking.

Once a satisfactory mathematical model has been obtained, the designer must con-
struct a prototype and test the open-loop system. If absolute stability of the closed loop
is assured, the designer closes the loop and tests the performance of the resulting closed-
loop system. Because of the neglected loading effects among the components, nonlin-
earities, distributed parameters, and so on, which were not taken into consideration in
the original design work, the actual performance of the prototype system will probably
differ from the theoretical predictions. Thus the first design may not satisfy all the re-
quirements on performance. The designer must adjust system parameters and make
changes in the prototype until the system meets the specificications. In doing this, he or
she must analyze each trial, and the results of the analysis must be incorporated into
the next trial. The designer must see that the final system meets the performance apec-
ifications and, at the same time, is reliable and economical.

1–5 OUTLINE OF THE BOOK

This text is organized into 10 chapters.The outline of each chapter may be summarized
as follows:

Chapter 1 presents an introduction to this book.
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Chapter 2 deals with mathematical modeling of control systems that are described
by linear differential equations. Specifically, transfer function expressions of differential
equation systems are derived.Also, state-space expressions of differential equation sys-
tems are derived. MATLAB is used to transform mathematical models from transfer
functions to state-space equations and vice versa.This book treats linear systems in de-
tail. If the mathematical model of any system is nonlinear, it needs to be linearized be-
fore applying theories presented in this book. A technique to linearize nonlinear
mathematical models is presented in this chapter.

Chapter 3 derives mathematical models of various mechanical and electrical sys-
tems that appear frequently in control systems.

Chapter 4 discusses various fluid systems and thermal systems, that appear in control
systems. Fluid systems here include liquid-level systems, pneumatic systems, and hydraulic
systems. Thermal systems such as temperature control systems are also discussed here.
Control engineers must be familiar with all of these systems discussed in this chapter.

Chapter 5 presents transient and steady-state response analyses of control systems
defined in terms of transfer functions. MATLAB approach to obtain transient and
steady-state response analyses is presented in detail. MATLAB approach to obtain
three-dimensional plots is also presented. Stability analysis based on Routh’s stability
criterion is included in this chapter and the Hurwitz stability criterion is briefly discussed.

Chapter 6 treats the root-locus method of analysis and design of control systems. It
is a graphical method for determining the locations of all closed-loop poles from the
knowledge of the locations of the open-loop poles and zeros of a closed-loop system
as a parameter (usually the gain) is varied from zero to infinity. This method was de-
veloped by W. R. Evans around 1950. These days MATLAB can produce root-locus
plots easily and quickly.This chapter presents both a manual approach and a MATLAB
approach to generate root-locus plots. Details of the design of control systems using lead
compensators, lag compensators, are lag–lead compensators are presented in this
chapter.

Chapter 7 presents the frequency-response method of analysis and design of control
systems. This is the oldest method of control systems analysis and design and was de-
veloped during 1940–1950 by Nyquist, Bode, Nichols, Hazen, among others. This chap-
ter presents details of the frequency-response approach to control systems design using
lead compensation technique, lag compensation technique, and lag–lead compensation
technique. The frequency-response method was the most frequently used analysis and
design method until the state-space method became popular. However, since H-infini-
ty control for designing robust control systems has become popular, frequency response
is gaining popularity again.

Chapter 8 discusses PID controllers and modified ones such as multidegrees-of-
freedom PID controllers. The PID controller has three parameters; proportional gain,
integral gain, and derivative gain. In industrial control systems more than half of the con-
trollers used have been PID controllers. The performance of PID controllers depends
on the relative magnitudes of those three parameters. Determination of the relative
magnitudes of the three parameters is called tuning of PID controllers.

Ziegler and Nichols proposed so-called “Ziegler–Nichols tuning rules” as early as
1942. Since then numerous tuning rules have been proposed.These days manufacturers
of PID controllers have their own tuning rules. In this chapter we present a computer
optimization approach using MATLAB to determine the three parameters to satisfy
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given transient response characteristics.The approach can be expanded to determine the
three parameters to satisfy any specific given characteristics.

Chapter 9 presents basic analysis of state-space equations. Concepts of controllabil-
ity and observability, most important concepts in modern control theory, due to Kalman
are discussed in full. In this chapter, solutions of state-space equations are derived in
detail.

Chapter 10 discusses state-space designs of control systems. This chapter first deals
with pole placement problems and state observers. In control engineering, it is frequently
desirable to set up a meaningful performance index and try to minimize it (or maximize
it, as the case may be). If the performance index selected has a clear physical meaning,
then this approach is quite useful to determine the optimal control variable. This chap-
ter discusses the quadratic optimal regulator problem where we use a performance index
which is an integral of a quadratic function of the state variables and the control vari-
able.The integral is performed from t=0 to t= .This chapter concludes with a brief
discussion of robust control systems.

q
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Mathematical Modeling 
of Control Systems

2–1 INTRODUCTION

In studying control systems the reader must be able to model dynamic systems in math-
ematical terms and analyze their dynamic characteristics.A mathematical model of a dy-
namic system is defined as a set of equations that represents the dynamics of the system
accurately, or at least fairly well. Note that a mathematical model is not unique to a
given system.A system may be represented in many different ways and, therefore, may
have many mathematical models, depending on one’s perspective.

The dynamics of many systems, whether they are mechanical, electrical, thermal,
economic, biological, and so on, may be described in terms of differential equations.
Such differential equations may be obtained by using physical laws governing a partic-
ular system—for example, Newton’s laws for mechanical systems and Kirchhoff’s laws
for electrical systems. We must always keep in mind that deriving reasonable mathe-
matical models is the most important part of the entire analysis of control systems.

Throughout this book we assume that the principle of causality applies to the systems
considered.This means that the current output of the system (the output at time t=0)
depends on the past input (the input for t<0) but does not depend on the future input
(the input for t>0).

Mathematical Models. Mathematical models may assume many different forms.
Depending on the particular system and the particular circumstances, one mathemati-
cal model may be better suited than other models. For example, in optimal control prob-
lems, it is advantageous to use state-space representations. On the other hand, for the
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transient-response or frequency-response analysis of single-input, single-output, linear,
time-invariant systems, the transfer-function representation may be more convenient
than any other. Once a mathematical model of a system is obtained, various analytical
and computer tools can be used for analysis and synthesis purposes.

Simplicity Versus Accuracy. In obtaining a mathematical model, we must make
a compromise between the simplicity of the model and the accuracy of the results of
the analysis. In deriving a reasonably simplified mathematical model, we frequently find
it necessary to ignore certain inherent physical properties of the system. In particular,
if a linear lumped-parameter mathematical model (that is, one employing ordinary dif-
ferential equations) is desired, it is always necessary to ignore certain nonlinearities and
distributed parameters that may be present in the physical system. If the effects that
these ignored properties have on the response are small, good agreement will be obtained
between the results of the analysis of a mathematical model and the results of the
experimental study of the physical system.

In general, in solving a new problem, it is desirable to build a simplified model so that
we can get a general feeling for the solution.A more complete mathematical model may
then be built and used for a more accurate analysis.

We must be well aware that a linear lumped-parameter model, which may be valid in
low-frequency operations, may not be valid at sufficiently high frequencies, since the neg-
lected property of distributed parameters may become an important factor in the dynamic
behavior of the system. For example, the mass of a spring may be neglected in low-
frequency operations, but it becomes an important property of the system at high fre-
quencies. (For the case where a mathematical model involves considerable errors, robust
control theory may be applied. Robust control theory is presented in Chapter 10.)

Linear Systems. A system is called linear if the principle of superposition
applies. The principle of superposition states that the response produced by the
simultaneous application of two different forcing functions is the sum of the two
individual responses. Hence, for the linear system, the response to several inputs can
be calculated by treating one input at a time and adding the results. It is this principle
that allows one to build up complicated solutions to the linear differential equation
from simple solutions.

In an experimental investigation of a dynamic system, if cause and effect are pro-
portional, thus implying that the principle of superposition holds, then the system can
be considered linear.

Linear Time-Invariant Systems and Linear Time-Varying Systems. A differ-
ential equation is linear if the coefficients are constants or functions only of the in-
dependent variable. Dynamic systems that are composed of linear time-invariant
lumped-parameter components may be described by linear time-invariant differen-
tial equations—that is, constant-coefficient differential equations. Such systems are
called linear time-invariant (or linear constant-coefficient) systems. Systems that
are represented by differential equations whose coefficients are functions of time
are called linear time-varying systems. An example of a time-varying control sys-
tem is a spacecraft control system. (The mass of a spacecraft changes due to fuel
consumption.)



Section 2–2 / Transfer Function and Impulse-Response Function 15

Outline of the Chapter. Section 2–1 has presented an introduction to the math-
ematical modeling of dynamic systems. Section 2–2 presents the transfer function and
impulse-response function. Section 2–3 introduces automatic control systems and Sec-
tion 2–4 discusses concepts of modeling in state space. Section 2–5 presents state-space
representation of dynamic systems. Section 2–6 discusses transformation of mathemat-
ical models with MATLAB. Finally, Section 2–7 discusses linearization of nonlinear
mathematical models.

2–2 TRANSFER FUNCTION AND IMPULSE-
RESPONSE FUNCTION

In control theory, functions called transfer functions are commonly used to character-
ize the input-output relationships of components or systems that can be described by lin-
ear, time-invariant, differential equations. We begin by defining the transfer function
and follow with a derivation of the transfer function of a differential equation system.
Then we discuss the impulse-response function.

Transfer Function. The transfer function of a linear, time-invariant, differential
equation system is defined as the ratio of the Laplace transform of the output (response
function) to the Laplace transform of the input (driving function) under the assumption
that all initial conditions are zero.

Consider the linear time-invariant system defined by the following differential equation:

where y is the output of the system and x is the input. The transfer function of this sys-
tem is the ratio of the Laplace transformed output to the Laplace transformed input
when all initial conditions are zero, or

By using the concept of transfer function, it is possible to represent system dynam-
ics by algebraic equations in s. If the highest power of s in the denominator of the trans-
fer function is equal to n, the system is called an nth-order system.

Comments on Transfer Function. The applicability of the concept of the trans-
fer function is limited to linear, time-invariant, differential equation systems.The trans-
fer function approach, however, is extensively used in the analysis and design of such
systems. In what follows, we shall list important comments concerning the transfer func-
tion. (Note that a system referred to in the list is one described by a linear, time-invariant,
differential equation.)

=
Y(s)

X(s)
=

b0 sm + b1 sm - 1 + p + bm - 1 s + bm

a0 sn + a1 sn - 1 + p + an - 1 s + an

 Transfer function = G(s) =
l[output]

l[input]
2
zero initial conditions

= b0 x
(m)

+  b1x
(m - 1)

+ p + bm - 1 x# + bm x  (n � m)

a0 y
(n)

+  a1y
(n - 1)
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1. The transfer function of a system is a mathematical model in that it is an opera-
tional method of expressing the differential equation that relates the output vari-
able to the input variable.

2. The transfer function is a property of a system itself, independent of the magnitude
and nature of the input or driving function.

3. The transfer function includes the units necessary to relate the input to the output;
however, it does not provide any information concerning the physical structure of
the system. (The transfer functions of many physically different systems can be
identical.)

4. If the transfer function of a system is known, the output or response can be stud-
ied for various forms of inputs with a view toward understanding the nature of
the system.

5. If the transfer function of a system is unknown, it may be established experimen-
tally by introducing known inputs and studying the output of the system. Once
established, a transfer function gives a full description of the dynamic character-
istics of the system, as distinct from its physical description.

Convolution Integral. For a linear, time-invariant system the transfer function
G(s) is

where X(s) is the Laplace transform of the input to the system and Y(s) is the Laplace
transform of the output of the system, where we assume that all initial conditions in-
volved are zero. It follows that the output Y(s) can be written as the product of G(s) and
X(s), or

(2–1)

Note that multiplication in the complex domain is equivalent to convolution in the time
domain (see Appendix A), so the inverse Laplace transform of Equation (2–1) is given
by the following convolution integral:

where both g(t) and x(t) are 0 for t<0.

Impulse-Response Function. Consider the output (response) of a linear time-
invariant system to a unit-impulse input when the initial conditions are zero. Since the
Laplace transform of the unit-impulse function is unity, the Laplace transform of the
output of the system is

(2–2)Y(s) = G(s)

 = 3
t

0
g(t)x(t - t) dt

 y(t) = 3
t

0
x(t)g(t - t) dt

Y(s) = G(s)X(s)

G(s) =
Y(s)

X(s)
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The inverse Laplace transform of the output given by Equation (2–2) gives the impulse
response of the system. The inverse Laplace transform of G(s), or

is called the impulse-response function. This function g(t) is also called the weighting
function of the system.

The impulse-response function g(t) is thus the response of a linear time-invariant
system to a unit-impulse input when the initial conditions are zero.The Laplace trans-
form of this function gives the transfer function. Therefore, the transfer function and
impulse-response function of a linear, time-invariant system contain the same infor-
mation about the system dynamics. It is hence possible to obtain complete informa-
tion about the dynamic characteristics of the system by exciting it with an impulse
input and measuring the response. (In practice, a pulse input with a very short dura-
tion compared with the significant time constants of the system can be considered an
impulse.)

2–3 AUTOMATIC CONTROL SYSTEMS

A control system may consist of a number of components. To show the functions
performed by each component, in control engineering, we commonly use a diagram
called the block diagram. This section first explains what a block diagram is. Next, it
discusses introductory aspects of automatic control systems, including various control
actions.Then, it presents a method for obtaining block diagrams for physical systems, and,
finally, discusses techniques to simplify such diagrams.

Block Diagrams. A block diagram of a system is a pictorial representation of the
functions performed by each component and of the flow of signals. Such a diagram de-
picts the interrelationships that exist among the various components. Differing from a
purely abstract mathematical representation, a block diagram has the advantage of
indicating more realistically the signal flows of the actual system.

In a block diagram all system variables are linked to each other through functional
blocks.The functional block or simply block is a symbol for the mathematical operation
on the input signal to the block that produces the output. The transfer functions of the
components are usually entered in the corresponding blocks, which are connected by ar-
rows to indicate the direction of the flow of signals. Note that the signal can pass only
in the direction of the arrows.Thus a block diagram of a control system explicitly shows
a unilateral property.

Figure 2–1 shows an element of the block diagram. The arrowhead pointing toward
the block indicates the input, and the arrowhead leading away from the block repre-
sents the output. Such arrows are referred to as signals.

l-1 CG(s) D = g(t)

Transfer
function

G(s)
Figure 2–1
Element of a block
diagram.
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+
–

R(s) E(s)
G(s)

C(s)

Summing
point

Branch
point

Figure 2–3
Block diagram of a
closed-loop system.

Note that the dimension of the output signal from the block is the dimension of the
input signal multiplied by the dimension of the transfer function in the block.

The advantages of the block diagram representation of a system are that it is easy
to form the overall block diagram for the entire system by merely connecting the blocks
of the components according to the signal flow and that it is possible to evaluate the
contribution of each component to the overall performance of the system.

In general, the functional operation of the system can be visualized more readily by
examining the block diagram than by examining the physical system itself. A block di-
agram contains information concerning dynamic behavior, but it does not include any
information on the physical construction of the system. Consequently, many dissimilar
and unrelated systems can be represented by the same block diagram.

It should be noted that in a block diagram the main source of energy is not explicitly
shown and that the block diagram of a given system is not unique.A number of different
block diagrams can be drawn for a system, depending on the point of view of the analysis.

Summing Point. Referring to Figure 2–2, a circle with a cross is the symbol that
indicates a summing operation. The plus or minus sign at each arrowhead indicates
whether that signal is to be added or subtracted. It is important that the quantities being
added or subtracted have the same dimensions and the same units.

Branch Point. A branch point is a point from which the signal from a block goes
concurrently to other blocks or summing points.

Block Diagram of a Closed-Loop System. Figure 2–3 shows an example of a
block diagram of a closed-loop system. The output C(s) is fed back to the summing
point, where it is compared with the reference input R(s). The closed-loop nature of
the system is clearly indicated by the figure. The output of the block, C(s) in this case,
is obtained by multiplying the transfer function G(s) by the input to the block, E(s).Any
linear control system may be represented by a block diagram consisting of blocks, sum-
ming points, and branch points.

When the output is fed back to the summing point for comparison with the input, it
is necessary to convert the form of the output signal to that of the input signal. For
example, in a temperature control system, the output signal is usually the controlled
temperature. The output signal, which has the dimension of temperature, must be con-
verted to a force or position or voltage before it can be compared with the input signal.
This conversion is accomplished by the feedback element whose transfer function is H(s),
as shown in Figure 2–4.The role of the feedback element is to modify the output before
it is compared with the input. (In most cases the feedback element is a sensor that measures

+
–

a a – b

b

Figure 2–2
Summing point.



the output of the plant.The output of the sensor is compared with the system input, and
the actuating error signal is generated.) In the present example, the feedback signal that
is fed back to the summing point for comparison with the input is B(s) = H(s)C(s).

Open-Loop Transfer Function and Feedforward Transfer Function. Refer-
ring to Figure 2–4, the ratio of the feedback signal B(s) to the actuating error signal
E(s) is called the open-loop transfer function. That is,

The ratio of the output C(s) to the actuating error signal E(s) is called the feed-
forward transfer function, so that

If the feedback transfer function H(s) is unity, then the open-loop transfer function and
the feedforward transfer function are the same.

Closed-Loop Transfer Function. For the system shown in Figure 2–4, the output
C(s) and input R(s) are related as follows: since

eliminating E(s) from these equations gives

or

(2–3)

The transfer function relating C(s) to R(s) is called the closed-loop transfer function. It
relates the closed-loop system dynamics to the dynamics of the feedforward elements
and feedback elements.

From Equation (2–3), C(s) is given by

C(s) =
G(s)

1 + G(s)H(s)
R(s)

C(s)

R(s)
=

G(s)

1 + G(s)H(s)

C(s) = G(s) CR(s) - H(s)C(s) D
 = R(s) - H(s)C(s)

 E(s) = R(s) - B(s)

 C(s) = G(s)E(s)

Feedforward transfer function =
C(s)

E(s)
= G(s)

Open-loop transfer function =
B(s)

E(s)
= G(s)H(s)
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R(s)

B(s)

E(s)
G(s)

H(s)

C(s)
+

–

Figure 2–4
Closed-loop system.
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G1(s)

G1(s)

G2(s)

G2(s)
C(s)R(s)

C(s)

C(s)

R(s)

R(s)

+
+

G1(s)

G2(s)

+–

(a)

(b)

(c)

Figure 2–5
(a) Cascaded system;
(b) parallel system;
(c) feedback (closed-
loop) system.

Thus the output of the closed-loop system clearly depends on both the closed-loop trans-
fer function and the nature of the input.

Obtaining Cascaded, Parallel, and Feedback (Closed-Loop) Transfer Functions
with MATLAB. In control-systems analysis, we frequently need to calculate the cas-
caded transfer functions, parallel-connected transfer functions, and feedback-connected
(closed-loop) transfer functions. MATLAB has convenient commands to obtain the cas-
caded, parallel, and feedback (closed-loop) transfer functions.

Suppose that there are two components G1(s) and G2(s) connected differently as
shown in Figure 2–5 (a), (b), and (c), where

To obtain the transfer functions of the cascaded system, parallel system, or feedback
(closed-loop) system, the following commands may be used:

[num, den] = series(num1,den1,num2,den2)
[num, den] = parallel(num1,den1,num2,den2)
[num, den] = feedback(num1,den1,num2,den2)

As an example, consider the case where

MATLAB Program 2–1 gives C(s)/R(s)=num�den for each arrangement of G1(s)
and G2(s). Note that the command

printsys(num,den)

displays the num�den Cthat is, the transfer function C(s)/R(s) D of the system considered.

G1(s) =
10

s2 + 2s + 10
=

num1

den1
,  G2(s) =

5

s + 5
=

num2

den2

G1(s) =
num1

den1
,  G2(s) =

num2

den2
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Automatic Controllers. An automatic controller compares the actual value of
the plant output with the reference input (desired value), determines the deviation, and
produces a control signal that will reduce the deviation to zero or to a small value.
The manner in which the automatic controller produces the control signal is called
the control action. Figure 2–6 is a block diagram of an industrial control system, which

MATLAB Program 2–1

num1 = [10];
den1 = [1  2  10];
num2 = [5];
den2 = [1  5];
[num, den] = series(num1,den1,num2,den2);
printsys(num,den)

num/den =

[num, den] = parallel(num1,den1,num2,den2);
printsys(num,den)

num/den =

[num, den] = feedback(num1,den1,num2,den2);
printsys(num,den)

num/den =

10s + 50
s^3 + 7s^2 + 20s + 100

5s^2 + 20s + 100
s^3 + 7s^2 + 20s + 50

50
s^3 + 7s^2 + 20s + 50

Automatic controller

Error detector

Amplifier Actuator Plant
Output

Sensor

Reference
input

Actuating
error signal

Set
point� �

+
–

Figure 2–6
Block diagram of an
industrial control
system, which
consists of an
automatic controller,
an actuator, a plant,
and a sensor
(measuring element).
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consists of an automatic controller, an actuator, a plant, and a sensor (measuring ele-
ment). The controller detects the actuating error signal, which is usually at a very low
power level, and amplifies it to a sufficiently high level. The output of an automatic
controller is fed to an actuator, such as an electric motor, a hydraulic motor, or a
pneumatic motor or valve. (The actuator is a power device that produces the input to
the plant according to the control signal so that the output signal will approach the
reference input signal.)

The sensor or measuring element is a device that converts the output variable into an-
other suitable variable, such as a displacement, pressure, voltage, etc., that can be used to
compare the output to the reference input signal.This element is in the feedback path of
the closed-loop system.The set point of the controller must be converted to a reference
input with the same units as the feedback signal from the sensor or measuring element.

Classifications of Industrial Controllers. Most industrial controllers may be
classified according to their control actions as:

1. Two-position or on–off controllers
2. Proportional controllers
3. Integral controllers
4. Proportional-plus-integral controllers
5. Proportional-plus-derivative controllers
6. Proportional-plus-integral-plus-derivative controllers

Most industrial controllers use electricity or pressurized fluid such as oil or air as
power sources. Consequently, controllers may also be classified according to the kind of
power employed in the operation, such as pneumatic controllers, hydraulic controllers,
or electronic controllers. What kind of controller to use must be decided based on the
nature of the plant and the operating conditions, including such considerations as safety,
cost, availability, reliability, accuracy, weight, and size.

Two-Position or On–Off Control Action. In a two-position control system, the
actuating element has only two fixed positions, which are, in many cases, simply on and
off.Two-position or on–off control is relatively simple and inexpensive and, for this rea-
son, is very widely used in both industrial and domestic control systems.

Let the output signal from the controller be u(t) and the actuating error signal be e(t).
In two-position control, the signal u(t) remains at either a maximum or minimum value,
depending on whether the actuating error signal is positive or negative, so that

where U1 and U2 are constants. The minimum value U2 is usually either zero or –U1 .
Two-position controllers are generally electrical devices, and an electric solenoid-oper-
ated valve is widely used in such controllers. Pneumatic proportional controllers with very
high gains act as two-position controllers and are sometimes called pneumatic two-
position controllers.

Figures 2–7(a) and (b) show the block diagrams for two-position or on–off controllers.
The range through which the actuating error signal must move before the switching occurs

 = U2 ,  for e(t) 6 0

 u(t) = U1 ,  for e(t) 7 0
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is called the differential gap. A differential gap is indicated in Figure 2–7(b). Such a dif-
ferential gap causes the controller output u(t) to maintain its present value until the ac-
tuating error signal has moved slightly beyond the zero value. In some cases, the differential
gap is a result of unintentional friction and lost motion; however, quite often it is inten-
tionally provided in order to prevent too-frequent operation of the on–off mechanism.

Consider the liquid-level control system shown in Figure 2–8(a), where the electromag-
netic valve shown in Figure 2–8(b) is used for controlling the inflow rate.This valve is either
open or closed.With this two-position control, the water inflow rate is either a positive con-
stant or zero. As shown in Figure 2–9, the output signal continuously moves between the
two limits required to cause the actuating element to move from one fixed position to the
other. Notice that the output curve follows one of two exponential curves, one correspon-
ding to the filling curve and the other to the emptying curve. Such output oscillation be-
tween two limits is a typical response characteristic of a system under two-position control.

(a) (b)

U1

U2

ue U1

U2

ue

Differential gap

+
–

+
–

Figure 2–7
(a) Block diagram of
an on–off controller;
(b) block diagram of
an on–off controller
with differential gap.

115 V

Float

R

C h

(a) (b)

qi

Movable iron core

Magnetic coil

Figure 2–8
(a) Liquid-level
control system;
(b) electromagnetic
valve.

h(t)

t0

Differential
gap

Figure 2–9
Level h(t)-versus-t
curve for the system
shown in Figure 2–8(a).
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From Figure 2–9, we notice that the amplitude of the output oscillation can 
be reduced by decreasing the differential gap. The decrease in the differential 
gap, however, increases the number of on–off switchings per minute and reduces 
the useful life of the component. The magnitude of the differential gap must be 
determined from such considerations as the accuracy required and the life of 
the component.

Proportional Control Action. For a controller with proportional control action,
the relationship between the output of the controller u(t) and the actuating error signal
e(t) is

or, in Laplace-transformed quantities,

where Kp is termed the proportional gain.
Whatever the actual mechanism may be and whatever the form of the operating

power, the proportional controller is essentially an amplifier with an adjustable gain.

Integral Control Action. In a controller with integral control action, the value of
the controller output u(t) is changed at a rate proportional to the actuating error signal
e(t). That is,

or

where Ki is an adjustable constant. The transfer function of the integral controller is

Proportional-Plus-Integral Control Action. The control action of a proportional-
plus-integral controller is defined by

u(t) = Kp e(t) +
Kp

Ti 3
t

0
e(t) dt

U(s)

E(s)
=

Ki

s

u(t) = Ki3
t

0
e(t) dt

du(t)

dt
= Ki e(t)

U(s)

E(s)
= Kp

u(t) = Kp e(t)
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or the transfer function of the controller is

where is called the integral time.

Proportional-Plus-Derivative Control Action. The control action of a proportional-
plus-derivative controller is defined by

and the transfer function is

where is called the derivative time.

Proportional-Plus-Integral-Plus-Derivative Control Action. The combination of
proportional control action, integral control action, and derivative control action is
termed proportional-plus-integral-plus-derivative control action. It has the advantages
of each of the three individual control actions. The equation of a controller with this
combined action is given by

or the transfer function is

where Kp is the proportional gain, is the integral time, and is the derivative time.
The block diagram of a proportional-plus-integral-plus-derivative controller is shown in
Figure 2–10.

TdTi

U(s)

E(s)
= Kp a1 +

1

Ti s
+ Td s b

u(t) = Kp e(t) +
Kp

Ti 3
t

0
e(t) dt + Kp Td

de(t)

dt

Td

U(s)

E(s)
= KpA1 + Td sB

u(t) = Kp e(t) + Kp Td

de(t)

dt

Ti

U(s)

E(s)
= Kp a1 +

1

Ti s
b

+
–

E(s) U(s)Kp(1 + Tis + Ti Tds2)
Tis

Figure 2–10
Block diagram of a
proportional-plus-
integral-plus-
derivative controller.
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R(s)
G1(s) G2(s)

H(s)

Disturbance
D(s)

C(s)
+

–
+

+

Figure 2–11
Closed-loop system
subjected to a
disturbance.

Closed-Loop System Subjected to a Disturbance. Figure 2–11 shows a closed-
loop system subjected to a disturbance. When two inputs (the reference input and dis-
turbance) are present in a linear time-invariant system, each input can be treated
independently of the other; and the outputs corresponding to each input alone can be
added to give the complete output. The way each input is introduced into the system is
shown at the summing point by either a plus or minus sign.

Consider the system shown in Figure 2–11. In examining the effect of the distur-
bance D(s), we may assume that the reference input is zero; we may then calculate the
response CD(s) to the disturbance only. This response can be found from

On the other hand, in considering the response to the reference input R(s), we may
assume that the disturbance is zero.Then the response CR(s) to the reference input R(s)
can be obtained from

The response to the simultaneous application of the reference input and disturbance
can be obtained by adding the two individual responses. In other words, the response
C(s) due to the simultaneous application of the reference input R(s) and disturbance
D(s) is given by

Consider now the case where |G1(s)H(s)| � 1 and |G1(s)G2(s)H(s)| � 1. In this
case, the closed-loop transfer function CD(s)/D(s) becomes almost zero, and the effect
of the disturbance is suppressed. This is an advantage of the closed-loop system.

On the other hand, the closed-loop transfer function CR(s)/R(s) approaches 1/H(s)
as the gain of G1(s)G2(s)H(s) increases.This means that if |G1(s)G2(s)H(s)| � 1, then
the closed-loop transfer function CR(s)/R(s) becomes independent of G1(s) and G2(s)
and inversely proportional to H(s), so that the variations of G1(s) and G2(s) do not
affect the closed-loop transfer function CR(s)/R(s). This is another advantage of the
closed-loop system. It can easily be seen that any closed-loop system with unity feedback,
H(s)=1, tends to equalize the input and output.

 =
G2(s)

1 + G1(s)G2(s)H(s)
 CG1(s)R(s) + D(s) D C(s) = CR(s) + CD(s)

CR(s)

R(s)
=

G1(s)G2(s)

1 + G1(s)G2(s)H(s)

CD(s)

D(s)
=

G2(s)

1 + G1(s)G2(s)H(s)
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Procedures for Drawing a Block Diagram. To draw a block diagram for a sys-
tem, first write the equations that describe the dynamic behavior of each component.
Then take the Laplace transforms of these equations, assuming zero initial conditions,
and represent each Laplace-transformed equation individually in block form. Finally, as-
semble the elements into a complete block diagram.

As an example, consider the RC circuit shown in Figure 2–12(a). The equations for
this circuit are

(2–4)

(2–5)

The Laplace transforms of Equations (2–4) and (2–5), with zero initial condition, become

(2–6)

(2–7)

Equation (2–6) represents a summing operation, and the corresponding diagram is
shown in Figure 2–12(b). Equation (2–7) represents the block as shown in Figure 2–12(c).
Assembling these two elements, we obtain the overall block diagram for the system as
shown in Figure 2–12(d).

Block Diagram Reduction. It is important to note that blocks can be connected
in series only if the output of one block is not affected by the next following block. If
there are any loading effects between the components, it is necessary to combine these
components into a single block.

Any number of cascaded blocks representing nonloading components can be
replaced by a single block, the transfer function of which is simply the product of the
individual transfer functions.

 Eo(s) =
I(s)

Cs

 I(s) =
Ei(s) - Eo(s)

R

eo = 1i dt

C

i =
ei - eo

R

(d)

Ei(s) I(s) Eo(s)1
R

1
Cs

Eo(s)

(b)

Ei(s) I(s)1
R

(c)

I(s) Eo(s)1
Cs

(a)

R

C eoei

i

+
–

+
–

Figure 2–12
(a) RC circuit;
(b) block diagram
representing
Equation (2–6);
(c) block diagram
representing
Equation (2–7);
(d) block diagram of
the RC circuit.
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–
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–Figure 2–13

(a) Multiple-loop
system;
(b)–(e) successive
reductions of the
block diagram shown
in (a).

A complicated block diagram involving many feedback loops can be simplified by
a step-by-step rearrangement. Simplification of the block diagram by rearrangements
considerably reduces the labor needed for subsequent mathematical analysis. It should
be noted, however, that as the block diagram is simplified, the transfer functions in new
blocks become more complex because new poles and new zeros are generated.

EXAMPLE 2–1 Consider the system shown in Figure 2–13(a). Simplify this diagram.
By moving the summing point of the negative feedback loop containing H2 outside the posi-

tive feedback loop containing H1, we obtain Figure 2–13(b). Eliminating the positive feedback loop,
we have Figure 2–13(c).The elimination of the loop containing H2/G1 gives Figure 2–13(d). Finally,
eliminating the feedback loop results in Figure 2–13(e).
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Notice that the numerator of the closed-loop transfer function C(s)/R(s) is the product of the
transfer functions of the feedforward path. The denominator of C(s)/R(s) is equal to

(The positive feedback loop yields a negative term in the denominator.)

2–4 MODELING IN STATE SPACE

In this section we shall present introductory material on state-space analysis of control
systems.

Modern Control Theory. The modern trend in engineering systems is toward
greater complexity, due mainly to the requirements of complex tasks and good accu-
racy. Complex systems may have multiple inputs and multiple outputs and may be time
varying. Because of the necessity of meeting increasingly stringent requirements on
the performance of control systems, the increase in system complexity, and easy access
to large scale computers, modern control theory, which is a new approach to the analy-
sis and design of complex control systems, has been developed since around 1960.This
new approach is based on the concept of state. The concept of state by itself is not
new, since it has been in existence for a long time in the field of classical dynamics and
other fields.

Modern Control Theory Versus Conventional Control Theory. Modern con-
trol theory is contrasted with conventional control theory in that the former is appli-
cable to multiple-input, multiple-output systems, which may be linear or nonlinear,
time invariant or time varying, while the latter is applicable only to linear time-
invariant single-input, single-output systems. Also, modern control theory is essen-
tially time-domain approach and frequency domain approach (in certain cases such as
H-infinity control), while conventional control theory is a complex frequency-domain
approach. Before we proceed further, we must define state, state variables, state vector,
and state space.

State. The state of a dynamic system is the smallest set of variables (called state
variables) such that knowledge of these variables at t=t0, together with knowledge of
the input for t � t0 , completely determines the behavior of the system for any time
t � t0.

Note that the concept of state is by no means limited to physical systems. It is appli-
cable to biological systems, economic systems, social systems, and others.

State Variables. The state variables of a dynamic system are the variables mak-
ing up the smallest set of variables that determine the state of the dynamic system. If at

 = 1 - G1 G2 H1 + G2 G3 H2 + G1 G2 G3 

= 1 + A-G1 G2 H1 + G2 G3 H2 + G1 G2 G3B
1 +a (product of the transfer functions around each loop)
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least n variables x1, x2, p , xn are needed to completely describe the behavior of a dy-
namic system (so that once the input is given for t � t0 and the initial state at t=t0 is
specified, the future state of the system is completely determined), then such n variables
are a set of state variables.

Note that state variables need not be physically measurable or observable quantities.
Variables that do not represent physical quantities and those that are neither measura-
ble nor observable can be chosen as state variables. Such freedom in choosing state vari-
ables is an advantage of the state-space methods. Practically, however, it is convenient
to choose easily measurable quantities for the state variables, if this is possible at all, be-
cause optimal control laws will require the feedback of all state variables with suitable
weighting.

State Vector. If n state variables are needed to completely describe the behavior
of a given system, then these n state variables can be considered the n components of a
vector x. Such a vector is called a state vector. A state vector is thus a vector that deter-
mines uniquely the system state x(t) for any time t � t0 , once the state at t=t0 is given
and the input u(t) for t � t0 is specified.

State Space. The n-dimensional space whose coordinate axes consist of the x1

axis, x2 axis, p , xn axis, where x1, x2, p , xn are state variables, is called a state space.Any
state can be represented by a point in the state space.

State-Space Equations. In state-space analysis we are concerned with three types
of variables that are involved in the modeling of dynamic systems: input variables, out-
put variables, and state variables. As we shall see in Section 2–5, the state-space repre-
sentation for a given system is not unique, except that the number of state variables is
the same for any of the different state-space representations of the same system.

The dynamic system must involve elements that memorize the values of the input for
t � t1 . Since integrators in a continuous-time control system serve as memory devices,
the outputs of such integrators can be considered as the variables that define the inter-
nal state of the dynamic system.Thus the outputs of integrators serve as state variables.
The number of state variables to completely define the dynamics of the system is equal
to the number of integrators involved in the system.

Assume that a multiple-input, multiple-output system involves n integrators.Assume
also that there are r inputs u1(t), u2(t), p , ur(t) and m outputs y1(t), y2(t), p , ym(t).
Define n outputs of the integrators as state variables: x1(t), x2(t), p , xn(t) Then the
system may be described by

(2–8)

 x
#
n(t) = fnAx1 , x2 , p , xn ; u1 , u2 , p , ur ; tB �

 �

 �

 x
#
2(t) = f2Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB x

#
1(t) = f1Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB
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The outputs y1(t), y2(t), p , ym(t) of the system may be given by

(2–9)

If we define

 ym(t) = gmAx1 , x2 , p , xn ; u1 , u2 , p , ur ; tB �

 �

 �

 y2(t) = g2Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB y1(t) = g1Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

u(t) = F
u1(t)

u2(t)

�

�

�

ur(t)

Vg(x, u, t) = F
g1Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB
g2Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

�

�

�

gmAx1 , x2 , p , xn ; u1 , u2 , p , ur ; tB
V , y(t) = F

y1(t)

y2(t)

�

�

�

ym(t)

V ,

f(x, u, t) = F
f1Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB
f2Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

�

�

�

fnAx1 , x2 , p , xn ; u1 , u2 , p , ur ; tB
V , x(t) = F

x1(t)

x2(t)

�

�

�

xn(t)

V ,

then Equations (2–8) and (2–9) become

(2–10)

(2–11)

where Equation (2–10) is the state equation and Equation (2–11) is the output equation.
If vector functions f and/or g involve time t explicitly, then the system is called a time-
varying system.

If Equations (2–10) and (2–11) are linearized about the operating state, then we
have the following linearized state equation and output equation:

(2–12)

(2–13)

where A(t) is called the state matrix, B(t) the input matrix, C(t) the output matrix, and
D(t) the direct transmission matrix. (Details of linearization of nonlinear systems about

 y(t) = C(t)x(t) + D(t)u(t)

 x# (t) = A(t)x(t) + B(t)u(t)

y(t) = g(x, u, t)

 x# (t) = f(x, u, t)
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Figure 2–15
Mechanical system.
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Figure 2–14
Block diagram of the
linear, continuous-
time control system
represented in state
space.

the operating state are discussed in Section 2–7.) A block diagram representation of
Equations (2–12) and (2–13) is shown in Figure 2–14.

If vector functions f and g do not involve time t explicitly then the system is called a
time-invariant system. In this case, Equations (2–12) and (2–13) can be simplified to

(2–14)

(2–15)

Equation (2–14) is the state equation of the linear, time-invariant system and Equation
(2–15) is the output equation for the same system. In this book we shall be concerned
mostly with systems described by Equations (2–14) and (2–15).

In what follows we shall present an example for deriving a state equation and output
equation.

EXAMPLE 2–2 Consider the mechanical system shown in Figure 2–15. We assume that the system is linear. The
external force u(t) is the input to the system, and the displacement y(t) of the mass is the output.
The displacement y(t) is measured from the equilibrium position in the absence of the external
force. This system is a single-input, single-output system.

From the diagram, the system equation is

(2–16)

This system is of second order.This means that the system involves two integrators. Let us define
state variables x1(t) and x2(t) as

Then we obtain

or

(2–17)

(2–18)

The output equation is
(2–19)y = x1

 x
#
2 = -

k

m
x1 -

b

m
x2 +

1

m
u

 x
#
1 = x2

 x
#
2 =

1

m
 A-ky - by

# B +
1

m
 u

 x
#
1 = x2

x2(t) = y
#
(t)

x1(t) = y(t)

my
$ + by

# + ky = u

 y# (t) = Cx(t) + Du(t)

 x# (t) = Ax(t) + Bu(t)



In a vector-matrix form, Equations (2–17) and (2–18) can be written as

(2–20)

The output equation, Equation (2–19), can be written as

(2–21)

Equation (2–20) is a state equation and Equation (2–21) is an output equation for the system.
They are in the standard form:

where

Figure 2–16 is a block diagram for the system. Notice that the outputs of the integrators are state
variables.

Correlation Between Transfer Functions and State-Space Equations. In what
follows we shall show how to derive the transfer function of a single-input, single-output
system from the state-space equations.

Let us consider the system whose transfer function is given by

(2–22)

This system may be represented in state space by the following equations:

(2–23)

(2–24) y = Cx + Du

 x# = Ax + Bu

Y(s)

U(s)
= G(s)

A = C 0

-
k

m

1

-
b

m

S ,  B = C 0
1
m

S ,  C = [1 0] ,  D = 0

 y = Cx + Du

 x# = Ax + Bu

y = [1 0]Bx1

x2
R

Bx
#
1

x
#
2
R = C 0

-
k

m

1

-
b

m

S Bx1

x2
R + C 0

1

m

S u
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Figure 2–16
Block diagram of the
mechanical system
shown in Figure 2–15.
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where x is the state vector, u is the input, and y is the output.The Laplace transforms of
Equations (2–23) and (2–24) are given by

(2–25)

(2–26)

Since the transfer function was previously defined as the ratio of the Laplace transform
of the output to the Laplace transform of the input when the initial conditions were
zero, we set x(0) in Equation (2–25) to be zero. Then we have

or

By premultiplying to both sides of this last equation, we obtain

(2–27)

By substituting Equation (2–27) into Equation (2–26), we get

(2–28)

Upon comparing Equation (2–28) with Equation (2–22), we see that

(2–29)

This is the transfer-function expression of the system in terms of A, B, C, and D.
Note that the right-hand side of Equation (2–29) involves Hence G(s)

can be written as

where Q(s) is a polynomial in s. Notice that is equal to the characteristic poly-
nomial of G(s). In other words, the eigenvalues of A are identical to the poles of G(s).

EXAMPLE 2–3 Consider again the mechanical system shown in Figure 2–15. State-space equations for the system
are given by Equations (2–20) and (2–21).We shall obtain the transfer function for the system from
the state-space equations.

By substituting A, B, C, and D into Equation (2–29), we obtain

 = [1 0]C s

k

m

-1

s +
b

m

S -1C 0

1

m

S
 = [1 0] c B s

0

0

s
R - C 0

-
k

m

1

-
b

m

S s -1C 0

1

m

S + 0

 G(s) = C(s I - A)-1 B + D

∑s I - A∑

G(s) =
Q(s)

∑s I - A∑

(s I - A)-1.

G(s) = C(s I - A)-1 B + D

Y(s) = CC(s I - A)-1 B + D DU(s)

X(s) = (s I - A)-1 BU(s)

(s I - A)-1

(s I - A)X(s) = BU(s)

s X(s) - AX(s) = BU(s)

 Y(s) = CX(s) + DU(s)

 sX(s) - x(0) = AX(s) + BU(s)
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Note that

(Refer to Appendix C for the inverse of the 2 � 2 matrix.)
Thus, we have

which is the transfer function of the system. The same transfer function can be obtained from
Equation (2–16).

Transfer Matrix. Next, consider a multiple-input, multiple-output system.Assume
that there are r inputs and m outputs Define

The transfer matrix G(s) relates the output Y(s) to the input U(s), or

where G(s) is given by

[The derivation for this equation is the same as that for Equation (2–29).] Since the
input vector u is r dimensional and the output vector y is m dimensional, the transfer ma-
trix G(s) is an m*r matrix.

2–5 STATE-SPACE REPRESENTATION OF SCALAR
DIFFERENTIAL EQUATION SYSTEMS

A dynamic system consisting of a finite number of lumped elements may be described
by ordinary differential equations in which time is the independent variable. By use of
vector-matrix notation, an nth-order differential equation may be expressed by a first-
order vector-matrix differential equation. If n elements of the vector are a set of state
variables, then the vector-matrix differential equation is a state equation. In this section
we shall present methods for obtaining state-space representations of continuous-time
systems.
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State-Space Representation of nth-Order Systems of Linear Differential Equa-
tions in which the Forcing Function Does Not Involve Derivative Terms. Con-
sider the following nth-order system:

(2–30)

Noting that the knowledge of together with the input u(t) for
t � 0, determines completely the future behavior of the system, we may take

as a set of n state variables. (Mathematically, such a choice of state
variables is quite convenient. Practically, however, because higher-order derivative terms
are inaccurate, due to the noise effects inherent in any practical situations, such a choice
of the state variables may not be desirable.)

Let us define

Then Equation (2–30) can be written as

or

(2–31)
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x
#
n = -anx1 - p - a1xn + u

x
#
n - 1 = xn

�

�

�

x
#
2 = x3

x
#
1 = x2

 xn = y
(n - 1)

 �
 �
 �

 x2 = y
#

 x1 = y

y(t), y
#
(t), p , y

(n - 1)
(t)

y(0), y
#
(0), p , y

(n - 1)
(0),

y
(n)

+  a1y
(n - 1)

+ p + an - 1 y# + an y = u



Section 2–5 / State-Space Representation of Scalar Differential Equation Systems 37

The output can be given by

or

(2–32)

where

[Note that D in Equation (2–24) is zero.] The first-order differential equation, Equa-
tion (2–31), is the state equation, and the algebraic equation, Equation (2–32), is the
output equation.

Note that the state-space representation for the transfer function system

is given also by Equations (2–31) and (2–32).

State-Space Representation of nth-Order Systems of Linear Differential Equa-
tions in which the Forcing Function Involves Derivative Terms. Consider the dif-
ferential equation system that involves derivatives of the forcing function, such as

(2–33)

The main problem in defining the state variables for this case lies in the derivative
terms of the input u. The state variables must be such that they will eliminate the de-
rivatives of u in the state equation.

One way to obtain a state equation and output equation for this case is to define the
following n variables as a set of n state variables:

(2–34)

xn = y
(n - 1)

-  b0u
(n - 1)

-  b1u
(n - 2)

- p - bn - 2 u# - bn - 1 u = x
#
n - 1 - bn - 1 u

�

�

�

x3 = y
$ - b0 u$ - b1u

# - b2 u = x
#
2 - b2 u

x2 = y
# - b0 u# - b1 u = x

#
1 - b1 u

x1 = y - b0 u

y
(n)

+ a1 y
(n - 1)

+ p + an - 1 y# + an y = b0 u
(n)

+ b1 u
(n - 1)

+ p + bn - 1 u# + bn u

Y(s)

U(s)
=

1
sn + a1 sn - 1 + p + an - 1 s + an

C = [1 0 p 0]

y = Cx

y = [1 0 p 0]F
x1

x2

�

�

�

xn

V
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where are determined from

(2–35)

With this choice of state variables the existence and uniqueness of the solution of the
state equation is guaranteed. (Note that this is not the only choice of a set of state vari-
ables.) With the present choice of state variables, we obtain

(2–36)

where is given by

[To derive Equation (2–36), see Problem A–2–6.] In terms of vector-matrix equations,
Equation (2–36) and the output equation can be written as

 y = [1 0 p 0]F
x1

x2

�

�

�

xn

V + b0 u

+ G
b1

b2

�

�

�

bn - 1

bn

W uG
x1

x2

�

�

�

xn - 1

xn

W G
x
#
1

x
#
2

�

�

�

x
#
n - 1

x
#
n

W = G
0

0

�

�

�

0

-an

1

0

�

�

�

0

-an - 1

0

1

�

�

�

0

-an - 2

p
p
 

 

 
p
p

0

0

�

�

�

1

-a1

W

bn = bn - a1 bn - 1 - p - an - 1 b1 - an - 1b0

bn

x
#
n = -an x1 - an - 1 x2 - p - a1 xn + bn u

x
#
n - 1 = xn + bn - 1 u

�

�

�

x
#
2 = x3 + b2 u

x
#
1 = x2 + b1 u

bn - 1 = bn - 1 - a1 bn - 2 - p - an - 2 b1 - an - 1b0

�

�

�

b3 = b3 - a1 b2 - a2 b1 - a3 b0

b2 = b2 - a1 b1 - a2 b0

b1 = b1 - a1 b0

b0 = b0

b0 , b1 , b2 , p , bn - 1
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or

(2–37)

(2–38)

where

In this state-space representation, matrices A and C are exactly the same as those for
the system of Equation (2–30).The derivatives on the right-hand side of Equation (2–33)
affect only the elements of the B matrix.

Note that the state-space representation for the transfer function

is given also by Equations (2–37) and (2–38).
There are many ways to obtain state-space representations of systems. Methods for

obtaining canonical representations of systems in state space (such as controllable canon-
ical form, observable canonical form, diagonal canonical form, and Jordan canonical
form) are presented in Chapter 9.

MATLAB can also be used to obtain state-space representations of systems from
transfer-function representations, and vice versa.This subject is presented in Section 2–6.

2–6 TRANSFORMATION OF MATHEMATICAL MODELS WITH MATLAB

MATLAB is quite useful to transform the system model from transfer function to state
space, and vice versa. We shall begin our discussion with transformation from transfer
function to state space.

Y(s)

U(s)
=

b0 sn + b1 sn - 1 + p + bn - 1 s + bn

sn + a1 sn - 1 + p + an - 1 s + an

 B = G
b1

b2

�

�

�

bn - 1

bn

W ,    C = [1 0 p 0],  D = b0 = b0

 x = G
x1

x2

�

�

�

xn - 1

xn

W ,   A = G
0

0

�

�

�

0

-an

1

0

�

�

�

0

-an - 1

0

1

�

�

�

0

-an - 2

p
p
 

 

 
p
p

0

0

�

�

�

1

-a1

W

 y = Cx + Du

 x# = Ax + Bu
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Let us write the closed-loop transfer function as

Once we have this transfer-function expression, the MATLAB command

[A,B,C,D] = tf2ss(num,den)

will give a state-space representation. It is important to note that the state-space repre-
sentation for any system is not unique. There are many (infinitely many) state-space
representations for the same system. The MATLAB command gives one possible such
state-space representation.

Transformation from Transfer Function to State Space Representation.
Consider the transfer-function system

(2–39)

There are many (infinitely many) possible state-space representations for this system.
One possible state-space representation is

Another possible state-space representation (among infinitely many alternatives) is

(2–40) Cx
#
1

x
#
2

x
#
3

S = C-14

1

0

-56

0

1

-160

0

0

S Cx1

x2

x3

S + C1

0

0

Su

 y = [1 0 0]Cx1

x2

x3

S + [0]u

 Cx
#
1

x
#
2

x
#
3

S = C 0

0

-160

1

0

-56

0

1

-14

S Cx1

x2

x3

S + C 0

1

-14

Su

 =
s

s3 + 14s2 + 56s + 160

 
Y(s)

U(s)
=

s

(s + 10)As2 + 4s + 16B

Y(s)

U(s)
=

numerator polynomial in s

denominator polynomial in s
=

num
den
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(2–41)

MATLAB transforms the transfer function given by Equation (2–39) into the 
state-space representation given by Equations (2–40) and (2–41). For the example
system considered here, MATLAB Program 2–2 will produce matrices A, B, C,
and D.

 y = [0 1 0]Cx1

x2

x3

S + [0]u

MATLAB Program 2–2

num = [1     0];
den = [1   14   56   160];
[A,B,C,D] = tf2ss(num,den)

A =

-14 -56 -160
1 0 0
0 1 0

B =

1
0
0

C =

0 1 0

D =

0

Transformation from State Space Representation to Transfer Function. To
obtain the transfer function from state-space equations, use the following command:

[num,den] = ss2tf(A,B,C,D,iu)

iu must be specified for systems with more than one input. For example, if the system
has three inputs (u1, u2, u3), then iu must be either 1, 2, or 3, where 1 implies u1, 2
implies u2, and 3 implies u3.

If the system has only one input, then either

[num,den] = ss2tf(A,B,C,D)
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EXAMPLE 2–4 Obtain the transfer function of the system defined by the following state-space equations:

MATLAB Program 2-3 will produce the transfer function for the given system.The transfer func-
tion obtained is given by

Y(s)

U(s)
=

25s + 5
s3 + 5s2 + 25s + 5

 y = [1 0 0]Cx1

x2

x3

S
 Cx

#
1

x
#
2

x
#
3

S = C 0

0

-5

1

0

-25

0

1

-5

S Cx1

x2

x3

S + C 0

25

-120

Su

MATLAB Program 2–3

A = [0   1   0;   0   0   1;   -5   -25   -5];
B = [0; 25; -120];
C = [1   0     0];
D = [0];
[num,den] = ss2tf(A,B,C,D)

num =

0   0.0000   25.0000  5.0000

den

1.0000   5.0000   25.0000  5.0000

% ***** The same result can be obtained by entering the following command: *****

[num,den] = ss2tf(A,B,C,D,1)

num =

0   0.0000   25.0000  5.0000

den =

1.0000   5.0000   25.0000  5.0000

or

[num,den] = ss2tf(A,B,C,D,1)

may be used. For the case where the system has multiple inputs and multiple outputs,
see Problem A–2–12.
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2–7 LINEARIZATION OF NONLINEAR MATHEMATICAL MODELS

Nonlinear Systems. A system is nonlinear if the principle of superposition does
not apply. Thus, for a nonlinear system the response to two inputs cannot be calculated
by treating one input at a time and adding the results.

Although many physical relationships are often represented by linear equations,
in most cases actual relationships are not quite linear. In fact, a careful study of phys-
ical systems reveals that even so-called “linear systems” are really linear only in lim-
ited operating ranges. In practice, many electromechanical systems, hydraulic systems,
pneumatic systems, and so on, involve nonlinear relationships among the variables.
For example, the output of a component may saturate for large input signals.There may
be a dead space that affects small signals. (The dead space of a component is a small
range of input variations to which the component is insensitive.) Square-law nonlin-
earity may occur in some components. For instance, dampers used in physical systems
may be linear for low-velocity operations but may become nonlinear at high veloci-
ties, and the damping force may become proportional to the square of the operating
velocity.

Linearization of Nonlinear Systems. In control engineering a normal operation
of the system may be around an equilibrium point, and the signals may be considered
small signals around the equilibrium. (It should be pointed out that there are many ex-
ceptions to such a case.) However, if the system operates around an equilibrium point
and if the signals involved are small signals, then it is possible to approximate the non-
linear system by a linear system. Such a linear system is equivalent to the nonlinear sys-
tem considered within a limited operating range. Such a linearized model (linear,
time-invariant model) is very important in control engineering.

The linearization procedure to be presented in the following is based on the ex-
pansion of nonlinear function into a Taylor series about the operating point and the
retention of only the linear term. Because we neglect higher-order terms of the Taylor
series expansion, these neglected terms must be small enough; that is, the variables
deviate only slightly from the operating condition. (Otherwise, the result will be
inaccurate.)

Linear Approximation of Nonlinear Mathematical Models. To obtain a linear
mathematical model for a nonlinear system, we assume that the variables deviate only
slightly from some operating condition. Consider a system whose input is x(t) and out-
put is y(t). The relationship between y(t) and x(t) is given by

(2–42)

If the normal operating condition corresponds to then Equation (2–42) may be
expanded into a Taylor series about this point as follows:

(2–43)= f(x–) +
df

dx
(x - x–) +

1
2!

d2f

dx2 (x - x–)2 + p

y = f(x)

x–, y–,

y = f(x)
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where the derivatives are evaluated at If the variation 
is small, we may neglect the higher-order terms in Then Equation (2–43) may be
written as

(2–44)

where

Equation (2–44) may be rewritten as

(2–45)

which indicates that is proportional to Equation (2–45) gives a linear math-
ematical model for the nonlinear system given by Equation (2–42) near the operating
point

Next, consider a nonlinear system whose output y is a function of two inputs x1 and
x2, so that

(2–46)

To obtain a linear approximation to this nonlinear system, we may expand Equation (2–46)
into a Taylor series about the normal operating point Then Equation (2–46)
becomes

where the partial derivatives are evaluated at Near the normal oper-
ating point, the higher-order terms may be neglected.The linear mathematical model of
this nonlinear system in the neighborhood of the normal operating condition is then
given by

y - y– = K1Ax1 - x–1B + K2Ax2 - x–2B
x2 = x–2 .x1 = x–1 ,

+
02f

0x2
2
Ax2 - x–2B2 d + p

+
1
2!
c 02f

0x2
1
Ax1 - x–1B2 + 2

02f

0x1 0x2
Ax1 - x–1B Ax2 - x–2B

y = fAx–1 , x–2B + c 0f

0x1
Ax1 - x–1B +

0f

0x2
Ax2 - x–2B d

x–1 , x–2 .

y = fAx1 , x2B
y = y–.x = x–,

x - x–.y - y–

y - y– = K(x - x–)

K =
df

dx
2
x = x–

 y– = f(x–)

y = y– + K(x - x–)

x - x–.
x - x–x = x–.d2f�dx2, pdf�dx,
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where

The linearization technique presented here is valid in the vicinity of the operating
condition. If the operating conditions vary widely, however, such linearized equations are
not adequate, and nonlinear equations must be dealt with. It is important to remember
that a particular mathematical model used in analysis and design may accurately rep-
resent the dynamics of an actual system for certain operating conditions, but may not be
accurate for other operating conditions.

EXAMPLE 2–5 Linearize the nonlinear equation

z=xy

in the region 5 � x � 7, 10 � y � 12. Find the error if the linearized equation is used to calcu-
late the value of z when x=5, y=10.

Since the region considered is given by 5 � x � 7, 10 � y � 12, choose Then
Let us obtain a linearized equation for the nonlinear equation near a point

Expanding the nonlinear equation into a Taylor series about point and neglecting
the higher-order terms, we have

where

Hence the linearized equation is

z-66=11(x-6)+6(y-11)

or

z=11x+6y-66

When x=5, y=10, the value of z given by the linearized equation is

z=11x+6y-66=55+60-66=49

The exact value of z is z=xy=50. The error is thus 50-49=1. In terms of percentage, the
error is 2%.

b =
0(xy)

0y
2
x = x– , y = y–

= x– = 6

a =
0(xy)

0x
2
x = x– , y = y–

= y– = 11

z - z– = aAx - x– B + bAy - y– B
y = y–x = x–,

y– = 11.
x– = 6,z– = x–y– = 66.

y– = 11.x– = 6,

K2 =
0f

0x2

2
x1 = x– 1 , x2 = x– 2

K1 =
0f

0x1

2
x1 = x– 1 , x2 = x– 2

y– = fAx–1 , x–2B
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EXAMPLE PROBLEMS AND SOLUTIONS

A–2–1. Simplify the block diagram shown in Figure 2–17.

Solution. First, move the branch point of the path involving H1 outside the loop involving H2 , as
shown in Figure 2–18(a). Then eliminating two loops results in Figure 2–18(b). Combining two
blocks into one gives Figure 2–18(c).

A–2–2. Simplify the block diagram shown in Figure 2–19. Obtain the transfer function relating C(s) and
R(s).

R(s) C(s)
G

H1

H2

+
–

+
+

Figure 2–17
Block diagram of a
system.

R(s) C(s)

R(s) C(s)

C(s)

G

H2

(a)

(b)

(c)

H1

G

G
1 + GH2

R(s)

1 +
H1

G

G + H1

1 + GH2

+
–

+
+

Figure 2–18
Simplified block
diagrams for the
system shown in
Figure 2–17.

G1 G2

R(s) C(s)X(s)
+

+
+

+

Figure 2–19
Block diagram of a
system.
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G1 G2

R(s) C(s)

G2

R(s) C(s)
G1 + 1

R(s) C(s)
G1G2 + G2 + 1

(a)

(b)

(c)

+
+

+
+

+
+

Figure 2–20
Reduction of the
block diagram shown
in Figure 2–19.

Solution. The block diagram of Figure 2–19 can be modified to that shown in Figure 2–20(a).
Eliminating the minor feedforward path, we obtain Figure 2–20(b), which can be simplified to
Figure 2–20(c). The transfer function C(s)/R(s) is thus given by

The same result can also be obtained by proceeding as follows: Since signal X(s) is the sum
of two signals G1R(s) and R(s), we have

The output signal C(s) is the sum of G2X(s) and R(s). Hence

And so we have the same result as before:

A–2–3. Simplify the block diagram shown in Figure 2–21. Then obtain the closed-loop transfer function
C(s)/R(s).

C(s)

R(s)
= G1 G2 + G2 + 1

C(s) = G2 X(s) + R(s) = G2 CG1 R(s) + R(s) D + R(s)

X(s) = G1 R(s) + R(s)

C(s)

R(s)
= G1 G2 + G2 + 1

G1 G2

H3

G3 G4

H2H1

+–
+

+ +–

R(s) C(s)

Figure 2–21
Block diagram of a
system.
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G1

G1

G2

H3

G4

G3 G4

H2H1

+
+

+
+

+
– +–

R(s)

R(s) C(s)

C(s)

H3

G1G4

G1 G2

1 + G1 G2 H1

R(s) C(s)G1 G2 G3 G4

1+ G1 G2 H1 + G3 G4 H2 – G2 G3 H3 + G1 G2 G3 G4 H1 H2

G3 G4

1 + G3 G4 H2

1

(a)

(b)

(c)

Figure 2–22
Successive
reductions of the
block diagram shown
in Figure 2–21.

G1 Gp+
+

+–
+

+

Gf

C(s)

D(s)

R(s) E(s) U(s)

H

Gc

Figure 2–23
Control system with
reference input and
disturbance input.

Solution. First move the branch point between G3 and G4 to the right-hand side of the loop con-
taining G3 , G4 , and H2. Then move the summing point between G1 and G2 to the left-hand side
of the first summing point. See Figure 2–22(a). By simplifying each loop, the block diagram can
be modified as shown in Figure 2–22(b). Further simplification results in Figure 2–22(c), from
which the closed-loop transfer function C(s)/R(s) is obtained as

A–2–4. Obtain transfer functions C(s)/R(s) and C(s)/D(s) of the system shown in Figure 2–23.

Solution. From Figure 2–23 we have

(2–47)

(2–48)

(2–49) E(s) = R(s) - HC(s)

 C(s) = Gp CD(s) + G1 U(s) D U(s) = Gf R(s) + Gc E(s)

C(s)

R(s)
=

G1 G2 G3 G4

1 + G1 G2 H1 + G3 G4 H2 - G2 G3 H3 + G1 G2 G3 G4 H1 H2
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By substituting Equation (2–47) into Equation (2–48), we get

(2–50)

By substituting Equation (2–49) into Equation (2–50), we obtain

Solving this last equation for C(s), we get

Hence

(2–51)

Note that Equation (2–51) gives the response C(s) when both reference input R(s) and distur-
bance input D(s) are present.

To find transfer function C(s)/R(s), we let D(s)=0 in Equation (2–51). Then we obtain

Similarly, to obtain transfer function C(s)/D(s), we let R(s)=0 in Equation (2–51). Then
C(s)/D(s) can be given by

A–2–5. Figure 2–24 shows a system with two inputs and two outputs. Derive C1(s)/R1(s), C1(s)/R2(s),
C2(s)/R1(s), and C2(s)/R2(s). (In deriving outputs for R1(s), assume that R2(s) is zero, and vice
versa.)

C(s)

D(s)
=

Gp

1 + G1 Gp Gc H

C(s)

R(s)
=

G1 GpAGf + GcB
1 + G1 Gp Gc H

C(s) =
Gp D(s) + G1 GpAGf + GcBR(s)

1 + G1 Gp Gc H

C(s) + G1 Gp Gc HC(s) = Gp D(s) + G1 GpAGf + GcBR(s)

C(s) = Gp D(s) + G1 GpEGf R(s) + Gc CR(s) - HC(s) D F
C(s) = Gp D(s) + G1 Gp CGf R(s) + Gc E(s) D

G1
C1

C2

R1

R2

G3

G4

+ −

+
−

G2

Figure 2–24
System with two
inputs and two
outputs.
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Solution. From the figure, we obtain

(2–52)

(2–53)

By substituting Equation (2–53) into Equation (2–52), we obtain

(2–54)

By substituting Equation (2–52) into Equation (2–53), we get

(2–55)

Solving Equation (2–54) for C1, we obtain

(2–56)

Solving Equation (2–55) for C2 gives

(2–57)

Equations (2–56) and (2–57) can be combined in the form of the transfer matrix as follows:

Then the transfer functions C1(s)/R1(s), C1(s)/R2(s), C2(s)/R1(s) and C2(s)/R2(s) can be obtained
as follows:

Note that Equations (2–56) and (2–57) give responses C1 and C2, respectively, when both inputs
R1 and R2 are present.

Notice that when R2(s)=0, the original block diagram can be simplified to those shown in
Figures 2–25(a) and (b). Similarly, when R1(s)=0, the original block diagram can be simplified
to those shown in Figures 2–25(c) and (d). From these simplified block diagrams we can also ob-
tain C1(s)/R1(s), C2(s)/R1(s), C1(s)/R2(s), and C2(s)/R2(s), as shown to the right of each corre-
sponding block diagram.

 
C2(s)

R1(s)
= - 

G1 G2 G4

1 - G1 G2 G3 G4
,   

C2(s)

R2(s)
=

G4

1 - G1 G2 G3 G4

 
C1(s)

R1(s)
=

G1

1 - G1 G2 G3 G4
,   

C1(s)

R2(s)
= - 

G1 G3 G4

1 - G1 G2 G3 G4

BC1

C2
R = D G1

1 - G1 G2 G3 G4

-
G1 G2 G4

1 - G1 G2 G3 G4

-
G1 G3 G4

1 - G1 G2 G3 G4

G4

1 - G1 G2 G3 G4

T BR1

R2
R

C2 =
-G1 G2 G4 R1 + G4 R2

1 - G1 G2 G3 G4

C1 =
G1 R1 - G1 G3 G4 R2

1 - G1 G2 G3 G4

C2 = G4 CR2 - G2 G1AR1 - G3 C2B D
C1 = G1 CR1 - G3 G4AR2 - G2 C1B D

 C2 = G4AR2 - G2 C1B C1 = G1AR1 - G3 C2B
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+–

R1 C1

R1

C1

1 – G1 G2 G3 G4

G1
G1

G3 G4 –G2

+–

R1 C2

G3

G1 –G2 G4

=

+–

R2 C2

R2

C2

1 – G1 G2G3 G4

G4
G4

G2 G1 –G3

=

R1

C2

1 – G1 G2 G3 G4

– G1 G2 G4=

+–

R2 C1

G2

G4 –G3 G1 R2

C1

1 – G1 G2 G3 G4

– G1 G3 G4=

(a)

(b)

(c)

(d)
Figure 2–25
Simplified block
diagrams and
corresponding
closed-loop transfer
functions.

A–2–6. Show that for the differential equation system

(2–58)

state and output equations can be given, respectively, by

(2–59)

and

(2–60)

where state variables are defined by

 x3 = y
$ - b0 u$ - b1 u# - b2 u = x

#
2 - b2 u

 x2 = y
# - b0 u# - b1 u = x

#
1 - b1 u

 x1 = y - b0 u

y = [1 0 0]Cx1

x2

x3

S + b0 u

Cx
#
1

x
#
2

x
#
3

S = C 0
0

-a3

1
0

-a2

0
1

-a1

S Cx1

x2

x3

S + Cb1

b2

b3

Su

y
% + a1 y$ + a2 y# + a3 y = b0 u% + b1 u$ + b2 u# + b3 u
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