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Figure 8–66
Two-degrees-of-
freedom control
system.

2. The response to the unit-step reference input has a maximum overshoot of 25% or less, and
the settling time is 1 sec or less.

3. The steady-state errors in following ramp reference input and acceleration reference input
are zero.

Solution. The closed-loop transfer functions for the disturbance input and reference input are
given, respectively, by

Let us assume that is a PID controller and has the following form:

The characteristic equation for the system is

Notice that the open-loop poles are located at s=0 (a double pole) and s=–1. The zeros are
located at s=–a (a double zero).

In what follows, we shall use the root-locus approach to determine the values of a and K. Let
us choose the dominant closed-loop poles at s=–5_j5. Then, the angle deficiency at the desired
closed-loop pole at s=–5+j5 is

–135°-135°-128.66°+180°=–218.66°

The double zero at s=–a must contribute 218.66°. (Each zero must contribute 109.33°.) By a
simple calculation, we find

a=–3.2460

The controller is then determined as

The constant K must be determined by use of the magnitude condition. This condition is@Gc1(s)Gp(s) @ s = -5 + j5 = 1

Gc1(s) =
K(s + 3.2460)2

s

Gc1(s)

1 + Gc1(s)Gp(s) = 1 +
K(s + a)2

s

100
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Since

we obtain

The controller thus becomes

(8–17)

Then, the closed-loop transfer function Y(s)/D(s) is obtained as follows:

The response curve when D(s) is a unit-step disturbance is shown in Figure 8–67.
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input.
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Figure 8–68
(a) Response to unit-
step reference input;
(b) response to unit-
ramp reference
input; (c) response to
unit-acceleration
reference input.

Next, we consider the responses to reference inputs. The closed-loop transfer function
Y(s)/R(s) is

Let us define

Then

To satisfy the requirements on the responses to the ramp reference input and acceleration
reference input, we use the zero-placement approach. That is, we choose the numerator of
Y(s)/R(s) to be the sum of the last three terms of the denominator, or

from which we get

(8–18)

Hence, the closed-loop transfer function Y(s)/R(s) becomes as

The response curves to the unit-step reference input, unit-ramp reference input, and unit-
acceleration reference input are shown in Figures 8–68(a), (b), and (c), respectively.The maximum
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overshoot in the unit-step response is approximately 25% and the settling time is approximately
1.2 sec. The steady-state errors in the ramp response and acceleration response are zero. There-
fore, the designed controller given by Equation (8–18) is satisfactory.

Finally, we determine Noting that

Gc2(s) = Gc(s) - Gc1(s)

Gc2(s).
Gc(s)
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(continued)



and from Equation (8–17)

we obtain

(8–19)

Equations (8–17) and (8–19) give the transfer functions of the controllers re-
spectively. The block diagram of the designed system is shown in Figure 8–69.

Note that if the maximum overshoot were much higher than 25% and/or the settling time
were much larger than 1.2 sec, then we might assume a search region (such as 3 � a � 6,
3 � b � 6, and 6 � c � 12) and use the computational method presented in Example 8–4 to
find a set or sets of variables that would give the desired response to the unit-step reference input.

PROBLEMS
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Figure 8–69
Block diagram of the
designed system.

B–8–1. Consider the electronic PID controller shown in
Figure 8–70. Determine the values of R1 , R2 , R3 , R4 , C1 ,
and C2 of the controller such that the transfer function

isGc(s) = Eo(s)�Ei(s)  = 30.3215 
(s + 0.65)2
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Figure 8–70
Electronic PID controller.
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B–8–2. Consider the system shown in Figure 8–71.
Assume that disturbances D(s) enter the system as shown
in the diagram. Determine parameters K, a, and b such
that the response to the unit-step disturbance input and
the response to the unit-step reference input satisfy the
following specifications: The response to the step distur-
bance input should attenuate rapidly with no steady-state
error, and the response to the step reference input exhibits
a maximum overshoot of 20% or less and a settling time
of 2 sec.

B–8–3. Show that the PID-controlled system shown in
Figure 8–72(a) is equivalent to the I-PD-controlled system
with feedforward control shown in Figure 8–72(b).

B–8–4. Consider the systems shown in Figures 8–73(a) 
and (b). The system shown in Figure 8–73(a) is the system
designed in Example 8–1. The response to the unit-step
reference input in the absence of the disturbance input is
shown in Figure 8–10. The system shown in Figure 8–73(b)
is the I-PD-controlled system using the same Kp,
as the system shown in Figure 8–73(a).
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Figure 8–71
Control system.

(a)

(b)

Kp

Tis
Gp(s)

C(s)R(s)

Kp(1 + Tds)

Kp(1 + Tds)

Gp(s)
C(s)R(s)

Kp(1 + + Tds)1
Tis

+
–

+
–

+
–

+

Figure 8–72
(a) PID-controlled system; (b) I-PD-controlled system with
feedforward control.
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Obtain the response of the I-PD-controlled system to
the unit-step reference input with MATLAB. Compare the
unit-step response curves of the two systems.

B–8–5. Referring to Problem B–8–4, obtain the response
of the PID-controlled system shown in Figure 8–73(a) to the
unit-step disturbance input.

Show that for the disturbance input, the responses of
the PID-controlled system shown in Figure 8–73(a) and of
the I-PD-controlled system shown in Figure 8–73(b) are

exactly the same. [When considering D(s) to be the input, as-
sume that the reference input R(s) is zero, and vice versa.]
Also, compare the closed-loop transfer function C(s)/R(s)
of both systems.

B–8–6. Consider the system shown in Figure 8–74.This sys-
tem is subjected to three input signals: the reference input,
disturbance input, and noise input. Show that the charac-
teristic equation of this system is the same regardless of
which input signal is chosen as input.
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Figure 8–73
(a) PID-controlled system; (b) I-PD-controlled system.
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Control system.
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B–8–7. Consider the system shown in Figure 8–75. Obtain
the closed-loop transfer function C(s)/R(s) for the refer-
ence input and the closed-loop transfer function C(s)/D(s)
for the disturbance input. When considering R(s) as the
input, assume that D(s) is zero, and vice versa.

B–8–8. Consider the system shown in Figure 8–76(a),
where K is an adjustable gain and G(s) and H(s) are fixed

components. The closed-loop transfer function for the
disturbance is

To minimize the effect of disturbances, the adjustable gain
K should be chosen as large as possible.

Is this true for the system in Figure 8–76(b), too?
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Figure 8–75
Control system.
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Figure 8–76
(a) Control system with disturbance entering in the
feedforward path; (b) control system with disturbance
entering in the feedback path.
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Problems 645

B–8–9. Show that the control systems shown in Fig-
ures 8–77(a), (b), and (c) are two-degrees-of-freedom
systems. In the diagrams, Gc1 and Gc2 are controllers and Gp

is the plant.

B–8–10. Show that the control system shown in Figure 8–78
is a three-degrees-of freedom system. The transfer func-
tions Gc1, Gc2, and Gc3 are controllers.The plant consists of
transfer functions G1 and G2.
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Figure 8–77
(a), (b), (c) Two
degrees-of-freedom
systems.

Figure 8–78
Three-degrees-of-
freedom system.



646 Chapter 8 / PID Controllers and Modified PID Controllers

B–8–11. Consider the control system shown in Figure 8–79.
Assume that the PID controller is given by

It is desired that the unit-step response of the system exhibit
the maximum overshoot of less than 10%, but more than 2%
(to avoid an almost overdamped system), and the settling
time be less than 2 sec.

Using the computational approach presented in Section
8–4, write a MATLAB program to determine the values
of K and a that will satisfy the given specifications. Choose
the search region to be

1 � K � 4, 0.4 � a � 4

Choose the step size for K and a to be 0.05. Write the
program such that the nested loops start with the highest
values of K and a and step toward the lowest.

Using the first-found solution, plot the unit-step
response curve.

B–8–12. Consider the same control system as treated in
Problem B–8–11 (Figure 8–79).The PID controller is given
by

It is desired to determine the values of K and a such that
the unit-step response of the system exhibits the maximum

Gc(s) = K
(s + a)2

s

Gc(s) = K
(s + a)2

s

overshoot of less than 8%, but more than 3%, and the settling
time is less than 2 sec. Choose the search region to be

2 � K � 4, 0.5 � a � 3

Choose the step size for K and a to be 0.05.
First, write a MATLAB program such that the nested

loops in the program start with the highest values of K and
a and step toward the lowest and the computation stops
when a successful set of K and a is found for the first time.

Next, write a MATLAB program that will find all pos-
sible sets of K and a that will satisfy the given specifications.

Among multiple sets of K and a that satisfy the given
specifications, determine the best choice.Then, plot the unit-
step response curves of the system with the best choice
of K and a.

B–8–13. Consider the two-degrees-of-freedom control
system shown in Figure 8–80. The plant is given by

Design controllers and such that the
response to the unit-step disturbance input should have
small amplitude and settle to zero quickly (in approximately
2 sec).The response to the unit-step reference input should
be such that the maximum overshoot is 25% (or less) and
the settling time is 2 sec. Also, the steady-state errors in the
response to the ramp and acceleration reference inputs
should be zero.
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Gp(s) =
3(s + 5)
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Gp(s)

R(s) C(s)
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Control system.
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Figure 8–80
Two-degrees-of-freedom control system.
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B–8–14. Consider the system shown in Figure 8–81. The
plant is given by

Determine the controllers and such that, for
the step disturbance input, the response shows a small am-
plitude and approaches zero quickly (in a matter of 1 to
2 sec). For the response to the unit-step reference input, it is
desired that the maximum overshoot be 20% or less and the
settling time 1 sec or less. For the ramp reference input and
acceleration reference input, the steady-state errors should
be zero.

Gc2(s)Gc1(s)

Gp(s) =
2(s + 1)

s(s + 3)(s + 5)

Gp(s)
B–8–15. Consider the two-degrees-of-freedom control
system shown in Figure 8–82. Design controllers and

such that the response to the step disturbance input
shows a small amplitude and settles to zero quickly (in 1 to
2 sec) and the response to the step reference input ex-
hibits 25% or less maximum overshoot and the settling time
is less than 1 sec.The steady-state error in following the ramp
reference input or acceleration reference input should be
zero.
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Figure 8–81
Two-degrees-of-freedom control system.

1
s2C1(s)

Y(s)R(s)

D(s)

C2(s)

+
+

+
–

+
–

Figure 8–82
Two-degrees-of-freedom control system.
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Control Systems Analysis
in State Space

9–1 INTRODUCTION*

A modern complex system may have many inputs and many outputs, and these may be
interrelated in a complicated manner.To analyze such a system, it is essential to reduce
the complexity of the mathematical expressions, as well as to resort to computers for most
of the tedious computations necessary in the analysis.The state-space approach to system
analysis is best suited from this viewpoint.

While conventional control theory is based on the input–output relationship, or trans-
fer function, modern control theory is based on the description of system equations in
terms of n first-order differential equations, which may be combined into a first-order
vector-matrix differential equation.The use of vector-matrix notation greatly simplifies
the mathematical representation of systems of equations.The increase in the number of
state variables, the number of inputs, or the number of outputs does not increase the
complexity of the equations. In fact, the analysis of complicated multiple-input, multiple-
output systems can be carried out by procedures that are only slightly more compli-
cated than those required for the analysis of systems of first-order scalar differential
equations.

This chapter and the next deal with the state-space analysis and design of control sys-
tems. Basic materials of state-space analysis, including the state-space representation of

*It is noted that in this book an asterisk used as a superscript of a matrix, such as A*, implies that it is a con-
jugate transpose of matrix A.The conjugate transpose is the conjugate of the transpose of a matrix. For a real
matrix (a matrix whose elements are all real), the conjugate transpose A* is the same as the transpose AT.
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systems, controllability, and observability are presented in this chapter. Useful design
methods based on state-feedback control are given in Chapter 10.

Outline of the Chapter. Section 9–1 has presented an introduction to state-space
analysis of control systems. Section 9–2 deals with the state-space representation of
transfer-function systems. Here we present various canonical forms of state-space equa-
tions. Section 9–3 discusses the transformation of system models (such as from transfer-
function to state-space models, and vice versa) with MATLAB. Section 9–4 presents
the solution of time-invariant state equations. Section 9–5 gives some useful results in
vector-matrix analysis that are necessary in studying the state-space analysis of control
systems. Section 9–6 discusses the controllability of control systems and Section 9–7
treats the observability of control systems.

9–2 STATE-SPACE REPRESENTATIONS OF 
TRANSFER-FUNCTION SYSTEMS

Many techniques are available for obtaining state-space representations of
transfer-function systems. In Chapter 2 we presented a few such methods. This section
presents state-space representations in the controllable, observable, diagonal, or Jordan
canonical forms. (Methods for obtaining such state-space representations from transfer
functions are discussed in detail in Problems A–9–1 through A–9–4.)

State-Space Representations in Canonical Forms. Consider a system defined
by

(9–1)

where u is the input and y is the output. This equation can also be written as

(9–2)

In what follows we shall present state-space representations of the system defined by
Equation (9–1) or (9–2) in controllable canonical form, observable canonical form, and
diagonal (or Jordan) canonical form.

Controllable Canonical Form. The following state-space representation is called
a controllable canonical form:
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(9–4)

The controllable canonical form is important in discussing the pole-placement approach
to control systems design.

Observable Canonical Form. The following state-space representation is called
an observable canonical form:

(9–5)

(9–6)

Note that the n*n state matrix of the state equation given by Equation (9–5) is the
transpose of that of the state equation defined by Equation (9–3).

Diagonal Canonical Form. Consider the transfer-function system defined by Equa-
tion  (9–2). Here we consider the case where the denominator polynomial involves only
distinct roots. For the distinct-roots case, Equation (9–2) can be written as

(9–7)

The diagonal canonical form of the state-space representation of this system is given by

 = b0 +
c1

s + p1
+

c2

s + p2
+ p +

cn

s + pn

 
Y(s)

U(s)
=

b0 sn + b1 sn - 1 + p + bn - 1 s + bnAs + p1B As + p2B p As + pnB

 y = [0 0 p 0 1]G
x1

x2

�

�

�

xn - 1

xn

W + b0 u

 F
x
#
1

x
#
2

�

�

�

x
#
n

V = F
0

1

�

�

�

0

0

0

�

�

�

0

p
p

p

0

0

�

�

�

1

-an

-an - 1

�

�

�

-a1

V F
x1

x2

�

�

�

xn

V + F
bn - an b0

bn - 1 - an - 1 b0

�

�

�

b1 - a1 b0

V u

 y = Cbn - an b0 � bn - 1 - an - 1 b0 � p � b1 - a1 b0 D F
x1

x2

�

�

�

xn

V + b0 u



(9–8)

(9–9)

Jordan Canonical Form. Next we shall consider the case where the denominator
polynomial of Equation (9–2) involves multiple roots. For this case, the preceding
diagonal canonical form must be modified into the Jordan canonical form. Suppose, for
example, that the pi ’s are different from one another, except that the first three pi ’s are
equal, or p1=p2=p3. Then the factored form of Y(s)/U(s) becomes

The partial-fraction expansion of this last equation becomes

A state-space representation of this system in the Jordan canonical form is given by
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�

0

-pn

V F
x1

x2

�

�

�

xn

V + F
1

1

�

�

�

1

V u
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EXAMPLE 9–1 Consider the system given by

Obtain state-space representations in the controllable canonical form, observable canonical form,
and diagonal canonical form.

Controllable Canonical Form:

Observable Canonical Form:

Diagonal Canonical Form:

Eigenvalues of an n � n Matrix A. The eigenvalues of an n*n matrix A are the
roots of the characteristic equation

|lI-A|=0

The eigenvalues are also called the characteristic roots.
Consider, for example, the following matrix A:

The characteristic equation is

|lI-A|=

=l3+6l2+11l+6

=(l+1)(l+2)(l+3)=0

The eigenvalues of A are the roots of the characteristic equation, or –1, –2, and –3.

Diagonalization of n � n Matrix. Note that if an n*n matrix A with distinct
eigenvalues is given by

3l0
6

-1

l

11

0

-1

l + 6

3
A = C 0

0

-6

1

0

-11

0

1

-6

S

 y(t) = [2 -1]Bx1(t)

x2(t)
R

 Bx
#
1(t)

x
#
2(t)
R = B-1

0

0

-2
R Bx1(t)

x2(t)
R + B1

1
R u(t)

 y(t) = [0 1]Bx1(t)

x2(t)
R

 Bx
#
1(t)

x
#
2(t)
R = B0

1

-2

-3
R Bx1(t)

x2(t)
R + B3

1
R u(t)

 y(t) = [3 1]Bx1(t)

x2(t)
R

 Bx
#
1(t)

x
#
2(t)
R = B 0

-2

1

-3
R Bx1(t)

x2(t)
R + B0

1
R u(t)

Y(s)

U(s)
=

s + 3

s2 + 3s + 2
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(9–12)

the transformation x=Pz, where

P=

l1, l2, p , ln=n distinct eigenvalues of A

will transform P–1AP into the diagonal matrix, or

If the matrix A defined by Equation (9–12) involves multiple eigenvalues, then
diagonalization is impossible. For example, if the 3*3 matrix A, where

has the eigenvalues l1, l1, l3, then the transformation x=Sz, where

will yield

This is in the Jordan canonical form.

S-1 AS = Cl1

0

0

1

l1

0

0

0

l3

S
S = C 1

l1

l1
2

0

1

2l1

1

l3

l3
2

S
A = C 0

0

-a3

1

0

-a2

0

1

-a1

S

P-1 AP = F
l1

0

l2

�

�

�

0

ln

V

G
1

l1

l1
2

�

�

�

l1
n - 1

1

l2

l2
2

�

�

�

l2
n - 1

p
p
p

p

1

ln

ln
2

�

�

�

ln
n - 1

W

A = G
0

0

�

�

�

0

-an

1

0

�

�

�

0

-an - 1

0

1

�

�

�

0

-an - 2

p
p

p
p

0

0

�

�

�

1

-a1

W
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EXAMPLE 9–2 Consider the following state-space representation of a system.

(9–13)

(9–14)

Equations (9–13) and (9–14) can be put in a standard form as

(9–15)

(9–16)

where

The eigenvalues of matrix A are

l1=–1, l2=–2, l3=–3

Thus, three eigenvalues are distinct. If we define a set of new state variables z1, z2, and z3 by the
transformation

or

x=Pz (9–17)

where

(9–18)

then, by substituting Equation (9–17) into Equation (9–15), we obtain

By premultiplying both sides of this last equation by P–1, we get

(9–19)

or

 + C 3

-3

1

2.5

-4

1.5

0.5

-1

0.5

S C0

0

6

S u

 C z
#
1

z
#
2

z
#
3

S = C 3

-3

1

2.5

-4

1.5

0.5

-1

0.5

S C 0

0

-6

1

0

-11

0

1

-6

S C 1

-1

1

1

-2

4

1

-3

9

S C z1

z2

z3

S
z# = P-1 APz + P-1 Bu

Pz# = APz + Bu

P = C 1

l1

l1
2

1

l2

l2
2

1

l3

l3
2

S = C 1

-1

1

1

-2

4

1

-3

9

S

Cx1

x2

x3

S = C 1

-1

1

1

-2

4

1

-3

9

S C z1

z2

z3

S

A = C 0

0

-6

1

0

-11

0

1

-6

S ,  B = C0

0

6

S ,  C = [1 0 0]

y = Cx

x# = Ax + Bu

 y = [1 0 0]Cx1

x2

x3

S
 Cx

#
1

x
#
2

x
#
3

S = C 0

0

-6

1

0

-11

0

1

-6

S Cx1

x2

x3

S + C0

0

6

S u
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Simplifying gives

(9–20)

Equation (9–20) is also a state equation that describes the same system as defined by Equation
(9–13).

The output equation, Equation (9–16), is modified to

y=CPz

or

(9–21)

Notice that the transformation matrix P, defined by Equation (9–18), modifies the coefficient
matrix of z into the diagonal matrix.As is clearly seen from Equation (9–20), the three scalar state
equations are uncoupled. Notice also that the diagonal elements of the matrix P–1AP in Equation
(9–19) are identical with the three eigenvalues of A. It is very important to note that the eigen-
values of A and those of P–1AP are identical.We shall prove this for a general case in what follows.

Invariance of Eigenvalues. To prove the invariance of the eigenvalues under a
linear transformation, we must show that the characteristic polynomials ∑lI-A∑ and@lI-P–1AP @ are identical.

Since the determinant of a product is the product of the determinants, we obtain

Noting that the product of the determinants @P–1 @ and ∑P∑ is the determinant of the prod-
uct @P–1P @ , we obtain

Thus, we have proved that the eigenvalues of A are invariant under a linear
transformation.

Nonuniqueness of a Set of State Variables. It has been stated that a set of state vari-
ables is not unique for a given system.Suppose that x1, x2, p , xn are a set of state variables.

 = ∑l I - A∑

 @l I - P-1 AP @ = @P-1 P @ @l I - A @
 = @P-1 @ @P @ @l I - A @ = @P-1 @ @l I - A @ @P @ = @P-1(l I - A) P @ @l I - P-1 AP @ = @l P-1 P - P-1 AP @

 = [1 1 1]C z1

z2

z3

S
 y = [1 0 0]C 1

-1

1

1

-2

4

1

-3

9

S C z1

z2

z3

S

C z
#
1

z
#
2

z
#
3

S = C-1

0

0

0

-2

0

0

0

-3

S C z1

z2

z3

S + C 3

-6

3

S u
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Then we may take as another set of state variables any set of functions

provided that, for every set of values there corresponds a unique set of
values x1, x2, p , xn, and vice versa. Thus, if x is a state vector, then where 

is also a state vector, provided the matrix P is nonsingular. Different state vectors convey
the same information about the system behavior.

9–3 TRANSFORMATION OF SYSTEM MODELS WITH MATLAB

In this section we shall consider the transformation of the system model from transfer
function to state space, and vice versa. We shall begin our discussion with the
transformation from transfer function to state space.

Let us write the closed-loop transfer function as

Once we have this transfer-function expression, the MATLAB command

[A, B, C, D] = tf2ss(num,den)

will give a state-space representation. It is important to note that the state-space repre-
sentation for any system is not unique. There are many (indeed, infinitely many) state-
space representations for the same system.The MATLAB command gives one possible
such state-space representation.

State-Space Formulation of Transfer-Function Systems. Consider the
transfer-function system

(9–22)

There are many (again, infinitely many) possible state-space representations for this
system. One possible state-space representation is

 y = [1 0 0]Cx1

x2

x3

S + [0] u

 Cx
#
1

x
#
2

x
#
3

S = C 0

0

-10

1

0

-5

0

1

-6

S Cx1

x2

x3

S + C 0

10

-50

S u

Y(s)

U(s)
=

10s + 10

s3 + 6s2 + 5s + 10

Y(s)

U(s)
=

numerator polynomial in s

denominator polynomial in s
=

num
den

x̂ = Px

x̂ ,
x̂1 , x̂2 , p , x̂n ,

 x̂n = XnAx1 , x2 , p , xnB �
 �
 �

 x̂2 = X2Ax1 , x2 , p , xnB x̂1 = X1Ax1 , x2 , p , xnB
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Another possible state-space representation (among infinitely many alternatives) is

(9–23)

(9–24)

MATLAB transforms the transfer function given by Equation (9–22) into the state-space
representation given by Equations (9–23) and (9–24). For the example system considered
here, MATLAB Program 9–1 will produce matrices A, B, C, and D.

 y = [0 10 10]Cx1

x2

x3

S + [0] u

 Cx
#
1

x
#
2

x
#
3

S = C-6

1

0

-5

0

1

-10

0

0

S Cx1

x2

x3

S + C1

0

0

S u

MATLAB Program 9–1

num = [10  10];
den = [1  6  5  10];
[A,B,C,D] = tf2ss(num,den)

A =

-6 -5 -10
1 -0 - 0
0 -1 - 0

B =

1
0
0

C =

0 10 10

D =

0

Transformation from State Space to Transfer Function. To obtain the transfer
function from state-space equations, use the following command:

[num,den] = ss2tf(A,B,C,D,iu)
iu must be specified for systems with more than one input. For example, if the system
has three inputs (u1, u2, u3), then iu must be either 1, 2, or 3, where 1 implies u1, 2
implies u2, and 3 implies u3.

If the system has only one input, then either

[num,den] = ss2tf(A,B,C,D)
or

[num,den] = ss2tf(A,B,C,D,1)

may be used. (See Example 9–3 and MATLAB Program 9–2.)
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For the case where the system has multiple inputs and multiple outputs, see
Example 9–4.

EXAMPLE 9–3 Obtain the transfer function of the system defined by the following state-space equations:

MATLAB Program 9–2 will produce the transfer function for the given system. The transfer
function obtained is given by

Y(s)

U(s)
=

25.04s + 5.008

s3 + 5.0325s2 + 25.1026s + 5.008

 y = [1 0 0]Cx1

x2

x3

S
 Cx

#
1

x
#
2

x
#
3

S = C 0

0

-5.008

1

0

-25.1026

0

1

-5.03247

S Cx1

x2

x3

S + C 0

25.04

-121.005

S u

MATLAB Program 9–2

A = [0  1  0;0  0  1;-5.008  -25.1026  -5.03247];
B = [0;25.04; -121.005];
C = [1  0  0];
D = [0];
[num,den] = ss2tf(A,B,C,D)

num =

0 -0.0000 25.0400 5.0080

den =

1.0000 5.0325 25.1026 5.0080

% ***** The same result can be obtained by entering the following command *****

[num,den] = ss2tf(A,B,C,D,1)

num =

0 -0.0000 25.0400 5.0080

den =

1.0000 5.0325 25.1026 5.0080
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EXAMPLE 9–4 Consider a system with multiple inputs and multiple outputs.When the system has more than one
output, the command

[NUM,den] = ss2tf(A,B,C,D,iu)

produces transfer functions for all outputs to each input. (The numerator coefficients are returned
to matrix NUM with as many rows as there are outputs.)

Consider the system defined by

This system involves two inputs and two outputs. Four transfer functions are involved:
and (When considering input u1, we assume that input u2

is zero and vice versa.) See the output of MATLAB Program 9–3.
Y2(s)�U2(s).Y1(s)�U2(s),Y2(s)�U1(s),

Y1(s)�U1(s),

 By1

y2
R = B1

0

0

1
R Bx1

x2
R + B0

0

0

0
R Bu1

u2
R

 Bx
#
1

x
#
2
R = B 0

-25

1

-4
R Bx1

x2
R + B1

0

1

1
R Bu1

u2
R

MATLAB Program 9–3

A = [0  1;-25  -4];
B = [1  1;0  1];
C = [1  0;0  1];
D = [0  0;0  0];
[NUM,den] = ss2tf(A,B,C,D,1)

NUM =

0 1 4
0 0 -25

den =

1  4  25

[NUM,den] = ss2tf(A,B,C,D,2)

NUM =

0   1.0000 5.0000
0   1.0000 -25.0000

den =

1 4 25

This is the MATLAB representation of the following four transfer functions:

 
Y1(s)

U2(s)
=

s + 5

s2 + 4s + 25
,   Y2(s)

U2(s)
=

s - 25

s2 + 4s + 25

 
Y1(s)

U1(s)
=

s + 4

s2 + 4s + 25
,   Y2(s)

U1(s)
=

-25

s2 + 4s + 25
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9–4 SOLVING THE TIME-INVARIANT STATE EQUATION

In this section, we shall obtain the general solution of the linear time-invariant state equa-
tion.We shall first consider the homogeneous case and then the nonhomogeneous case.

Solution of Homogeneous State Equations. Before we solve vector-matrix
differential equations, let us review the solution of the scalar differential equation

(9–25)

In solving this equation, we may assume a solution x(t) of the form

x(t)=b0+b1t+b2t2+p+bktk+p (9–26)

By substituting this assumed solution into Equation (9–25), we obtain

(9–27)

If the assumed solution is to be the true solution, Equation (9–27) must hold for any t.
Hence, equating the coefficients of the equal powers of t, we obtain

The value of b0 is determined by substituting t=0 into Equation (9–26), or

x(0)=b0

Hence, the solution x(t) can be written as

We shall now solve the vector-matrix differential equation

(9–28)

where

By analogy with the scalar case, we assume that the solution is in the form of a vector
power series in t, or

x(t)=b0+b1t+b2t2+p+bktk+p (9–29)

 A = n * n constant matrix
 x = n-vector

x# = Ax

 = eatx(0)

 x(t) = a1 + at +
1

2!
 a2t2 + p +

1

k!
 aktk + p bx(0)

 bk =
1

k!
 akb0

 �
 �
 �

 b3 =
1

3
 ab2 =

1

3 * 2
 a3b0

 b2 =
1

2
 ab1 =

1

2
 a2b0

 b1 = ab0

= aAb0 + b1 t + b2 t2 + p + bk tk + pBb1 + 2b2 t + 3b3 t2 + p + kbk tk - 1 + p

x
# = ax
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By substituting this assumed solution into Equation (9–28), we obtain

(9–30)

If the assumed solution is to be the true solution, Equation (9–30) must hold for all t. Thus,
by equating the coefficients of like powers of t on both sides of Equation (9–30), we obtain

By substituting t=0 into Equation (9–29), we obtain

x(0)=b0

Thus, the solution x(t) can be written as

The expression in the parentheses on the right-hand side of this last equation is an n*n
matrix. Because of its similarity to the infinite power series for a scalar exponential, we
call it the matrix exponential and write

In terms of the matrix exponential, the solution of Equation (9–28) can be written as

(9–31)

Since the matrix exponential is very important in the state-space analysis of linear
systems, we shall next examine its properties.

Matrix Exponential. It can be proved that the matrix exponential of an n*n
matrix A,

converges absolutely for all finite t. (Hence, computer calculations for evaluating the
elements of eAt by using the series expansion can be easily carried out.)

eAt = a
q

k = 0

Aktk

k!

x(t) = eAt x(0)

I + At +
1

2!
 A2t2 + p +

1

k!
 Aktk + p = eAt

x(t) = a I + At +
1

2!
 A2t2 + p +

1

k!
 Aktk + p b  x(0)

 bk =
1

k!
Ak b0

 �
 �
 �

 b3 =
1

3
Ab2 =

1

3 * 2
A3 b0

 b2 =
1

2
Ab1 =

1

2
A2 b0

 b1 = Ab0

= AAb0 + b1 t + b2 t2 + p + bk tk + p Bb1 + 2 b2 t + 3 b3 t2 + p + k bk tk - 1 + p
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Because of the convergence of the infinite series the series can be
differentiated term by term to give

The matrix exponential has the property that

This can be proved as follows:

In particular, if s=–t, then

Thus, the inverse of is Since the inverse of always exists, is nonsingular.
It is very important to remember that

To prove this, note that

 +
A2 Bt3

2!
+

AB2t3

2!
+

B3t3

3!
+ p

 = I + (A + B)t +
A2t2

2!
+ ABt2 +

B2t2

2!
+

A3t3

3!

 eAteBt = a I + At +
A2t2

2!
+

A3t3

3!
+ p b a I + Bt +

B2t2

2!
+

B3t3

3!
+ p b

 e(A + B)t = I + (A + B)t +
(A + B)2

2!
 t2 +

(A + B)3

3!
 t3 + p

e(A + B)t Z eAteBt,  if AB Z BA

e(A + B)t = eAteBt,  if AB = BA

eAteAte-  At.eAt

eAte-  At = e-  AteAt = eA(t - t) = I

 = eA(t + s)

 = a
q

k = 0
Ak

(t + s)k

k!

 = a
q

k = 0
Ak a aq
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tisk - i

i! (k - i)!
b

 eAteAs = a aq
k = 0

 
Aktk

k!
b a aq

k = 0
 
Aksk

k!
b

eA(t + s) = eAteAs
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(k - 1)!
+ p d  A = eAt A
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ktk�k!,
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Hence,

The difference between and vanishes if A and B commute.

Laplace Transform Approach to the Solution of Homogeneous State
Equations. Let us first consider the scalar case:

(9–32)

Taking the Laplace transform of Equation (9–32), we obtain

sX(s)-x(0)=aX(s) (9–33)

where Solving Equation (9–33) for X(s) gives

The inverse Laplace transform of this last equation gives the solution

x(t)=eatx(0)

The foregoing approach to the solution of the homogeneous scalar differential
equation can be extended to the homogeneous state equation:

(9–34)

Taking the Laplace transform of both sides of Equation (9–34), we obtain

sX(s)-x(0)=AX(s)

where Hence,

(sI-A)X(s)=x(0)

Premultiplying both sides of this last equation by (sI-A)–1, we obtain

X(s)=(sI-A)–1x(0)

The inverse Laplace transform of gives the solution Thus,

x(t)=l–1 C(sI-A)–1 D x(0) (9–35)

Note that

Hence, the inverse Laplace transform of (sI-A)–1 gives

(9–36)l-1 C(s I - A)-1 D = I + At +
A2t2

2!
+

A3t3

3!
+ p = eAt

(s I - A)-1 =
I
s

+
A
s2 +

A2

s3 + p

x(t).X(s)

X(s) = l[x].

x# (t) = Ax(t)

X(s) =
x(0)

s - a
= (s - a)-1x(0)

X(s) = l[x].

x
# = ax

eAteBte(A + B)t

+
BA2 + ABA + B2 A + BAB - 2 A2 B - 2 AB2

3!
t3 + p

e(A + B)t - eAteBt =
BA - AB

2!
 t2
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(The inverse Laplace transform of a matrix is the matrix consisting of the inverse Laplace
transforms of all elements.) From Equations (9–35) and (9–36), the solution of Equation
(9–34) is obtained as

The importance of Equation (9–36) lies in the fact that it provides a convenient
means for finding the closed solution for the matrix exponential.

State-Transition Matrix. We can write the solution of the homogeneous state
equation

(9–37)

as

(9–38)

where is an n*n matrix and is the unique solution of

To verify this, note that

and

We thus confirm that Equation (9–38) is the solution of Equation (9–37).
From Equations (9–31), (9–35), and (9–38), we obtain

Note that

From Equation (9–38), we see that the solution of Equation (9–37) is simply a
transformation of the initial condition. Hence, the unique matrix is called the state-
transition matrix.The state-transition matrix contains all the information about the free
motions of the system defined by Equation (9–37).

If the eigenvalues l1, l2, p , ln of the matrix A are distinct, than will contain
the n exponentials

In particular, if the matrix A is diagonal, then

�(t) = eAt = F
el1 t

0

el2 t

�

�

�

0

eln t

V  (A: diagonal)

el1 t, el2 t, p ,eln t

�(t)

�(t)

�-1(t) = e-  At = �(-t)

�(t) = eAt = l-1 C(s I - A)-1 D
x# (t) = �

#
(t) x(0) = A�(t) x(0) = Ax(t)

x(0) = �(0) x(0) = x(0)

�
#

(t) = A�(t),  �(0) = I

�(t)

x(t) = �(t) x(0)

x# = Ax

x(t) = eAt x(0)
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If there is a multiplicity in the eigenvalues—for example, if the eigenvalues of A are

l1, l1, l1, l4, l5, p , ln,

then will contain, in addition to the exponentials terms like
and

Properties of State-Transition Matrices. We shall now summarize the important
properties of the state-transition matrix For the time-invariant system

for which

we have the following:

1.

2. or

3.

4.

5.

EXAMPLE 9–5 Obtain the state-transition matrix of the following system:

Obtain also the inverse of the state-transition matrix,
For this system,

The state-transition matrix is given by

Since

the inverse of (sI-A) is given by

 = D s + 3

(s + 1)(s + 2)

-2

(s + 1)(s + 2)

1

(s + 1)(s + 2)

s

(s + 1)(s + 2)

T
 (s I - A)-1 =

1

(s + 1)(s + 2)
B s + 3

-2

1

s
R

s I - A = B s

0

0

s
R - B 0

-2

1

-3
R = B s

2

-1

s + 3
R

�(t) = eAt = l-1 C(s I - A)-1 D�(t)

A = B 0

-2

1

-3
R

�-1(t).

Bx
#
1

x
#
2
R = B 0

-2

1

-3
R Bx1

x2
R�(t)

�At2 - t1B  �At1 - t0B = �At2 - t0B = �At1 - t0B  �At2 - t1BC�(t) Dn = �(nt)

�At1 + t2B = eAAt1 + t2B = eAt1eAt2 = �At1B  �At2B = �At2B  �At1B�-1(t) = �(-t)�(t) = eAt = Ae-  AtB-1 = C�(-t) D-1

�(0) = eA0 = I

�(t) = eAt

x# = Ax

�(t).

t2el1 t.tel1 t
el1 t, el4 t, el5 t, p ,eln t,�(t)



666 Chapter 9 / Control Systems Analysis in State Space

Hence,

Noting that we obtain the inverse of the state-transition matrix as follows:

Solution of Nonhomogeneous State Equations. We shall begin by considering
the scalar case

(9–39)

Let us rewrite Equation (9–39) as

Multiplying both sides of this equation by e–at, we obtain

Integrating this equation between 0 and t gives

or

The first term on the right-hand side is the response to the initial condition and the
second term is the response to the input u(t).

Let us now consider the nonhomogeneous state equation described by

(9–40)

where

By writing Equation (9–40) as

and premultiplying both sides of this equation by e–At, we obtain

e-  At Cx# (t) - Ax(t) D =
d

dt
 Ce-  At x(t) D = e-  At Bu(t)

x# (t) - Ax(t) = Bu(t)

 B = n * r constant matrix
 A = n * n constant matrix
 u = r-vector
 x = n-vector

x# = Ax + Bu

x(t) = eatx(0) + eat

3
t

0
e-atbu(t) dt

e-atx(t) - x(0) = 3
t

0
e-atbu(t) dt

e-at Cx# (t) - ax(t) D =
d

dt
 Ce-atx(t) D = e-atbu(t)

x
# - ax = bu

x
# = ax + bu

�-1(t) = e-  At = B 2et - e2t

-2et + 2e2t

et - e2t

-et + 2e2tR
�-1(t) = �(-t),

 = B 2e-t - e-2t

-2e-t + 2e-2t

e-t - e-2t

-e-t + 2e-2tR
 �(t) = eAt = l-1 C(s I - A)-1 D
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Integrating the preceding equation between 0 and t gives

or

(9–41)

Equation (9–41) can also be written as

(9–42)

where Equation (9–41) or (9–42) is the solution of Equation (9–40). The
solution x(t) is clearly the sum of a term consisting of the transition of the initial state
and a term arising from the input vector.

Laplace Transform Approach to the Solution of Nonhomogeneous State
Equations. The solution of the nonhomogeneous state equation

can also be obtained by the Laplace transform approach.The Laplace transform of this
last equation yields

sX(s)-x(0)=AX(s)+BU(s)

or

(sI-A)X(s)=x(0)+BU(s)

Premultiplying both sides of this last equation by (sI-A)–1, we obtain

X(s)=(sI-A)–1x(0)+(sI-A)–1BU(s)

Using the relationship given by Equation (9–36) gives

X(s)=l CeAt D x(0)+l CeAt DBU(s)

The inverse Laplace transform of this last equation can be obtained by use of the
convolution integral as follows:

Solution in Terms of Thus far we have assumed the initial time to be zero.
If, however, the initial time is given by t0 instead of 0, then the solution to Equation
(9–40) must be modified to

(9–43)x(t) = eAAt - t0B xAt0B + 3
t

t0

eA(t -t) Bu(t) dt

xAt0B.
x(t) = eAt x(0) + 3

t

0
eA(t -t) Bu(t) dt

x# = Ax + Bu

�(t) = eAt.

x(t) = �(t) x(0) + 3
t

0
�(t - t) Bu(t) dt

x(t) = eAt x(0) + 3
t

0
eA(t -t) Bu(t) dt

e-  At x(t) - x(0) = 3
t

0
e-  At Bu(t) dt
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EXAMPLE 9–6 Obtain the time response of the following system:

where u(t) is the unit-step function occurring at t=0, or

u(t)=1(t)

For this system,

The state-transition matrix was obtained in Example 9–5 as

The response to the unit-step input is then obtained as

or

If the initial state is zero, or x(0)=0, then x(t) can be simplified to

9–5 SOME USEFUL RESULTS IN VECTOR-MATRIX ANALYSIS

In this section we present some useful results in vector-matrix analysis that we use in
Section 9–6. Specifically, we present the Cayley–Hamilton theorem, the minimal poly-
nomial, Sylvester’s interpolation method for calculating and the linear independence
of vectors.

Cayley–Hamilton Theorem. The Cayley–Hamilton theorem is very useful in
proving theorems involving matrix equations or solving problems involving matrix
equations.

Consider an n*n matrix A and its characteristic equation:

|lI-A|=ln+a1l
n–1+p+an–1l+an=0

The Cayley–Hamilton theorem states that the matrix A satisfies its own characteristic
equation, or that

An+a1 An–1+p+an–1 A+an I=0 (9–44)

To prove this theorem, note that is a polynomial in l of degree n-1.
That is,

adj(l I - A) = B1 ln - 1 + B2 ln - 2 + p + Bn - 1 l + Bn

adj(l I - A)

eAt,

Bx1(t)

x2(t)
R = C 1

2
- e-t +

1

2
e-2t

e-t - e-2t

S
Bx1(t)

x2(t)
R = B 2e-t - e-2t

-2e-t + 2e-2t

e-t - e-2t

-e-t + 2e-2tR Bx1(0)

x2(0)
R + B 1

2 - e-t + 1
2 e-2t

e-t - e-2t R
x(t) = eAt x(0) + 3

t

0
B 2e-(t -t) - e-2(t -t)

-2e-(t -t) + 2e-2(t -t)
e-(t -t) - e-2(t -t)

-e-(t -t) + 2e-2(t -t)R B0

1
R [1] dt

�(t) = eAt = B 2e-t - e-2t

-2e-t + 2e-2t

e-t - e-2t

-e-t + 2e-2tR�(t) = eAt

A = B 0

-2

1

-3
R ,  B = B0

1
R

Bx
#
1

x
#
2
R = B 0

-2

1

-3
R Bx1

x2
R + B0

1
R u
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where Since

(lI-A) adj(lI-A)= Cadj(lI-A) D(lI-A)=|lI-A|I

we obtain

From this equation, we see that A and (i=1, 2, p , n) commute. Hence, the product
of (lI-A) and becomes zero if either of these is zero. If A is substitut-
ed for l in this last equation, then clearly lI-A becomes zero. Hence, we obtain

An+a1 An–1+p+an–1 A+an I=0

This proves the Cayley–Hamilton theorem, or Equation (9–44).

Minimal Polynomial. Referring to the Cayley–Hamilton theorem, every n*n
matrix A satisfies its own characteristic equation. The characteristic equation is not,
however, necessarily the scalar equation of least degree that A satisfies.The least-degree
polynomial having A as a root is called the minimal polynomial. That is, the minimal
polynomial of an n*n matrix A is defined as the polynomial of least degree,

f(l)=lm+a1l
m–1+p+am–1l+am, m � n

such that or

f(A)=Am+a1 Am–1+p+am–1 A+am I=0

The minimal polynomial plays an important role in the computation of polynomials in
an n*n matrix.

Let us suppose that a polynomial in l, is the greatest common divisor of all the
elements of We can show that if the coefficient of the highest-degree term
in l of is chosen as 1, then the minimal polynomial is given by

(9–45)

[See Problem A–9–8 for the derivation of Equation (9–45).]
It is noted that the minimal polynomial of an n*n matrix A can be determined

by the following procedure:

1. Form and write the elements of as factored polynomials
in l.

2. Determine as the greatest common divisor of all the elements of 
Choose the coefficient of the highest-degree term in l of to be 1. If there is no
common divisor,

3. The minimal polynomial is then given as divided by 

Matrix Exponential In solving control engineering problems, it often becomes
necessary to compute If matrix A is given with all elements in numerical values,
MATLAB provides a simple way to compute , where T is a constant.eAT

eAt.
eAt.

d(l).∑l I - A∑f(l)
d(l) = 1.

d(l)
adj(l I - A).d(l)

adj(l I - A)adj(l I - A)

f(l)

f(l) =
∑l I - A∑

d(l)

f(l)d(l)
adj(l I - A).

d(l),

f(A) = 0,

f(l)

adj(l I - A)
Bi

 = AB1 ln - 1 + B2 ln - 2 + p + Bn - 1 l + BnB(l I - A)

 = (l I - A)AB1 ln - 1 + B2 ln - 2 + p + Bn - 1 l + BnB ∑l I - A∑ I = Iln + a1  Iln - 1 + p + an - 1  Il + an  I

B1 = I.
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Aside from computational methods, several analytical methods are available for the
computation of We shall present three methods here.

Computation of eAt: Method 1. If matrix A can be transformed into a diagonal
form, then can be given by

(9–46)

where P is a diagonalizing matrix for A. [For the derivation of Equation (9–46), see
Problem A–9–11.]

If matrix A can be transformed into a Jordan canonical form, then can be given by

where S is a transformation matrix that transforms matrix A into a Jordan canonical
form J.

As an example, consider the following matrix A:

The characteristic equation is

|lI-A|=l3-3l2+3l-1=(l-1)3=0

Thus, matrix A has a multiple eigenvalue of order 3 at It can be shown that matrix
A has a multiple eigenvector of order 3. The transformation matrix that will transform
matrix A into a Jordan canonical form can be given by

The inverse of matrix S is

Then it can be seen that

 = C 1

0

0

1

1

0

0

1

1

S = J

 S-1 AS = C 1
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1
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3
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1

2

0

0

1

S
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1

0

1
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0

0

1

S
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1

1

0

1

2

0

0

1

S
l = 1.

A = C0

0

1

1

0
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0

1

3

S
eAt = SeJt S-1

eAt

eAt = PeDt P-1 = P F
el1 t

0

el2 t

�

�

�

0

eln t

V P-1

eAt

eAt.
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Noting that

we find

Computation of eAt: Method 2. The second method of computing uses the
Laplace transform approach. Referring to Equation (9–36), can be given as follows:

Thus, to obtain first invert the matrix This results in a matrix whose
elements are rational functions of s. Then take the inverse Laplace transform of each
element of the matrix.

EXAMPLE 9–7 Consider the following matrix A:

Compute by use of the two analytical methods presented previously.

Method 1. The eigenvalues of A are 0 and –2 A necessary transformation
matrix P may be obtained as

Then, from Equation (9–46), is obtained as follows:

Method 2. Since

we obtain

(s I - A)-1 = D 1

s

0

1

s(s + 2)

1

s + 2

T
s I - A = B s
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0

-1

s + 2
R
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Hence,

Computation of eAt: Method 3. The third method is based on Sylvester’s interpo-
lation method. (For Sylvester’s interpolation formula, see Problem A–9–12.) We shall first
consider the case where the roots of the minimal polynomial of A are distinct.
Then we shall deal with the case of multiple roots.

Case 1: Minimal Polynomial of A Involves Only Distinct Roots. We shall assume
that the degree of the minimal polynomial of A is m. By using Sylvester’s interpolation
formula, it can be shown that can be obtained by solving the following determinant
equation:

(9–47)

By solving Equation (9–47) for can be obtained in terms of the Ak (k=0, 1,
2, p , m-1) and the (i=1, 2, 3, p , m). [Equation (9–47) may be expanded, for ex-
ample, about the last column.]

Notice that solving Equation (9–47) for is the same as writing

(9–48)

and determining the (k=0, 1, 2, p , m-1) by solving the following set of m
equations for the 

If A is an n*n matrix and has distinct eigenvalues, then the number of to be
determined is m=n. If A involves multiple eigenvalues, but its minimal polynomial has
only simple roots, however, then the number m of to be determined is less than n.

Case 2: Minimal Polynomial of A Involves Multiple Roots. As an example, consider
the case where the minimal polynomial of A involves three equal roots 
and has other roots that are all distinct. By applying Sylvester’s
interpolation formula, it can be shown that can be obtained from the following
determinant equation:

eAt
Al4 , l5 , p , lmB Al1 = l2 = l3B

ak(t)’s

ak(t)’s

 a0(t) + a1(t)lm + a2(t)lm
2 + p + am - 1(t)lm

m - 1 = elm t

 �

 �
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�
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�

�

�
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�

�

�
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p
p

p
p

l1
m - 1

l2
m - 1

�

�

�
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m - 1

Am - 1

el1 t

el2 t

�

�

�
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7 = 0
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1
2 A1 - e-2tB

e-2t R



Section 9–5 / Some Useful Results in Vector-Matrix Analysis 673

=0 (9–49)

Equation (9–49) can be solved for by expanding it about the last column.
It is noted that, just as in case 1, solving Equation (9–49) for is the same as writing

(9–50)

and determining the ak(t)’s (k=0, 1, 2, p , m-1) from

The extension to other cases where, for example, there are two or more sets of multiple
roots will be apparent. Note that if the minimal polynomial of A is not found, it is possible
to substitute the characteristic polynomial for the minimal polynomial. The number of
computations may, of course, be increased.

EXAMPLE 9–8 Consider the matrix

Compute using Sylvester’s interpolation formula.
From Equation (9–47), we get

311
I
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A

el1 t
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Substituting 0 for l1 and –2 for l2 in this last equation, we obtain

Expanding the determinant, we obtain

or

An alternative approach is to use Equation (9–48). We first determine a0(t) and a1(t) from

Since l1=0 and l2=–2, the last two equations become

Solving for a0(t) and a1(t) gives

Then can be written as

Linear Independence of Vectors. The vectors x1 , x2 , p , xn are said to be linearly
independent if

where c1, c2, p , cn are constants, implies that

Conversely, the vectors x1, x2, p , xn are said to be linearly dependent if and only if xi can
be expressed as a linear combination of xj (j=1, 2, p , n; j Z i), or

xi = a
n

j = 1
j Z i

cj  xj

c1 = c2 = p = cn = 0

c1  x1 + c2  x2 + p + cn  xn = 0
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A1 - e-2tB  A = B1

0

1
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for some set of constants cj. This means that if xi can be expressed as a linear combination
of the other vectors in the set, it is linearly dependent on them or it is not an independent
member of the set.

EXAMPLE 9–9 The vectors

are linearly dependent since

The vectors

are linearly independent since

implies that

Note that if an n*n matrix is nonsingular (that is, the matrix is of rank n or the determinant
is nonzero) then n column (or row) vectors are linearly independent. If the n*n matrix is singular
(that is, the rank of the matrix is less than n or the determinant is zero), then n column (or row)
vectors are linearly dependent. To demonstrate this, notice that

9–6 CONTROLLABILITY

Controllability and Observability. A system is said to be controllable at time t0

if it is possible by means of an unconstrained control vector to transfer the system from
any initial state x(t0) to any other state in a finite interval of time.

A system is said to be observable at time t0 if, with the system in state x(t0), it is possible
to determine this state from the observation of the output over a finite time interval.

The concepts of controllability and observability were introduced by Kalman. They
play an important role in the design of control systems in state space. In fact, the
conditions of controllability and observability may govern the existence of a complete
solution to the control system design problem. The solution to this problem may not

 Cy1 � y2 � y3 D = C1
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1

2

2

2

S = nonsingular

 Cx1 � x2 � x3 D = C1

2
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S = singular

c1 = c2 = c3 = 0

c1  y1 + c2  y2 + c3  y3 = 0
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exist if the system considered is not controllable. Although most physical systems are
controllable and observable, corresponding mathematical models may not possess the
property of controllability and observability.Then it is necessary to know the conditions
under which a system is controllable and observable. This section deals with controlla-
bility and the next section discusses observability.

In what follows, we shall first derive the condition for complete state controllability.
Then we derive alternative forms of the condition for complete state controllability
followed by discussions of complete output controllability. Finally, we present the concept
of stabilizability.

Complete State Controllability of Continuous-Time Systems. Consider the
continuous-time system.

(9–51)

where

The system described by Equation (9–51) is said to be state controllable at t=t0 if it is
possible to construct an unconstrained control signal that will transfer an initial state to
any final state in a finite time interval If every state is controllable, then the
system is said to be completely state controllable.

We shall now derive the condition for complete state controllability.Without loss of
generality, we can assume that the final state is the origin of the state space and that the
initial time is zero, or t0=0.

The solution of Equation (9–51) is

Applying the definition of complete state controllability just given, we have

or

(9–52)

Referring to Equation (9–48) or (9–50), can be written

(9–53)

Substituting Equation (9–53) into Equation (9–52) gives

(9–54)x(0) = -a
n - 1

k = 0
Ak B3

t1

0
ak(t)u(t) dt

e-At = a
n - 1

k = 0
ak(t) Ak

e-At

x(0) = -3
t1

0
e-At Bu(t) dt

xAt1B = 0 = eAt1 x(0) +3
t1

0
eA(t1 -t) Bu(t) dt

x(t) = eAt x(0) +3
t

0
eA(t -t) Bu(t) dt

t0 � t � t1 .

 B = n * 1 matrix
 A = n * n matrix
 u = control signal (scalar)

 x = state vector (n-vector)

x# = Ax + Bu
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Let us put

Then Equation (9–54) becomes

(9–55)

If the system is completely state controllable, then, given any initial state x(0), Equation
(9–55) must be satisfied. This requires that the rank of the n*n matrix

be n.
From this analysis, we can state the condition for complete state controllability as fol-

lows: The system given by Equation (9–51) is completely state controllable if and only
if the vectors are linearly independent, or the n*n matrix

is of rank n.
The result just obtained can be extended to the case where the control vector u is

r-dimensional. If the system is described by

where u is an r-vector, then it can be proved that the condition for complete state
controllability is that the n*nr matrix

be of rank n, or contain n linearly independent column vectors. The matrix

is commonly called the controllability matrix.

EXAMPLE 9–10 Consider the system given by

Since

the system is not completely state controllable.

CB � AB D = B1
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0
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x
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R = B1
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R Bx1
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0
Ru

CB � AB � p � An - 1 B D
CB � AB � p � An - 1 B D

x# = Ax + Bu

CB � AB � p � An - 1 B DB, AB, p , An - 1 B

CB � AB � p � An - 1 B D

 = - CB � AB � p � An - 1 B D F
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b1

�

�

�

bn - 1

V
 x(0) = -a

n - 1

k = 0
Ak Bbk

3
t1

0
ak(t)u(t) dt = bk
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EXAMPLE 9–11 Consider the system given by

For this case,

The system is therefore completely state controllable.

Alternative Form of the Condition for Complete State Controllability. Consider
the system defined by

(9–56)

where

If the eigenvectors of A are distinct, then it is possible to find a transformation matrix
P such that

Note that if the eigenvalues of A are distinct, then the eigenvectors of A are distinct; how-
ever, the converse is not true. For example, an n*n real symmetric matrix having
multiple eigenvalues has n distinct eigenvectors. Note also that each column of the P
matrix is an eigenvector of A associated with 

Let us define

(9–57)

Substituting Equation (9–57) into Equation (9–56), we obtain

(9–58)

By defining

P-1 B = F = AfijB
z# = P-1 APz + P-1 Bu

x = Pz

li (i = 1, 2, p , n).

P-1 AP = D = F
l1

0

l2

�

�

�

0

ln

V

 B = n * r matrix

 A = n * n matrix

 u = control vector (r-vector)

 x = state vector (n-vector)

x# = Ax + Bu

CB � AB D = B0

1

1

-1
R = nonsingular

Bx
#

1

x
#

2
R = B1

2

1

-1
R Bx1

x2
R + B0

1
R [u]
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we can rewrite Equation (9–58) as

If the elements of any one row of the n*r matrix F are all zero, then the corresponding
state variable cannot be controlled by any of the ui. Hence, the condition of complete
state controllability is that if the eigenvectors of A are distinct, then the system is com-
pletely state controllable if and only if no row of has all zero elements. It is im-
portant to note that, to apply this condition for complete state controllability, we must
put the matrix in Equation (9–58) in diagonal form.

If the A matrix in Equation (9–56) does not possess distinct eigenvectors, then
diagonalization is impossible. In such a case, we may transform A into a Jordan canonical
form. If, for example, A has eigenvalues and has n-3 distinct
eigenvectors, then the Jordan canonical form of A is

The square submatrices on the main diagonal are called Jordan blocks.
Suppose that we can find a transformation matrix S such that

If we define a new state vector z by

(9–59)

then substitution of Equation (9–59) into Equation (9–56) yields

(9–60)

The condition for complete state controllability of the system of Equation (9–56) may
then be stated as follows: The system is completely state controllable if and only if (1)

 = Jz + S-1 Bu

 z# = S-1 ASz + S-1 Bu

x = Sz

S-1 AS = J

J = I
l1

0

0

0

1

l1

0

0

1

l1

l4

0

1

l4

l6

�

�

�

0

ln

Y

l1 ,l1 ,l1 ,l4 ,l4 ,l6 , p , ln

P-1 AP

P-1 B

 z
#
n = ln zn + fn1 u1 + fn2 u2 + p + fnr ur

 �

 �

 �

 z
#
2 = l2 z2 + f21 u1 + f22 u2 + p + f2r ur

 z
#
1 = l1 z1 + f11 u1 + f12 u2 + p + f1r ur
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no two Jordan blocks in J of Equation (9–60) are associated with the same eigenvalues,
(2) the elements of any row of that correspond to the last row of each Jordan block
are not all zero, and (3) the elements of each row of that correspond to distinct
eigenvalues are not all zero.

EXAMPLE 9–12 The following systems are completely state controllable:

The following systems are not completely state controllable:

Condition for Complete State Controllability in the s Plane. The condition for
complete state controllability can be stated in terms of transfer functions or transfer
matrices.

It can be proved that a necessary and sufficient condition for complete state con-
trollability is that no cancellation occur in the transfer function or transfer matrix. If
cancellation occurs, the system cannot be controlled in the direction of the canceled
mode.

EXAMPLE 9–13 Consider the following transfer function:

Clearly, cancellation of the factor (s+2.5) occurs in the numerator and denominator of this
transfer function. (Thus one degree of freedom is lost.) Because of this cancellation, this system
is not completely state controllable.

X(s)
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=

s + 2.5

(s + 2.5)(s - 1)
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The same conclusion can be obtained by writing this transfer function in the form of a state
equation. A state-space representation is

Since

the rank of the matrix is 1. Therefore, we arrive at the same conclusion: The system is
not completely state controllable.

Output Controllability. In the practical design of a control system, we may want
to control the output rather than the state of the system. Complete state controllability
is neither necessary nor sufficient for controlling the output of the system. For this
reason, it is desirable to define separately complete output controllability.

Consider the system described by

(9–61)

(9–62)

where

The system described by Equations (9–61) and (9–62) is said to be completely output
controllable if it is possible to construct an unconstrained control vector u(t) that will
transfer any given initial output y At0 B to any final output y At1 B in a finite time interval
t0 � t � t1.

It can be proved that the condition for complete output controllability is as follows:
The system described by Equations (9–61) and (9–62) is completely output controllable
if and only if the m*(n+1)r matrix

is of rank m. (For a proof, see Problem A–9–16.) Note that the presence of the Du term
in Equation (9–62) always helps to establish output controllability.

Uncontrollable System. An uncontrollable system has a subsystem that is
physically disconnected from the input.

CCB � CAB � CA2 B � p � CAn - 1 B � D D

 D = m * r matrix

 C = m * n matrix

 B = n * r matrix

 A = n * n matrix

 y = output vector (m-vector)

u = control vector (r-vector)

 x = state vector (n-vector)

 y = Cx + Du

 x# = Ax + Bu

CB � AB D
CB � AB D = B1

1

1

1
R

Bx
#
1

x
#
2
R = B 0

2.5

1

-1.5
R Bx1

x2
R + B1

1
R u
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Stabilizability. For a partially controllable system, if the uncontrollable modes are
stable and the unstable modes are controllable, the system is said to be stabilizable. For
example, the system defined by

is not state controllable.The stable mode that corresponds to the eigenvalue of –1 is not
controllable.The unstable mode that corresponds to the eigenvalue of 1 is controllable.
Such a system can be made stable by the use of a suitable feedback. Thus this system is
stabilizable.

9–7 OBSERVABILITY

In this section we discuss the observability of linear systems. Consider the unforced
system described by the following equations:

(9–63)

(9–64)

where

The system is said to be completely observable if every state x At0 B can be determined
from the observation of y(t) over a finite time interval, The system is, there-
fore, completely observable if every transition of the state eventually affects every ele-
ment of the output vector.The concept of observability is useful in solving the problem
of reconstructing unmeasurable state variables from measurable variables in the mini-
mum possible length of time. In this section we treat only linear, time-invariant systems.
Therefore, without loss of generality, we can assume that t0=0.

The concept of observability is very important because, in practice, the difficulty
encountered with state feedback control is that some of the state variables are not
accessible for direct measurement, with the result that it becomes necessary to estimate
the unmeasurable state variables in order to construct the control signals. It will be
shown in Section 10–5 that such estimates of state variables are possible if and only if
the system is completely observable.

In discussing observability conditions, we consider the unforced system as given by
Equations (9–63) and (9–64).The reason for this is as follows: If the system is described
by

then

x(t) = eAt x(0) +3
t

0
eA(t -t) Bu(t) dt

 y = Cx + Du

 x# = Ax + Bu

t0 � t � t1 .

 C = m * n matrix
 A = n * n matrix
 y = output vector (m-vector)

 x = state vector (n-vector)

 y = Cx

 x# = Ax

Bx
#
1

x
#
2
R = B1

0

0

-1
R Bx1

x2
R + B1

0
Ru
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and y(t) is

Since the matrices A, B, C, and D are known and u(t) is also known, the last two terms
on the right-hand side of this last equation are known quantities. Therefore, they may
be subtracted from the observed value of y(t). Hence, for investigating a necessary and
sufficient condition for complete observability, it suffices to consider the system described
by Equations (9–63) and (9–64).

Complete Observability of Continuous-Time Systems. Consider the system
described by Equations (9–63) and (9–64). The output vector y(t) is

Referring to Equation (9–48) or (9–50), we have

where n is the degree of the characteristic polynomial. [Note that Equations (9–48) and
(9–50) with m replaced by n can be derived using the characteristic polynomial.]

Hence, we obtain

or

(9–65)

If the system is completely observable, then, given the output y(t) over a time interval
x(0) is uniquely determined from Equation (9–65). It can be shown that this

requires the rank of the nm*n matrix

to be n. (See Problem A–9–19 for the derivation of this condition.)
From this analysis, we can state the condition for complete observability as follows:

The system described by Equations (9–63) and (9–64) is completely observable if and
only if the n*nm matrix

is of rank n or has n linearly independent column vectors. This matrix is called the
observability matrix.

CC*� A*C*� p � (A*)n - 1 C* D

F
C

CA
�

�

�

CAn - 1

V
0 � t � t1 ,

y(t) = a0(t) Cx(0) + a1(t) CAx(0) + p + an - 1(t) CAn - 1 x(0)

y(t) = a
n - 1

k = 0
ak(t) CAk x(0)

eAt = a
n - 1

k = 0
ak(t) Ak

y(t) = CeAt x(0)

y(t) = CeAt x(0) + C3
t

0
eA(t -t) Bu(t) dt + Du
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EXAMPLE 9–14 Consider the system described by

Is this system controllable and observable?
Since the rank of the matrix

is 2, the system is completely state controllable.
For output controllability, let us find the rank of the matrix Since

the rank of this matrix is 1. Hence, the system is completely output controllable.
To test the observability condition, examine the rank of Since

the rank of is 2. Hence, the system is completely observable.

Conditions for Complete Observability in the s Plane. The conditions for com-
plete observability can also be stated in terms of transfer functions or transfer matrices.
The necessary and sufficient conditions for complete observability is that no cancella-
tion occur in the transfer function or transfer matrix. If cancellation occurs, the canceled
mode cannot be observed in the output.

EXAMPLE 9–15 Show that the following system is not completely observable:

where

Note that the control function u does not affect the complete observability of the system. To
examine complete observability, we may simply set u=0. For this system, we have
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Note that

Hence, the rank of the matrix is less than 3.Therefore, the system is not
completely observable.

In fact, in this system, cancellation occurs in the transfer function of the system. The transfer
function between X1(s) and U(s) is

and the transfer function between Y(s) and X1(s) is

Therefore, the transfer function between the output Y(s) and the input U(s) is

Clearly, the two factors (s+1) cancel each other.This means that there are nonzero initial states
x(0), which cannot be determined from the measurement of y(t).

Comments. The transfer function has no cancellation if and only if the system is com-
pletely state controllable and completely observable.This means that the canceled transfer
function does not carry along all the information characterizing the dynamic system.

Alternative Form of the Condition for Complete Observability. Consider the
system described by Equations (9–63) and (9–64), rewritten

(9–66)

(9–67)

Suppose that the transformation matrix P transforms A into a diagonal matrix, or

where D is a diagonal matrix. Let us define

Then Equations (9–66) and (9–67) can be written

Hence,

y(t) = CPeDt z(0)

 y = CPz

 z# = P-1 APz = Dz

x = Pz

P-1 AP = D

 y = Cx

 x# = Ax

Y(s)

U(s)
=

(s + 1)(s + 4)

(s + 1)(s + 2)(s + 3)

Y(s)

X1(s)
= (s + 1)(s + 4)
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U(s)
=

1

(s + 1)(s + 2)(s + 3)

CC*� A*C*� (A*)2 C* D
3 45
1

-6
-7
-1

6
5

-1
3 = 0



or

The system is completely observable if none of the columns of the m*n matrix CP
consists of all zero elements. This is because, if the ith column of CP consists of all zero
elements, then the state variable zi(0) will not appear in the output equation and there-
fore cannot be determined from observation of y(t). Thus, x(0), which is related to z(0)
by the nonsingular matrix P, cannot be determined. (Remember that this test applies only
if the matrix is in diagonal form.)

If the matrix A cannot be transformed into a diagonal matrix, then by use of a suitable
transformation matrix S, we can transform A into a Jordan canonical form, or

where J is in the Jordan canonical form.
Let us define

Then Equations (9–66) and (9–67) can be written

Hence,

The system is completely observable if (1) no two Jordan blocks in J are associated with
the same eigenvalues, (2) no columns of CS that correspond to the first row of each
Jordan block consist of zero elements, and (3) no columns of CS that correspond to
distinct eigenvalues consist of zero elements.

To clarify condition (2), in Example 9–16 we have encircled by dashed lines the
columns of CS that correspond to the first row of each Jordan block.

EXAMPLE 9–16 The following systems are completely observable.
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The following systems are not completely observable.

Principle of Duality. We shall now discuss the relationship between controllability
and observability. We shall introduce the principle of duality, due to Kalman, to clarify
apparent analogies between controllability and observability.

Consider the system S1 described by

where

and the dual system S2 defined by

where

The principle of duality states that the system S1 is completely state controllable
(observable) if and only if system S2 is completely observable (state controllable).

To verify this principle, let us write down the necessary and sufficient conditions for
complete state controllability and complete observability for systems S1 and S2.

 C* = conjugate transpose of C

 B* = conjugate transpose of B

 A* = conjugate transpose of A

 n = output vector (r-vector)

 v = control vector (m-vector)

 z = state vector (n-vector)
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For system S1 :

1. A necessary and sufficient condition for complete state controllability is that the
rank of the n*nr matrix

be n.
2. A necessary and sufficient condition for complete observability is that the rank of

the n*nm matrix

be n.

For system S2 :

1. A necessary and sufficient condition for complete state controllability is that the
rank of the n*nm matrix

be n.
2. A necessary and sufficient condition for complete observability is that the rank of

the n*nr matrix

be n.

By comparing these conditions, the truth of this principle is apparent. By use of this
principle, the observability of a given system can be checked by testing the state con-
trollability of its dual.

Detectability. For a partially observable system, if the unobservable modes are
stable and the observable modes are unstable, the system is said to be detectable. Note
that the concept of detectability is dual to the concept of stabilizability.

EXAMPLE PROBLEMS AND SOLUTIONS

A–9–1. Consider the transfer function system defined by Equation (9–2), rewritten

(9–68)

Derive the following controllable canonical form of the state-space representation for this
transfer-function system:

(9–69)G
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b0 sn + b1 sn - 1 + p + bn - 1 s + bn
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CB � AB � p � An - 1 B D
CC* � A*C* � p � (A*)n - 1 C* D

CC* � A*C* � p � (A*)n - 1 C* D
CB � AB � p � An - 1 B D
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(9–70)

Solution. Equation (9–68) can be written as

which can be modified to

(9–71)

where

Let us rewrite this last equation in the following form:

From this last equation, the following two equations may be obtained:

(9–72)

(9–73)

Now define state variables as follows:

Then, clearly,
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 �
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which may be rewritten as

(9–74)

Noting that we can rewrite Equation (9–72) as

or

(9–75)

Also, from Equations (9–71) and (9–73), we obtain

The inverse Laplace transform of this output equation becomes

(9–76)

Combining Equations (9–74) and (9–75) into one vector–matrix differential equation, we obtain
Equation (9–69). Equation (9–76) can be rewritten as given by Equation (9–70). Equations (9–69)
and (9–70) are said to be in the controllable canonical form. Figure 9–1 shows the block diagram
representation of the system defined by Equations (9–69) and (9–70).

y = Abn - an b0Bx1 + Abn - 1 - an - 1 b0Bx2 + p + Ab1 - a1 b0Bxn + b0 u

 + Abn - an b0BX1(s)

 = b0 U(s) + Ab1 - a1 b0BXn(s) + p + Abn - 1 - an - 1 b0BX2(s)

 + Abn - an b0BQ(s)

 Y(s) = b0 U(s) + Ab1 - a1 b0Bsn - 1Q(s) + p + Abn - 1 - an - 1 b0BsQ(s)

x
#
n = -an x1 - an - 1 x2 - p - a1 xn + u

sXn(s) = -a1 Xn(s) - p - an - 1 X2(s) - an X1(s) + U(s)

snQ(s) = sXn(s),

 x
#
n - 1 = xn

 �
 �
 �

 x
#
2 = x3

 x
#
1 = x2

b0

y

u

a1 a2 an–1 an

xn–1xn x1x2

b1 – a1b0 b2 – a2b0 bn–1 – an–1b0 bn – anb0

� � �

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
–

Figure 9–1
Block diagram
representation of the
system defined by
Equations (9–69)
and (9–70)
(controllable
canonical form).
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A–9–2. Consider the following transfer-function system:

(9–77)

Derive the following observable canonical form of the state-space representation for this transfer-
function system:

(9–78)

(9–79)

Solution. Equation (9–77) can be modified into the following form:

By dividing the entire equation by sn and rearranging, we obtain

(9–80)

Now define state variables as follows:

(9–81)

 X1 (s) =
1

s
 Cbn U(s) - an Y(s) D

 X2 (s) =
1

s
 Cbn - 1 U(s) - an - 1 Y(s) + X1 (s) D �

 �
 �

 Xn - 1 (s) =
1

s
 Cb2 U(s) - a2 Y(s) + Xn - 2 (s) D

 Xn (s) =
1

s
 Cb1 U(s) - a1 Y(s) + Xn - 1 (s) D

+
1

sn - 1
Cbn - 1 U(s) - an - 1 Y(s) D +

1

sn Cbn U(s) - an Y(s) D
Y(s) = b0 U(s) +

1

s
Cb1 U(s) - a1 Y(s) D + p

+ s Can - 1 Y(s) - bn - 1 U(s) D + an Y(s) - bn U(s) = 0

sn CY(s) - b0 U(s) D + sn - 1 Ca1 Y(s) - b1 U(s) D + p

y = [0 0 p 0 1]G
x1

x2

�

�

�

xn - 1

xn

W + b0 u

F
x
#
1

x
#
2

�

�

�

x
#
n

V = F
0
1
�

�

�

0

0
0
�

�

�

0

p
p

p

0
0
�

�

�

1

-an

-an - 1

�

�

�

-a1

V F
x1

x2

�

�

�

xn

V + F
bn - an b0

bn - 1 - an - 1 b0

�

�

�

b1 - a1 b0

V u

 
Y(s)

U(s)
=

b0 sn + b1 sn - 1 + p + bn - 1 s + bn

sn + a1 sn - 1 + p + an - 1 s + an
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Then Equation (9–80) can be written as

(9–82)

By substituting Equation (9–82) into Equation (9–81) and multiplying both sides of the equations
by s, we obtain

Taking the inverse Laplace transforms of the preceding n equations and writing them in the
reverse order, we get

Also, the inverse Laplace transform of Equation (9–82) gives

Rewriting the state and output equations in the standard vector-matrix forms gives Equations
(9–78) and (9–79). Figure 9–2 shows a block diagram representation of the system defined by
Equations (9–78) and (9–79).

y = xn + b0u

x
#
n = xn - 1 - a1 xn + Ab1 - a1 b0Bux

#
n - 1 = xn - 2 - a2 xn + Ab2 - a2 b0Bu�

�

�

x
#
2 = x1 - an - 1 xn + Abn - 1 - an - 1 b0Bux

#
1 = -an xn + Abn - an b0Bu

 sX1(s) = -an Xn(s) + Abn - an b0BU(s)

 sX2(s) = X1(s) - an - 1 Xn(s) + Abn - 1 - an - 1 b0BU(s)

 �

 �

 �

 sXn - 1(s) = Xn - 2(s) - a2 Xn(s) + Ab2 - a2 b0BU(s)

 sXn(s) = Xn - 1(s) - a1 Xn(s) + Ab1 - a1 b0BU(s)

Y(s) = b0 U(s) + Xn(s)

y

u

an–1 a1an

xn–1x1
x2 xn

b0bn – anb0 bn–1 – an–1b0 b1 – a1b0

� � �
+
–

+
+
–

+
+
–

+
+Figure 9–2

Block diagram
representation of the
system defined by
Equations (9–78)
and (9–79)
(observable
canonical form).
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A–9–3. Consider the transfer-function system defined by

(9–83)

where Derive the state-space representation of this system in the following diagonal
canonical form:

(9–84)

(9–85)

Solution. Equation (9–83) may be written as

(9–86)

Define the state variables as follows:

which may be rewritten as

 sXn(s) = -pn Xn(s) + U(s)

 �
 �
 �

 sX2(s) = -p2 X2(s) + U(s)

 sX1(s) = -p1 X1(s) + U(s)

 Xn(s) =
1

s + pn
 U(s)

 �

 �

 �

 X2(s) =
1

s + p2
 U(s)

 X1(s) =
1

s + p1
 U(s)

Y(s) = b0 U(s) +
c1

s + p1
U(s) +

c2

s + p2
U(s) + p +

cn

s + pn
U(s)

y = Cc1 c2 p cn D F
x1

x2

�

�

�

xn

V + b0 u

F
x
#
1

x
#
2

�

�

�

x
#
n

V = F
-p1

0

-p2

�

�

�

0

-pn

V F
x1

x2

�

�

�

xn

V + F
1
1
�

�

�

1

V u

pi Z pj .

 = b0 +
c1

s + p1
+

c2

s + p2
+ p +

cn

s + pn

 
Y(s)

U(s)
=

b0 sn + b1 sn - 1 + p + bn - 1 s + bnAs + p1B As + p2B p As + pnB
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The inverse Laplace transforms of these equations give

(9–87)

These n equations make up a state equation.
In terms of the state variables X1(s), X2(s), p , Xn(s), Equation (9–86) can be written as

The inverse Laplace transform of this last equation is

(9–88)

which is the output equation.
Equation (9–87) can be put in the vector-matrix equation as given by Equation (9–84). Equa-

tion (9–88) can be put in the form of Equation (9–85).
Figure 9–3 shows a block diagram representation of the system defined by Equations (9–84)

and (9–85).
It is noted that if we choose the state variables as

 X̂n(s) =
cn

s + pn
 U(s)

 �
 �
 �

 X̂2(s) =
c2

s + p2
 U(s)

 X̂1(s) =
c1

s + p1
 U(s)

y = c1 x1 + c2 x2 + p + cn xn + b0 u

Y(s) = b0 U(s) + c1 X1(s) + c2 X2(s) + p + cn Xn(s)

 x
#
n = -pn xn + u

 �
 �
 �

 x
#
2 = -p2 x2 + u

 x
#
1 = -p1 x1 + u

u y

xn

x2

x1

c2
1

s + p2

c1

b0

cn

1
s + p1

… …

1
s + pn

+
+
+

+
+

Figure 9–3
Block diagram
representation of the
system defined by
Equations (9–84)
and (9–85) (diagonal
canonical form).
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then we get a slightly different state-space representation. This choice of state variables gives

from which we obtain

(9–89)

Referring to Equation (9–86), the output equation becomes

from which we get

(9–90)

Equations (9–89) and (9–90) give the following state-space representation for the system:

A–9–4. Consider the system defined by

(9–91)

where the system involves a triple pole at s=–p1 . (We assume that, except for the first three
pi ’s being equal, the pi ’s are different from one another.) Obtain the Jordan canonical form of the
state-space representation for this system.

Y(s)

U(s)
=

b0 sn + b1 sn - 1 + p + bn - 1 s + bnAs + p1B3As + p4B As + p5B p As + pnB

y = [1 1 p 1]F
x̂1

x̂2

�

�

�

x̂n

V + b0 u

F
x̂
#

1

x̂
#

2

�

�

�

x̂
#

n

V = F
-p1

0

-p2

�

�

�

0

-pn

V F
x̂1

x̂2

�

�

�

x̂n

V + F
c1

c2

�

�

�

cn

Vu

y = x̂1 + x̂2 + p + x̂n + b0 u

Y(s) = b0 U(s) + X̂1(s) + X̂2(s) + p + X̂n(s)

x̂
#

n = -pn x̂n + cn u

�
�
�

x̂
#

2 = -p2 x̂2 + c2 u

x̂
#

1 = -p1 x̂1 + c1 u

 sX̂n(s) = -pn X̂n(s) + cn U(s)

 �
 �
 �

 sX̂2(s) = -p2 X̂2(s) + c2 U(s)

 sX̂1(s) = -p1 X̂1(s) + c1 U(s)
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Solution. The partial-fraction expansion of Equation (9–91) becomes

which may be written as

(9–92)

Define

Notice that the following relationships exist among X1(s), X2(s), and X3(s):

Then, from the preceding definition of the state variables and the preceding relationships, we
obtain

 sXn(s) = -pn Xn(s) + U(s)

 �

 �

 �

 sX4(s) = -p4 X4(s) + U(s)

 sX3(s) = -p1 X3(s) + U(s)

 sX2(s) = -p1 X2(s) + X3(s)

 sX1(s) = -p1 X1(s) + X2(s)

X2(s)

X3(s)
=

1

s + p1

X1(s)

X2(s)
=

1

s + p1

 Xn(s) =
1

s + pn
 U(s)

 �

 �

 �

 X4(s) =
1

s + p4
 U(s)

 X3(s) =
1

s + p1
 U(s)

 X2(s) =
1As + p1B2 U(s)

 X1(s) =
1As + p1B3 U(s)

+
c3

s + p1
U(s) +

c4

s + p4
U(s) + p +

cn

s + pn
U(s)

Y(s) = b0 U(s) +
c1As + p1B3 U(s) +

c2As + p1B2 U(s)

Y(s)

U(s)
= b0 +

c1As + p1B3 +
c2As + p1B2 +

c3

s + p1
+

c4

s + p4
+ p +

cn

s + pn
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The inverse Laplace transforms of the preceding n equations give

The output equation, Equation (9–92), can be rewritten as

The inverse Laplace transform of this output equation is

Thus, the state-space representation of the system for the case when the denominator polynomial
involves a triple root –p1 can be given as follows:

(9–93)

(9–94)

The state-space representation in the form given by Equations (9–93) and (9–94) is said to be in
the Jordan canonical form. Figure 9–4 shows a block diagram representation of the system given
by Equations (9–93) and (9–94).

A–9–5. Consider the transfer-function system

Obtain a state-space representation of this system with MATLAB.

Y(s)

U(s)
=

25.04s + 5.008

s3 + 5.03247s2 + 25.1026s + 5.008

 y = Cc1 c2 p cn D F
x1

x2

�

�

�

xn

V + b0 u

H
x
#
1

x
#
2

x
#
3

x
#
4

�

�

�

x
#
n

X = H
-p1

0
0

0
�

�

�

0

1
-p1

0
p

p

0
1

-p1

0
�

�

�

0

0
�

0

-p4

0

p

p

�

�

�

0
�

0

-pn

X H
x1

x2

x3

x4

�

�

�

xn

X + H
0
0
1
1
�

�

�

1

X u

y = c1 x1 + c2 x2 + c3 x3 + c4 x4 + p + cn xn + b0 u

Y(s) = b0 U(s) + c1 X1(s) + c2 X2(s) + c3 X3(s) + c4 X4(s) + p + cn Xn(s)

 x
#
n = -pn xn + u

 �

 �

 �

 x
#
4 = -p4 x4 + u

 x
#
3 = -p1 x3 + u

 x
#
2 = -p1 x2 + x3

 x
#
1 = -p1 x1 + x2
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yu
c1

1
s + p1

1
s + p1

1
s + p1

c4
1

s + p4

c2

c3

x3

x4

xn

x2 x1

b0

cn

… …

1
s + pn

+
+

+
+

+
+
+

+
+Figure 9–4

Block diagram
representation of the
system defined by
Equations (9–93)
and (9–94) (Jordan
canonical form).

Solution. MATLAB command

[A,B,C,D] = tf2ss(num,den)

will produce a state-space representation for the system. See MATLAB Program 9–4.

MATLAB Program 9–4

num = [25.04  5.008];
den = [1  5.03247  25.1026  5.008];
[A,B,C,D] = tf2ss(num,den)

A =

-5.0325 -25.1026 -5.0080
1.0000 0 0

0 1.0000 0

B =

1
0
0

C =

0 25.0400 5.0080
D  =

0
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This is the MATLAB representation of the following state-space equations:

A–9–6. Consider the system defined by

where

Obtain the response of the system to each of the following inputs:

(a) The r components of u are impulse functions of various magnitudes.

(b) The r components of u are step functions of various magnitudes.

(c) The r components of u are ramp functions of various magnitudes.

Solution.

(a) Impulse response: Referring to Equation (9–43), the solution to the given state equation is

Substituting t0=0– into this solution, we obtain

Let us write the impulse input u(t) as

where w is a vector whose components are the magnitudes of r impulse functions applied at
t=0. The solution of the state equation when the impulse input d(t)w is given at t=0 is

(9–95)

(b) Step response: Let us write the step input u(t) as

u(t) = k

 = eAt x(0-) + eAt Bw

 x(t) = eAt x(0-) + 3
t

0-
eA(t -t) Bd(t) w dt

u(t) = d(t) w

x(t) = eAt x(0 -) + 3
t

0-
eA(t -t) Bu(t) dt

x(t) = eAAt - t0B xAt0B + 3
t

t0

eA(t -t) Bu(t) dt

 B = n * r constant matrix

 A = n * n constant matrix

 u = control vector (r-vector)

 x = state vector (n-vector)

x# = Ax + Bu

 y = [0 25.04 5.008]Cx1

x2

x3

S + [0]u

 Cx
#
1

x
#
2

x
#
3

S = C-5.0325

1

0

-25.1026

0

1

-5.008

0

0

S Cx1

x2

x3

S + C1

0

0

S u
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where k is a vector whose components are the magnitudes of r step functions applied at
t=0. The solution to the step input at t=0 is given by

If A is nonsingular, then this last equation can be simplified to give

(9–96)

(c) Ramp response: Let us write the ramp input u(t) as

where v is a vector whose components are magnitudes of ramp functions applied at t=0.The
solution to the ramp input tv given at t=0 is

If A is nonsingular, then this last equation can be simplified to give

(9–97)

A–9–7. Obtain the response y(t) of the following system:

where u(t) is the unit-step input occurring at t=0, or

u(t)=1(t)

Solution. For this system

The state transition matrix can be obtained as follows:

�(t) = eAt = l-1 C(s I - A)-1 D�(t) = eAt

A = B-1

1

-0.5

0
R ,  B = B0.5

0
R

 y = [1 0]Cx1

x2

S
 Bx

#
1

x
#
1
R = B-1

1

-0.5

0
R Bx1

x2
R + B0.5

0
R u,  Bx1(0)

x2(0)
R = B0

0
R

= eAt x(0) + CA-2AeAt - IB - A-1t D  Bv

x(t) = eAt x(0) + AA-2B AeAt - I - AtB  Bv

= eAt x(0) + eAt a I
2

t2 -
2 A
3!

t3 +
3 A2

4!
t4 -

4 A3

5!
t5 + p b  Bv

= eAt x(0) + eAt

3
t

0
e-Att dt Bv

x(t) = eAt x(0) + 3
t

0
eA(t -t) Bt v dt

u(t) = t v

 = eAt x(0) + A-1AeAt - IB  Bk

 x(t) = eAt x(0) + eAt C- AA-1B Ae-At - IB D  Bk

 = eAt x(0) + eAt a It -
At2

2!
+

A2t3

3!
- p b  Bk

 = eAt x(0) + eAt c 3 t

0
a I - At +

A2t2

2!
- p b dt d  Bk

 x(t) = eAt x(0) + 3
t

0
eA(t -t) Bk dt
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Since

we have

Since x(0)=0 and k=1, referring to Equation (9–96), we have

Hence, the output y(t) can be given by

A–9–8. The Cayley–Hamilton theorem states that every n*n matrix A satisfies its own characteristic
equation. The characteristic equation is not, however, necessarily the scalar equation of least
degree that A satisfies. The least-degree polynomial having A as a root is called the minimal
polynomial. That is, the minimal polynomial of an n*n matrix A is defined as the polynomial
f(l) of least degree,

such that or

The minimal polynomial plays an important role in the computation of polynomials in an n*n
matrix.

Let us suppose that d(l), a polynomial in l, is the greatest common divisor of all the elements
of adj(lI-A). Show that, if the coefficient of the highest-degree term in l of d(l) is chosen as
1, then the minimal polynomial f(l) is given by

Solution. By assumption, the greatest common divisor of the matrix adj(lI-A) is d(l).Therefore,

adj(lI-A)=d(l)B(l)

f(l) = 2 l I - A
d(l)

2

f(A) = Am + a1  Am - 1 + p + am - 1  A + am  I = 0

f(A) = 0,

f(l) = lm + a1 lm - 1 + p + am - 1 l + am ,  m � n

y(t) = [1 0]Bx1

x2
R = x1 = e-0.5t sin 0.5t

= B e-0.5t sin 0.5t

-e-0.5t(cos 0.5t + sin 0.5t) + 1
R

= B 0
-2

1
-2
R B0.5e-0.5t(cos 0.5t - sin 0.5t) - 0.5

e-0.5t sin 0.5t
R= A-1AeAt - IB  B

x(t) = eAt x(0) + A-1AeAt - IB  Bk

 = B e-0.5t(cos 0.5t - sin 0.5t)

2e-0.5t sin 0.5t

-e-0.5t sin 0.5t

e-0.5t(cos 0.5t + sin 0.5t)
R �(t) = eAt = l-1 C(s I - A)-1 D

= D s + 0.5 - 0.5
(s + 0.5)2 + 0.52

1
(s + 0.5)2 + 0.52

-0.5
(s + 0.5)2 + 0.52

s + 0.5 + 0.5
(s + 0.5)2 + 0.52

T
(s I - A)-1 = B s + 1

-1
0.5
s
R -1

=
1

s2 + s + 0.5
B s

1
-0.5

s + 1
R
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where the greatest common divisor of the n2 elements (which are functions of l) of B(l) is unity.
Since

(lI-A) adj(lI-A)=|lI-A|I

we obtain

(9–98)

from which we find that is divisible by d(l). Let us put

(9–99)

Because the coefficient of the highest-degree term in l of d(l) has been chosen to be 1, the
coefficient of the highest-degree term in l of c(l) is also 1. From Equations (9–98) and (9–99),
we have

Hence,

Note that c(l) can be written as

where a(l) is of lower degree than f(l). Since c(A)=0 and f(A)=0, we must have a(A)=0.
Also, since f(l) is the minimal polynomial, a(l) must be identically zero, or

Note that because f(A)=0, we can write

Hence,

Noting that , we obtain

Since the greatest common divisor of the n2 elements of B(l) is unity, we have

Therefore,

Then, from this last equation and Equation (9–99), we obtain

f(l) =
∑l I - A∑

d(l)

c(l) = f(l)

g(l) = 1

B(l) = g(l) C(l)

(l I - A) B(l) = c(l) I

c(l) I = g(l)f(l) I = g(l)(l I - A) C(l)

f(l) I = (l I - A) C(l)

c(l) = g(l)f(l)

c(l) = g(l)f(l) + a(l)

c(A) = 0

(l I - A) B(l) = c(l) I

∑l I - A∑ = d(l)c(l)

∑l I - A∑

d(l)(l I - A) B(l) = ∑l I - A∑ I
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A–9–9. If an n*n matrix A has n distinct eigenvalues, then the minimal polynomial of A is identical to
the characteristic polynomial. Also, if the multiple eigenvalues of A are linked in a Jordan chain,
the minimal polynomial and the characteristic polynomial are identical. If, however, the multiple
eigenvalues of A are not linked in a Jordan chain, the minimal polynomial is of lower degree than
the characteristic polynomial.

Using the following matrices A and B as examples, verify the foregoing statements about the
minimal polynomial when multiple eigenvalues are involved:

Solution. First, consider the matrix A. The characteristic polynomial is given by

Thus, the eigenvalues of A are 2, 2, and 1. It can be shown that the Jordan canonical form of A is

and the multiple eigenvalues are linked in the Jordan chain as shown.
To determine the minimal polynomial, let us first obtain adj(lI-A). It is given by

Notice that there is no common divisor of all the elements of Hence, d(l)=1.
Thus, the minimal polynomial f(l) is identical to the characteristic polynomial, or

A simple calculation proves that

= C0
0
0

0
0
0

0
0
0
S = 0

= C8
0
0

72
  8
21

28
  0
  1
S - 5C4

0
0

16
  4
  9

12
  0
  1
S + 8C2

0
0

1
2
3

4
0
1
S - 4C1

0
0

0
1
0

0
0
1
S

A3 - 5 A2 + 8 A - 4 I

 = l3 - 5l2 + 8l - 4

 f(l) = ∑l I - A∑ = (l - 2)2(l - 1)

adj(l I - A).

adj(l I - A) = C (l - 2)(l - 1)

0
0

(l + 11)

(l - 2)(l - 1)

3(l - 2)

4(l - 2)

0
(l - 2)2

S

C 2

0

0

1

2

0

0

0

1

S

∑l I - A∑ = 3l - 2

0

0

-1

l - 2

-3

-4

0

l - 1

3 = (l - 2)2(l - 1)

A = C2
0
0

1
2
3

4
0
1
S ,  B = C2

0
0

0
2
3

0
0
1
S
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but

Thus, we have shown that the minimal polynomial and the characteristic polynomial of this matrix
A are the same.

Next, consider the matrix B. The characteristic polynomial is given by

A simple computation reveals that matrix B has three eigenvectors, and the Jordan canonical
form of B is given by

Thus, the multiple eigenvalues are not linked.To obtain the minimal polynomial, we first compute
:

from which it is evident that

Hence,

As a check, let us compute :

For the given matrix B, the degree of the minimal polynomial is lower by 1 than that of the char-
acteristic polynomial.As shown here, if the multiple eigenvalues of an n*n matrix are not linked
in a Jordan chain, the minimal polynomial is of lower degree than the characteristic polynomial.

f(B) = B2 - 3 B + 2 I = C4
0
0

0
4
9

0
0
1
S - 3C2

0
0

0
2
3

0
0
1
S + 2C1

0
0

0
1
0

0
0
1
S = C0

0
0

0
0
0

0
0
0
S = 0

f(B)

f(l) =
∑l I - B∑

d(l)
=

(l - 2)2(l - 1)

l - 2
= l2 - 3l + 2

d(l) = l - 2

adj(l I - B) = C (l - 2)(l - 1)

0
0

0
(l - 2)(l - 1)

3(l - 2)

0
0

(l - 2)2

S
adj(l I - B)

C2

0

0

0

2

0

0

0

1

S

∑l I - B∑ = 3l - 2

0

0

0

l - 2

-3

0

0

l - 1

3 = (l - 2)2(l - 1)

= C0
0
0

13
 0
 0

0
0
0
S Z 0

= C4
0
0

16
  4
  9

12
  0
  1
S - 3C2

0
0

1
2
3

4
0
1
S + 2C1

0
0

0
1
0

0
0
1
S

A2 - 3 A + 2 I
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A–9–10. Show that by use of the minimal polynomial, the inverse of a nonsingular matrix A can be ex-
pressed as a polynomial in A with scalar coefficients as follows:

(9–100)

where a1, a2 , p , am are coefficients of the minimal polynomial

Then obtain the inverse of the following matrix A:

Solution. For a nonsingular matrix A, its minimal polynomial f(A) can be written as

where am Z 0. Hence,

Premultiplying by A–1, we obtain

which is Equation (9–100).
For the given matrix A, adj(lI-A) can be given as

Clearly, there is no common divisor d(l) of all elements of adj(lI-A). Hence, d(l)=1.
Consequently, the minimal polynomial f(l) is given by

Thus, the minimal polynomial f(l) is the same as the characteristic polynomial.
Since the characteristic polynomial is

we obtain

f(l) = l3 + 3l2 - 7l - 17

∑l I - A∑ = l3 + 3l2 - 7l - 17

f(l) =
∑l I - A∑

d(l)
= ∑l I - A∑

adj(�I - A) = Cl2 + 4l + 3
3l + 7
l + 1

2l + 6
l2 + 2l - 3

2

-4
-2l + 2
l2 - 7

S

A-1 = -
1

am
AAm - 1 + a1  Am - 2 + p + am - 2  A + am - 1  IB

I = - 
1

am
 AAm + a1  Am - 1 + p + am - 2  A2 + am - 1  AB

f(A) = Am + a1  Am - 1 + p + am - 1  A + am  I = 0

A = C1

3

1

2

-1

0

0

-2

-3

S
f(l) = lm + a1 lm - 1 + p + am - 1 l + am

A-1 = -
1

am
AAm - 1 + a1  Am - 2 + p + am - 2  A + am - 1  IB
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By identifying the coefficients ai of the minimal polynomial (which is the same as the characteristic
polynomial in this case), we have

The inverse of A can then be obtained from Equation (9–100) as follows:

A–9–11. Show that if matrix A can be diagonalized, then

where P is a diagonalizing transformation matrix that transforms A into a diagonal matrix, or
P–1AP=D, where D is a diagonal matrix.

Show also that if matrix A can be transformed into a Jordan canonical form, then

where S is a transformation matrix that transforms A into a Jordan canonical form J, or S–1AS=J.

Solution. Consider the state equation

If a square matrix can be diagonalized, then a diagonalizing matrix (transformation matrix) exists
and it can be obtained by a standard method. Let P be a diagonalizing matrix for A. Let us define

Then

where D is a diagonal matrix. The solution of this last equation is

Hence,

x(t) = Px̂(t) = PeDt P-1 x(0)

x̂(t) = eDt x̂(0)

x̂
#

= P-1 APx̂ = Dx̂

x = Px̂

x# = Ax

eAt = SeJt S-1

eAt = PeDt P-1

 = C 3
17
7
17
1
17

6
17

- 3
17
2
17

- 4
17
2
17

- 7
17

S
 =

1

17
C3

7

1

6

-3

2

-4

2

-7

S
 =

1

17
c C 7

-2

-2

0

7

2

-4

8

9

S + 3C1

3

1

2

-1

0

0

-2

-3

S - 7C1

0

0

0

1

0

0

0

1

S s
 A-1 = -

1

a3
AA2 + a1  A + a2  IB =

1

17
AA2 + 3 A - 7 IB

a1 = 3,  a2 = -7,  a3 = -17
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Noting that x(t) can also be given by the equation

we obtain or

(9–101)

Next, we shall consider the case where matrix A may be transformed into a Jordan canonical
form. Consider again the state equation

First obtain a transformation matrix S that will transform matrix A into a Jordan canonical form
so that

where J is a matrix in a Jordan canonical form. Now define

Then

The solution of this last equation is

Hence,

Since the solution x(t) can also be given by the equation

we obtain

Note that eJt is a triangular matrix [which means that the elements below (or above, as the case
may be) the principal diagonal line are zeros] whose elements are elt, telt, , and so forth. For
example, if matrix J has the following Jordan canonical form:

then

eJt = C el1 t

0

0

tel1 t

el1 t

0

1
2 t2el1 t

tel1 t

el1 t
S

J = Cl1

0

0

1

l1

0

0

1

l1

S
1
2 t2elt

eAt = SeJt S-1

x(t) = eAt x(0)

x(t) = Sx̂(t) = SeJt S-1 x(0)

x̂(t) = eJt x̂(0)

x̂
#

= S-1 AS x̂ = Jx̂

x = Sx̂

S-1 AS = J

x# = Ax

eAt = PeDt P-1 = PF
el1 t

0

el2 t

�

�

�

0

eln t

VP-1

eAt = PeDt P-1,

x(t) = eAt x(0)
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Similarly, if

then

A–9–12. Consider the following polynomial in l of degree m-1, where we assume l1 , l2 , p , lm to be
distinct:

where k=1, 2, p , m. Notice that

Then the polynomial f(l) of degree m-1,

takes on the values f Alk B at the points lk . This last equation is commonly called Lagrange’s
interpolation formula. The polynomial f(l) of degree m-1 is determined from m independent
data f Al1 B , f Al2 B , p , f Alm B . That is, the polynomial f(l) passes through m points
f Al1 B , f Al2 B , p , f Alm B . Since f(l) is a polynomial of degree m-1, it is uniquely determined.
Any other representations of the polynomial of degree m-1 can be reduced to the Lagrange
polynomial f(l).

 = a
m

k = 1
fAlkB Al - l1B p Al - lk - 1B Al - lk + 1B p Al - lmBAlk - l1B p Alk - lk - 1B Alk - lk + 1B p Alk - lmB

 f(l) = a
m

k = 1
fAlkBpk(l)

pkAliB = b1,

0,

if i = k

if i Z k

pk(l) =
Al - l1B p Al - lk - 1B Al - lk + 1B p Al - lmBAlk - l1B p Alk - lk - 1B Alk - lk + 1B p Alk - lmB

eJt = G
el1 t

0

0

0

tel1 t

el1 t

0

1
2 t2el1 t

tel1 t

el1 t

el4 t

0

tel4 t

el4 t

el6 t

0

0

0

el7 t

W

J = G
l1

0

0

0

1

l1

0

0

1

l1

l4

0

1

l4

l6

0

l7

W
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Assuming that the eigenvalues of an n*n matrix A are distinct, substitute A for l in the
polynomial pk(l). Then we get

Notice that pk(A) is a polynomial in A of degree m-1. Notice also that

Now define

(9–102)

Equation (9–102) is known as Sylvester’s interpolation formula. Equation (9–102) is equivalent
to the following equation:

(9–103)

Equations (9–102) and (9–103) are frequently used for evaluating functions f(A) of matrix A—
for example, (lI-A)–1, eAt, and so forth. Note that Equation (9–103) can also be written as

(9–104)

Show that Equations (9–102) and (9–103) are equivalent. To simplify the arguments, assume
that m=4.

7
1
1
�

�

�

1
I

l1

l2

�

�

�

lm

A

l2
1

l2
2

�

�

�

l2
m

A2

p
p

p
p
p

lm - 1
1

lm - 1
2

�

�

�

lm - 1
m

Am - 1

fAl1B
fAl2B

�

�

�

fAlmB
f(A)

7 = 0

8
1

l1

l2
1

�

�

�

lm - 1
1

fAl1B

1

l2

l2
2

�

�

�

lm - 1
2

fAl2B

p
p
p

p
p

1

lm

l2
m

�

�

�

lm - 1
m

fAlmB

I
A
A2

�

�

�

Am - 1

f(A)

8 = 0

 = a
m

k = 1
fAlkB AA - l1  IB p AA - lk - 1  IB AA - lk + 1  IB p AA - lm  IBAlk - l1B p Alk - lk - 1B Alk - lk + 1B p Alk - lmB

 f(A) = a
m

k = 1
fAlkBpk(A)

pkAli  IB = b I,
0,

if i = k

if i Z k

pk(A) =
AA - l1  IB p AA - lk - 1  IB AA - lk + 1  IB p AA - lm  IBAlk - l1B p Alk - lk - 1B Alk - lk + 1B p Alk - lmB
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Solution. Equation (9–103), where m=4, can be expanded as follows:

Since

and

we obtain

 = 0

 + fAl1B C AA - l4  IB AA - l3  IB AA - l2  IB Al4 - l3B Al4 - l2B Al3 - l2B D - fAl2B C AA - l4  IB AA - l3  IB AA - l1  IB Al4 - l3B Al4 - l1B Al3 - l1B D + fAl3B C AA - l4  IB AA - l2  IB AA - l1  IB Al4 - l2B Al4 - l1B Al2 - l1B D - fAl4B C AA - l3  IB AA - l2  IB AA - l1  IB Al3 - l2B Al3 - l1B Al2 - l1B D ¢ = f(A) C Al4 - l3B Al4 - l2B Al4 - l1B Al3 - l2B Al3 - l1B Al2 - l1B D
4 1li

l2
i

l3
i

1

lj

l2
j

l3
j

1

lk

l2
k

l3
k

I
A
A2

A3

4 = AA - lk  IB AA - lj  IB AA - li  IB Alk - ljB Alk - liB Alj - liB

4 1l1

l2
1

l3
1

1

l2

l2
2

l3
2

1

l3

l2
3

l3
3

1

l4

l2
4

l3
4

4 = Al4 - l3B Al4 - l2B Al4 - l1B Al3 - l2B Al3 - l1B Al2 - l1B

 + fAl1B 4 1l2

l2
2

l3
2

1

l3

l2
3

l3
3

1

l4

l2
4

l3
4

I
A
A2

A3

4
 + fAl3B 4 1l1

l2
1

l3
1

1

l2

l2
2

l3
2

1

l4

l2
4

l3
4

I
A
A2

A3

4 - fAl2B 4 1l1

l2
1

l3
1

1

l3

l2
3

l3
3

1

l4

l2
4

l3
4

I
A
A2

A3

4
 = f(A) 4 1l1

l2
1

l3
1

1

l2

l2
2

l3
2

1

l3

l2
3

l3
3

1

l4

l2
4

l3
4

4 - fAl4B 4 1l1

l2
1

l3
1

1

l2

l2
2

l3
2

1

l3

l2
3

l3
3

I
A
A2

A3

4
 ¢ = 5 1

l1

l2
1

l3
1

fAl1B
1

l2

l2
2

l3
2

fAl2B
1

l3

l2
3

l3
3

fAl3B
1

l4

l2
4

l3
4

fAl4B
I
A
A2

A3

f(A)

5
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Solving this last equation for f(A), we obtain

where m=4.Thus, we have shown the equivalence of Equations (9–102) and (9–103).Although
we assumed m=4, the entire argument can be extended to an arbitrary positive integer m. (For
the case when the matrix A involves multiple eigenvalues, refer to Problem A–9–13.)

A–9–13. Consider Sylvester’s interpolation formula in the form given by Equation (9–104):

This formula for the determination of f(A) applies to the case where the minimal polynomial of
A involves only distinct roots.

Suppose that the minimal polynomial of A involves multiple roots. Then the rows in the
determinant that correspond to the multiple roots become identical, and therefore modification
of the determinant in Equation (9–104) becomes necessary.

Modify the form of Sylvester’s interpolation formula given by Equation (9–104) when the
minimal polynomial of A involves multiple roots. In deriving a modified determinant equation,
assume that there are three equal roots in the minimal polynomial of A and that
there are other roots that are distinct.

Solution. Since the minimal polynomial of A involves three equal roots, the minimal polynomial
f(l) can be written as

An arbitrary function f(A) of an n*n matrix A can be written as

where the minimal polynomial f(A) is of degree m and a(A) is a polynomial in A of degree
m-1 or less. Hence we have

where a(l) is a polynomial in l of degree m-1 or less, which can thus be written as

(9–105)a(l) = a0 + a1 l + a2 l2 + p + am - 1 lm - 1

f(l) = g(l)f(l) + a(l)

f(A) = g(A)f(A) + a(A)

= Al - l1B3Al - l4B Al - l5B p Al - lmBf(l) = lm + a1 lm - 1 + p + am - 1 l + am

Al4, l5, p , lmB Al1 = l2 = l3B

7
1

1

�

�

�

1

I

l1

l2

�

�

�

lm

A

l2
1

l2
2

�

�

�

l2
m

A2

p
p

p
p
p

lm - 1
1

lm - 1
2

�

�

�

lm - 1
m

Am - 1

fAl1B
fAl2B

�

�

�

fAlmB
f(A)

7 = 0

 = a
m

k = 1
fAlkB AA - l1  IB p AA - lk - 1  IB AA - lk + 1  IB p AA - lm  IBAlk - l1B p Alk - lk - 1B Alk - lk + 1B p Alk - lmB

  + fAl3B AA - l1  IB AA - l2  IB AA - l4  IBAl3 - l1B Al3 - l2B Al3 - l4B + fAl4B AA - l1  IB AA - l2  IB AA - l3  IBAl4 - l1B Al4 - l2B Al4 - l3B
 f(A) = fAl1B AA - l2  IB AA - l3  IB AA - l4  IBAl1 - l2B Al1 - l3B Al1 - l4B + fAl2B AA - l1  IB AA - l3  IB AA - l4  IBAl2 - l1B Al2 - l3B Al2 - l4B
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In the present case we have

(9–106)

By substituting l1 ,l4 , p ,lm for l in Equation (9–106), we obtain the following m-2 equations:

(9–107)

By differentiating Equation (9–106) with respect to l, we obtain

(9–108)

where

Substitution of l1 for l in Equation (9–108) gives

Referring to Equation (9–105), this last equation becomes

(9–109)

Similarly, differentiating Equation (9–106) twice with respect to l and substituting l1 for l, we
obtain

This last equation can be written as

(9–110)

Rewriting Equations (9–110), (9–109), and (9–107), we get

(9–111)

a0 + a1 lm + a2 l2
m + p + am - 1 lm - 1

m = fAlmB�

�

�

a0 + a1 l4 + a2 l2
4 + p + am - 1 lm - 1

4 = fAl4Ba0 + a1 l1 + a2 l2
1 + p + am - 1 lm - 1

1 = fAl1Ba1 + 2a2 l1 + p + (m - 1)am - 1 lm - 2
1 = f¿Al1B

a2 + 3a3 l1 + p +
(m - 1)(m - 2)

2
am - 1 lm - 3

1 =
f–Al1B

2

f–Al1B = 2a2 + 6a3 l1 + p + (m - 1)(m - 2)am - 1 lm - 3
1

d2

d2l
f(l) 2

l=l1

= f–Al1B =
d2

dl2 a(l) 2
l=l1

f¿Al1B = a1 + 2a2 l1 + p + (m - 1)am - 1 lm - 2
1

d

dl
f(l) 2

l=l1

= f¿Al1B =
d

dl
a(l) 2

l=l1

Al - l1B2h(l) =
d

dl
 Cg(l)Al - l1B3Al - l4B p Al - lmB D

d

dl
f(l) = Al - l1B2h(l) +

d

dl
a(l)

fAlmB = aAlmB�

�

�

fAl4B = aAl4BfAl1B = aAl1B
 = g(l) C Al - l1B3Al - l4B p Al - lmB D + a(l)

 f(l) = g(l)f(l) + a(l)
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These m simultaneous equations determine the ak values (where k=0, 1, 2, p , m-1). Noting
that f(A)=0 because it is a minimal polynomial, we have f(A) as follows:

Hence, referring to Equation (9–105), we have

(9–112)

where the ak values are given in terms of f Al1 B , f¿ Al1 B , f– Al1 B , f Al4 B , f Al5 B , p , f Alm B . In terms of
the determinant equation, f(A) can be obtained by solving the following equation:

(9–113)

Equation (9–113) shows the desired modification in the form of the determinant. This equation
gives the form of Sylvester’s interpolation formula when the minimal polynomial of A involves
three equal roots. (The necessary modification of the form of the determinant for other cases will
be apparent.)

A–9–14. Using Sylvester’s interpolation formula, compute eAt, where

Solution. Referring to Problem A–9–9, the characteristic polynomial and the minimal polynomial
are the same for this A. The minimal polynomial (characteristic polynomial) is given by

Note that l1=l2=2 and l3=1. Referring to Equation (9–112) and noting that f(A) in this
problem is eAt, we have

where a0(t), a1(t), and a2(t) are determined from the equations

 a0(t) + a1(t)l3 + a2(t)l2
3 = el3 t

 a0(t) + a1(t)l1 + a2(t)l2
1 = el1 t

 a1(t) + 2a2(t)l1 = tel1 t

eAt = a0(t) I + a1(t) A + a2(t) A2

f(l) = (l - 2)2(l - 1)

A = C2

0

0

1

2

3

4

0

1

S

f–Al1B
2

f¿Al1B
fAl1B
fAl4B

�

�

�

fAlmB
f(A)

 = 0

0

0
1
1
�

�

�

1
I

0

1
l1

l4

�

�

�

lm

A

1

2l1

l2
1

l2
4

�

�

�

l2
m

A2

3l1

3l2
1

l3
1

l3
4

�

�

�

l3
m

A3

p

p
p
p

p
p

(m - 1)(m - 2)

2
lm - 3

1

(m - 1)lm - 2
1

lm - 1
1

lm - 1
4

�

�

�

lm - 1
m

Am - 1

f(A) = a(A) = a0  I + a1  A + a2  A2 + p + am - 1  Am - 1

f(A) = g(A)f(A) + a(A) = a(A)
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Substituting l1=2, and l3=1 into these three equations gives

Solving for a0(t), a1(t), and a2(t), we obtain

Hence,

A–9–15. Show that the system described by

(9–114)

(9–115)

where

is completely output controllable if and only if the composite m*nr matrix P, where

is of rank m. (Notice that complete state controllability is neither necessary nor sufficient for
complete output controllability.)

Solution. Suppose that the system is output controllable and the output y(t) starting from any y(0),
the initial output, can be transferred to the origin of the output space in a finite time interval
0 � t � T. That is,

(9–116)y(T) = Cx(T) = 0

P = CCB � CAB � CA2 B � p � CAn - 1 B D
 C = m * n matrix

 B = n * r matrix

 A = n * n matrix

 y = output vector (m-vector) (m � n)

 u = control vector (r-vector)

 x = state vector (n-vector)

y = Cx

x# = Ax + Bu

 = C e2 t

0

0

12et - 12e2 t + 13te2 t

e2 t

-3et + 3e2 t

-4et + 4e2 t

0

et

S
 + Aet - e2 t + te2 tB C4

0

0

16

4

9

12

0

1

S
 eAt = A4et - 3e2 t + 2te2 tB C1

0

0

0

1

0

0

0

1

S + A-4et + 4e2 t - 3te2 tB C2

0

0

1

2

3

4

0

1

S
 a2(t) = et - e2 t + te2 t

a1(t) = -4et + 4e2 t - 3te2 t

 a0(t) = 4et - 3e2t + 2te2 t

 a0(t) + a1(t) + a2(t) = et

 a0(t) + 2a1(t) + 4a2(t) = e2 t

 a1(t) + 4a2(t) = te2 t
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Since the solution of Equation (9–114) is

at t=T, we have

(9–117)

Substituting Equation (9–117) into Equation (9–116), we obtain

(9–118)

On the other hand, y(0)=Cx(0). Notice that the complete output controllability means that the
vector Cx(0) spans the m-dimensional output space. Since eAT is nonsingular, if Cx(0) spans the
m-dimensional output space, so does CeATx(0), and vice versa. From Equation (9–118) we obtain

Note that can be expressed as the sum of AiBj ; that is,

where

and ai(t) satisfies

(p: degree of the minimal polynomial of A)

and Bj is the jth column of B. Therefore, we can write CeATx(0) as

From this last equation, we see that is a linear combination of CAiBj (i=0, 1, 2, p ,
p-1; j=1, 2, p , r). Note that if the rank of Q, where

is m, then so is the rank of P, and vice versa. [This is obvious if p=n. If p<n, then the CAhBj

(where p � h � n-1) are linearly dependent on CBj , CABj , p , CAp-1Bj . Hence, the rank of

Q = CCB � CAB � CA2 B � p � CAp - 1 B D  (p � n)

CeAT x(0)

CeAT x(0) = -a
p - 1

i = 0
a

r

j = 1
gi j  CAi Bj

eAt = a
p - 1

i = 0
ai(t) Ai

gi j = 3
T

0
ai(t)uj(T - t) dt = scalar

3
T

0
eAt Bu(T - t) dt = a

p - 1

i = 0
a

r

j = 1
gi j  Ai Bj

1T
0 eAt Bu(T - t) dt

 = -  C3
T

0
eAt Bu(T - t) dt

 CeAT x(0) = -  CeAT

3
T

0
e-At Bu(t) dt

 = CeAT cx(0) + 3
T

0
e-  At Bu(t) dt d = 0

 y(T) = Cx(T)

x(T) = eAT cx(0) + 3
T

0
e-  At Bu(t) dt d

x(t) = eAt cx(0) + 3
t

0
e-  At Bu(t) dt d
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P is equal to that of Q.] If the rank of P is m, then CeATx(0) spans the m-dimensional output
space.This means that if the rank of P is m, then Cx(0) also spans the m-dimensional output space
and the system is completely output controllable.

Conversely, suppose that the system is completely output controllable, but the rank of P is k,
where k<m. Then the set of all initial outputs that can be transferred to the origin is of
k-dimensional space. Hence, the dimension of this set is less than m. This contradicts the as-
sumption that the system is completely output controllable. This completes the proof.

Note that it can be immediately proved that, in the system of Equations (9–114) and (9–115),
complete state controllability on 0 � t � T implies complete output controllability on 0 � t � T
if and only if m rows of C are linearly independent.

A–9–16. Discuss the state controllability of the following system:

(9–119)

Solution. For this system,

Since

we see that vectors B and AB are not linearly independent and the rank of the matrix [B�AB]
is 1. Therefore, the system is not completely state controllable. In fact, elimination of x2 from
Equation (9–119), or the following two simultaneous equations,

yields

or, in the form of a transfer function,

Notice that cancellation of the factor (s+2.5) occurs in the numerator and denominator of the
transfer function. Because of this cancellation, this system is not completely state controllable.
This is an unstable system. Remember that stability and controllability are quite different things.
There are many systems that are unstable, but are completely state controllable.

A–9–17. A state-space representation of a system in the controllable canonical form is given by

(9–120)

(9–121)y = [0.8 1]Bx1

x2
R

Bx
#
1

x
#
2
R = B 0

-0.4
1

-1.3
R Bx1

x2
R + B0

1
R u

X1(s)

U(s)
=

s + 2.5

(s + 2.5)(s - 1)

x
$

1 + 1.5x
#
1 - 2.5x1 = u

# + 2.5u

x
#
2 = -2x1 + 1.5x2 + 4u

x
#
1 = -3x1 + x2 + u

AB = B-3

-2

1

1.5
R B1

4
R = B1

4
R

A = B-3

-2

1

1.5
R ,  B = B1

4
R

Bx
#
1

x
#
2
R = B-3

-2

1

1.5
R Bx1

x2
R + B1

4
R u
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The same system may be represented by the following state-space equation, which is in the
observable canonical form:

(9–122)

(9–123)

Show that the state-space representation given by Equations (9–120) and (9–121) gives a sys-
tem that is state controllable, but not observable. Show, on the other hand, that the state-space rep-
resentation defined by Equations (9–122) and (9–123) gives a system that is not completely state
controllable, but is observable. Explain what causes the apparent difference in the controllability
and observability of the same system.

Solution. Consider the system defined by Equations (9–120) and (9–121). The rank of the
controllability matrix

is 2. Hence, the system is completely state controllable. The rank of the observability matrix

is 1. Hence the system is not observable.
Next consider the system defined by Equations (9–122) and (9–123). The rank of the

controllability matrix

is 1. Hence, the system is not completely state controllable. The rank of the observability matrix

is 2. Hence, the system is observable.
The apparent difference in the controllability and observability of the same system is caused

by the fact that the original system has a pole-zero cancellation in the transfer function. Referring
to Equation (2–29), for D=0 we have

If we use Equations (9–120) and (9–121), then

[Note that the same transfer function can be obtained by using Equations (9–122) and (9–123).]
Clearly, cancellation occurs in this transfer function.

 =
s + 0.8

(s + 0.8)(s + 0.5)

 =
1

s2 + 1.3s + 0.4
[0.8 1]B s + 1.3

-0.4

1

s
R B0

1
R

 G(s) = [0.8 1]B s

0.4

-1

s + 1.3
R -1B0

1
R

G(s) = C(s I - A)-1 B

[C* � A* C*] = B0

1

1

-1.3
R

[B � AB] = B0.8

1

-0.4

-0.5
R

[C* � A* C*] = B0.8

1

-0.4

-0.5
R

[B � AB] = B0

1

1

-1.3
R

y = [0 1]Bx1

x2
R

Bx
#
1

x
#
2
R = B0

1
-0.4
-1.3
R Bx1

x2
R + B0.8

1
R u
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If a pole-zero cancellation occurs in the transfer function, then the controllability and observability
vary, depending on how the state variables are chosen. Remember that, to be completely state con-
trollable and observable, the transfer function must not have any pole-zero cancellations.

A–9–18. Prove that the system defined by

where

is completely observable if and only if the composite mn*n matrix P, where

is of rank n.

Solution. We shall first obtain the necessary condition. Suppose that

Then there exists x(0) such that

or

Hence, we obtain, for a certain x(0),

Notice that from Equation (9–48) or (9–50), we have

where m(m � n) is the degree of the minimal polynomial for A. Hence, for a certain x(0), we have

CeAt x(0) = C Ca0(t) I + a1(t) A + a2(t) A2 + p + am - 1(t) Am - 1 D  x(0) = 0

eAt = a0(t) I + a1(t) A + a2(t) A2 + p + am - 1(t) Am - 1

CAi x(0) = 0,  for i = 0, 1, 2, p , n - 1

Px(0) = F
C

CA
�

�

�

CAn - 1

V x(0) = F
Cx(0)

CAx(0)

�

�

�

CAn - 1 x(0)

V = 0

Px(0) = 0

rank P 6 n

P = F
C

CA
�

�

�

CAn - 1

V

 C = m * n matrix
 A = n * n matrix
 y = output vector (m-vector)  (m � n)

 x = state vector (n-vector)

y = Cx

x# = Ax
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Consequently, for a certain x(0),

which implies that, for a certain x(0), x(0) cannot be determined from y(t). Therefore, the rank
of matrix P must be equal to n.

Next we shall obtain the sufficient condition. Suppose that rank P=n. Since

by premultiplying both sides of this last equation by eA*tC*, we get

If we integrate this last equation from 0 to t, we obtain

(9–124)

Notice that the left-hand side of this equation is a known quantity. Define

(9–125)

Then, from Equations (9–124) and (9–125), we have

(9–126)

where

It can be established that W(t) is a nonsingular matrix as follows: If @W(t) @ were equal to 0, then

which means that

which implies that rank P<n. Therefore, @W(t) @ Z 0, or W(t) is nonsingular. Then, from Equa-
tion (9–126), we obtain

(9–127)

and x(0) can be determined from Equation (9–127).
Hence, we have proved that x(0) can be determined from y(t) if and only if rank P=n. Note

that x(0) and y(t) are related by

y(t) = CeAt x(0) = a0(t) Cx(0) + a1(t) CAx(0) + p + an - 1(t) CAn - 1 x(0)

x(0) = CW(t) D-1 Q(t)

CeAt x = 0,  for 0 � t � t1

x* WAt1B  x = 3
t1

0
7CeAt x 7 2 dt = 0

W(t) = 3
t

0
eA*t C*CeAt dt

Q(t) = W(t) x(0)

Q(t) = 3
t

0
eA*t C* y(t) dt = known quantity

3
t

0
eA*t C* y(t) dt = 3

t

0
eA*t C* CeAt x(0) dt

eA*t C* y(t) = eA*t C* CeAt x(0)

y(t) = CeAt x(0)

y(t) = Cx(t) = CeAt x(0) = 0
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PROBLEMS

B–9–1. Consider the following transfer-function system:

Obtain the state-space representation of this system in (a)
controllable canonical form and (b) observable canonical
form.

B–9–2. Consider the following system:

Obtain a state-space representation of this system in a di-
agonal canonical form.

B–9–3. Consider the system defined by

where

Transform the system equations into the controllable canon-
ical form.

B–9–4. Consider the system defined by

where

Obtain the transfer function Y(s)/U(s).

B–9–5. Consider the following matrix A:

Obtain the eigenvalues l1 , l2 , l3 , and l4 of the matrix A.
Then obtain a transformation matrix P such that

P-1 AP = diagAl1 , l2 , l3 , l4B

A = D0

0

0

1

1

0

0

0

0

1

0

0

0

0

1

0

T

A = C-1
1
0

0
-2

0

1
0

-3
S ,  B = C0

0
1
S ,  C = [1 1 0]

y = Cx

x# = Ax + Bu

A = B 1
-4

2
-3
R ,  B = B1

2
R ,  C = [1 1]

y = Cx

x# = Ax + Bu

y
% + 6y

$ + 11y
# + 6y = 6u

Y(s)

U(s)
=

s + 6

s2 + 5s + 6

B–9–6. Consider the following matrix A:

Compute eAt by three methods.

B–9–7. Given the system equation

find the solution in terms of the initial conditions x1(0),
x2(0), and x3(0).

B–9–8. Find x1(t) and x2(t) of the system described by

where the initial conditions are

B–9–9. Consider the following state equation and output
equation:

Show that the state equation can be transformed into the
following form by use of a proper transformation matrix:

Then obtain the output y in terms of z1, z2 , and z3 .

B–9–10. Obtain a state-space representation of the follow-
ing system with MATLAB:

Y(s)

U(s)
=

10.4s2 + 47s + 160

s3 + 14s2 + 56s + 160

C z
#
1

z
#
2

z
#
3

S = C0

1

0

0

0

1

-6

-11

-6

S C z1

z2

z3

S + C1

0

0

S u

 y = [1 0 0]Cx1

x2

x3

S
 Cx

#
1

x
#
2

x
#
3

S = C -6

-11

-6

1

0

0

0

1

0

S Cx1

x2

x3

S + C2

6

2

S u

Bx1(0)

x2(0)
R = B 1

-1
R

Bx
#
1

x
#
2
R = B 0

-3

1

-2
R Bx1

x2
R

Cx
#
1

x
#
2

x
#
3

S = C2

0

0

1

2

0

0

1

2

S Cx1

x2

x3

S

A = B 0

-2

1

-3
R
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B–9–11. Obtain a transfer-function representation of the
following system with MATLAB:

B–9–12. Obtain a transfer-function representation of the
following system with MATLAB:

B–9–13. Consider the system defined by

Is the system completely state controllable and completely
observable?

B–9–14. Consider the system given by

Is the system completely state controllable and completely
observable? Is the system completely output controllable?

 By1

y2
R = B 1

0

0

1

0

0
R Cx1

x2

x3

S
 Cx

#
1

x
#
2

x
#
3

S = C 2

0

0

0

2

3

0

0

1

S Cx1

x2

x3

S + C0

1

0

1

0

1

S Bu1

u2
R

 y = [1 1 0]Cx1

x2

x3

S
Cx

#
1

x
#
2

x
#
3

S = C-1
0
1

-2
-1

0

-2
1

-1
S Cx1

x2

x3

S + C2
0
1
S u

 y = [1 0 0]Cx1

x2

x3

S
 Cx

#
1

x
#
2

x
#
3

S = C 2

0

0

1

2

1

0

0

3

S Cx1

x2

x3

S + C0

1

0

1

0

1

S Bu1

u2
R

 y = [0 0 1]Cx1

x2

x3

S
 Cx

#
1

x
#
2

x
#
3

S = C 0

-1

1

1

-1

0

0

0

0

S Cx1

x2

x3

S + C0

1

0

S u

B–9–15. Is the following system completely state control-
lable and completely observable?

B–9–16. Consider the system defined by

Except for an obvious choice of c1=c2=c3=0, find an
example of a set of c1 , c2 , c3 that will make the system
unobservable.

B–9–17. Consider the system

The output is given by

(a) Show that the system is not completely observable.

(b) Show that the system is completely observable if the
output is given by

By1

y2
R = B1

1

1

2

1

3
R Cx1

x2

x3

S

y = [1 1 1]Cx1
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x3

S
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#
1

x
#
2

x
#
3
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0
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3

0
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x2

x3

S

 y = Cc1 c2 c3 D Cx1
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x3

S
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#
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x
#
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x
#
3
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0
1
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 y = [20 9 1]Cx1
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S
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#
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x
#
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x
#
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1
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0
1
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S Cx1
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x3

S + C0
0
1
S u
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722

Control Systems Design
in State Space

10–1 INTRODUCTION

This chapter discusses state-space design methods based on the pole-placement method,
observers, the quadratic optimal regulator systems, and introductory aspects of robust
control systems.The pole-placement method is somewhat similar to the root-locus method
in that we place closed-loop poles at desired locations.The basic difference is that in the
root-locus design we place only the dominant closed-loop poles at the desired locations,
while in the pole-placement design we place all closed-loop poles at desired locations.

We begin by presenting the basic materials on pole placement in regulator systems.
We then discuss the design of state observers, followed by the design of regulator sys-
tems and control systems using the pole-placement-with-state-observer approach.Then,
we discuss the quadratic optimal regulator systems. Finally, we present an introduction
to robust control systems.

Outline of the Chapter. Section 10–1 has presented introductory material. Section
10–2 discusses the pole-placement approach to the design of control systems. We begin
with the derivation of the necessary and sufficient conditions for arbitrary pole placement.
Then we derive equations for the state feedback gain matrix K for pole placement. Section
10–3 presents the solution of the pole-placement problem with MATLAB. Section 10–4
discusses the design of servo systems using the pole-placement approach. Section 10–5
presents state observers.We discuss both full-order and minimum-order state observers.
Also, transfer functions of observer controllers are derived. Section 10–6 presents the
design of regulator systems with observers. Section 10–7 treats the design of control
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systems with observers. Section 10–8 discusses quadratic optimal regulator systems. Note
that the state feedback gain matrix K can be obtained by both the pole-placement method
and the quadratic optimal control method. Finally, Section 10–9 presents robust control
systems. The discussions here are limited to introductory subjects only.

10–2 POLE PLACEMENT

In this section we shall present a design method commonly called the pole-placement or
pole-assignment technique. We assume that all state variables are measurable and are
available for feedback. It will be shown that if the system considered is completely state
controllable, then poles of the closed-loop system may be placed at any desired locations
by means of state feedback through an appropriate state feedback gain matrix.

The present design technique begins with a determination of the desired closed-loop
poles based on the transient-response and/or frequency-response requirements, such as
speed, damping ratio, or bandwidth, as well as steady-state requirements.

Let us assume that we decide that the desired closed-loop poles are to be at s=m1 ,
s=m2 , p , s=mn. By choosing an appropriate gain matrix for state feedback, it is pos-
sible to force the system to have closed-loop poles at the desired locations, provided
that the original system is completely state controllable.

In this chapter we limit our discussions to single-input, single-output systems. That
is, we assume the control signal u(t) and output signal y(t) to be scalars. In the deriva-
tion in this section we assume that the reference input r(t) is zero. [In Section 10–7 we
discuss the case where the reference input r(t) is nonzero.]

In what follows we shall prove that a necessary and sufficient condition that the
closed-loop poles can be placed at any arbitrary locations in the s plane is that the sys-
tem be completely state controllable. Then we shall discuss methods for determining
the required state feedback gain matrix.

It is noted that when the control signal is a vector quantity, the mathematical aspects
of the pole-placement scheme become complicated. We shall not discuss such a case in
this book. (When the control signal is a vector quantity, the state feedback gain matrix
is not unique. It is possible to choose freely more than n parameters; that is, in addition
to being able to place n closed-loop poles properly, we have the freedom to satisfy some
or all of the other requirements, if any, of the closed-loop system.)

Design by Pole Placement. In the conventional approach to the design of a single-
input, single-output control system, we design a controller (compensator) such that the
dominant closed-loop poles have a desired damping ratio z and a desired undamped
natural frequency vn. In this approach, the order of the system may be raised by 1 or 2
unless pole–zero cancellation takes place. Note that in this approach we assume the ef-
fects on the responses of nondominant closed-loop poles to be negligible.

Different from specifying only dominant closed-loop poles (the conventional design
approach), the present pole-placement approach specifies all closed-loop poles. (There is
a cost associated with placing all closed-loop poles, however, because placing all closed-
loop poles requires successful measurements of all state variables or else requires the in-
clusion of a state observer in the system.) There is also a requirement on the part of the
system for the closed-loop poles to be placed at arbitrarily chosen locations.The requirement
is that the system be completely state controllable.We shall prove this fact in this section.



724 Chapter 10 / Control Systems Design in State Space

Consider a control system

(10–1)

where

We shall choose the control signal to be

(10–2)

This means that the control signal u is determined by an instantaneous state. Such a
scheme is called state feedback. The 1*n matrix K is called the state feedback gain
matrix. We assume that all state variables are available for feedback. In the following
analysis we assume that u is unconstrained.A block diagram for this system is shown in
Figure 10–1.

This closed-loop system has no input. Its objective is to maintain the zero output.
Because of the disturbances that may be present, the output will deviate from zero.The
nonzero output will be returned to the zero reference input because of the state feed-
back scheme of the system. Such a system where the reference input is always zero is
called a regulator system. (Note that if the reference input to the system is always a
nonzero constant, the system is also called a regulator system.)

Substituting Equation (10–2) into Equation (10–1) gives

The solution of this equation is given by

(10–3)

where x(0) is the initial state caused by external disturbances.The stability and transient-
response characteristics are determined by the eigenvalues of matrix A-BK. If matrix

x(t) = e(A - BK)tx(0)

x# (t) = (A - BK) x(t)

u = -Kx

 D = constant (scalar)
 C = 1 * n constant matrix
 B = n * 1 constant matrix
 A = n * n constant matrix
 u = control signal (scalar)
y = output signal (scalar)
 x = state vector (n-vector)

y = Cx + Du

x# = Ax + Bu

u

A

B C

–K

�
+

+
+

+

D

xx
.

Figure 10–1
Closed-loop control
system with
u=–Kx.
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K is chosen properly, the matrix A-BK can be made an asymptotically stable matrix,
and for all x(0) Z 0, it is possible to make x(t) approach 0 as t approaches infinity. The
eigenvalues of matrix A-BK are called the regulator poles. If these regulator poles are
placed in the left-half s plane, then x(t) approaches 0 as t approaches infinity.The prob-
lem of placing the regulator poles (closed-loop poles) at the desired location is called a
pole-placement problem.

In what follows, we shall prove that arbitrary pole placement for a given system is
possible if and only if the system is completely state controllable.

Necessary and Sufficient Condition for Arbitrary Pole Placement We shall now
prove that a necessary and sufficient condition for arbitrary pole placement is that the
system be completely state controllable.We shall first derive the necessary condition.We
begin by proving that if the system is not completely state controllable, then there are
eigenvalues of matrix A-BK that cannot be controlled by state feedback.

Suppose that the system of Equation (10–1) is not completely state controllable.
Then the rank of the controllability matrix is less than n, or

This means that there are q linearly independent column vectors in the controllability
matrix. Let us define such q linearly independent column vectors as f1 , f2 , p , fq. Also,
let us choose n-q additional n-vectors vq+1, vq+2, p , vn such that

is of rank n. Then it can be shown that

(See Problem A–10–1 for the derivation of these equations.) Now define

Then we have

where Iq is a q-dimensional identity matrix and In-q is an (n-q)-dimensional identity
matrix.

= @s Iq - A11 + B11  k1 @ � @s In - q - A22 @ = 0

= 2 s Iq - A11 + B11  k1

0
-A12 + B11  k2

s In - q - A22

2= 2 s I - cA11

0
 A12

A22
d + cB11

0
d Ck1 � k2 D 2= @s I - Â + B̂K̂ @= @s I - P-1 AP + P-1 BKP @∑s I - A + BK∑ = @P-1(s I - A + BK)P @

K̂ = KP = Ck1 � k2 D
Â = P-1 AP = cA11

0
 A12

A22
d ,  B̂ = P-1B = cB11

0
d

P = C f1 � f2 � p � fq � vq + 1 � vq + 2 � p � vn D
rank CB � AB � p � An - 1 B D = q 6 n
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Notice that the eigenvalues of A22 do not depend on K. Thus, if the system is not
completely state controllable, then there are eigenvalues of matrix A that cannot be
arbitrarily placed.Therefore, to place the eigenvalues of matrix A-BK arbitrarily, the
system must be completely state controllable (necessary condition).

Next we shall prove a sufficient condition: that is, if the system is completely state
controllable, then all eigenvalues of matrix A can be arbitrarily placed.

In proving a sufficient condition, it is convenient to transform the state equation
given by Equation (10–1) into the controllable canonical form.

Define a transformation matrix T by

(10–4)

where M is the controllability matrix

(10–5)

and

(10–6)

where the ai’s are coefficients of the characteristic polynomial

Define a new state vector by

If the rank of the controllability matrix M is n (meaning that the system is completely
state controllable), then the inverse of matrix T exists, and Equation (10–1) can be
modified to

(10–7)

where
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p
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�
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�
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�
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M = CB � AB � p � An - 1 B D
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(10–9)

[See Problems A–10–2 and A–10–3 for the derivation of Equations (10–8) and (10–9).]
Equation (10–7) is in the controllable canonical form.Thus, given a state equation, Equa-
tion (10–1), it can be transformed into the controllable canonical form if the system is
completely state controllable and if we transform the state vector x into state vector 
by use of the transformation matrix T given by Equation (10–4).

Let us choose a set of the desired eigenvalues as m1 , m2 , p , mn. Then the desired
characteristic equation becomes

(10–10)

Let us write

(10–11)

When is used to control the system given by Equation (10–7), the system
equation becomes

The characteristic equation is

This characteristic equation is the same as the characteristic equation for the system,
defined by Equation (10–1), when is used as the control signal. This can be
seen as follows: Since

the characteristic equation for this system is

∑s I - A + BK∑ = @T-1(s I - A + BK) T @ = @s I - T-1 AT + T-1 BKT @ = 0

x# = Ax + Bu = (A - BK) x

u = -Kx

@s I - T-1 AT + T-1 BKT @ = 0

x̂
#

= T-1 ATx̂ - T-1 BKTx̂

u = -KTx̂

KT = Cdn dn - 1
p d1 D

As - m1B As - m2B p As - mnB = sn + a1 sn - 1 + p + an - 1 s + an = 0

x̂

T-1 B = G
0
0
�

�

�

0
1

W
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Now let us simplify the characteristic equation of the system in the controllable canonical
form. Referring to Equations (10–8), (10–9), and (10–11), we have

(10–12)

This is the characteristic equation for the system with state feedback.Therefore, it must
be equal to Equation (10–10), the desired characteristic equation. By equating the
coefficients of like powers of s, we get

Solving the preceding equations for the di’s and substituting them into Equation (10–11),
we obtain

(10–13)

Thus, if the system is completely state controllable, all eigenvalues can be arbitrarily
placed by choosing matrix K according to Equation (10–13) (sufficient condition).

We have thus proved that a necessary and sufficient condition for arbitrary pole
placement is that the system be completely state controllable.

It is noted that if the system is not completely state controllable, but is stabilizable,
then it is possible to make the entire system stable by placing the closed-loop poles at
desired locations for q controllable modes.The remaining n-q uncontrollable modes
are stable. So the entire system can be made stable.

= Can - an � an - 1 - an - 1 � p � a2 - a2 � a1 - a1 D  T-1

K = Cdn dn - 1
p d1 D  T-1

 an + dn = an

 �

 �

 �

 a2 + d2 = a2

 a1 + d1 = a1

 = sn + Aa1 + d1Bsn - 1 + p + Aan - 1 + dn - 1Bs + Aan + dnB = 0

 = 6
s

0

�

�

�

an + dn

-1

s

�

�

�

an - 1 + dn - 1
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p

0

0

�

�

�
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6

= 6 s I - F
0
�
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�

0
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1
�
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�

0
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p
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p

0
�

�

�

1
-a1

V + F
0
�

�

�

0
1

V Cdn dn - 1
p d1 D 6

@s I - T-1 AT + T-1 BKT @
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Determination of Matrix K Using Transformation Matrix T. Suppose that the
system is defined by

and the control signal is given by

The feedback gain matrix K that forces the eigenvalues of A-BK to be m1 ,m2 , p ,mn

(desired values) can be determined by the following steps (if mi is a complex eigenvalue,
then its conjugate must also be an eigenvalue of A-BK):

Step 1: Check the controllability condition for the system. If the system is completely
state controllable, then use the following steps:

Step 2: From the characteristic polynomial for matrix A, that is,

determine the values of a1, a2, p , an.

Step 3: Determine the transformation matrix T that transforms the system state equa-
tion into the controllable canonical form. (If the given system equation is already in the
controllable canonical form, then T=I.) It is not necessary to write the state equation
in the controllable canonical form. All we need here is to find the matrix T. The
transformation matrix T is given by Equation (10–4), or

where M is given by Equation (10–5) and W is given by Equation (10–6).

Step 4: Using the desired eigenvalues (desired closed-loop poles), write the desired
characteristic polynomial:

and determine the values of a1 , a2 , p , an.

Step 5: The required state feedback gain matrix K can be determined from Equation
(10–13), rewritten thus:

Determination of Matrix K Using Direct Substitution Method. If the system
is of low order (n � 3), direct substitution of matrix K into the desired characteristic
polynomial may be simpler. For example, if n=3, then write the state feedback gain
matrix K as

Substitute this K matrix into the desired characteristic polynomial and
equate it to As-m1 B As-m2 B As-m3 B , or

∑s I - A + BK∑ = As - m1B As - m2B As - m3B
∑s I - A + BK∑

K = Ck1 k2 k3 D

K = Can - an � an - 1 - an - 1 � p � a2 - a2 � a1 - a1 D  T-1

As - m1B As - m2B p As - mnB = sn + a1 sn - 1 + p + an - 1 s + an

T = MW

∑s I - A∑ = sn + a1 sn - 1 + p + an - 1 s + an

u = -Kx

x# = Ax + Bu
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Since both sides of this characteristic equation are polynomials in s, by equating the
coefficients of the like powers of s on both sides, it is possible to determine the values
of k1, k2, and k3. This approach is convenient if n=2 or 3. (For n=4, 5, 6, p , this
approach may become very tedious.)

Note that if the system is not completely controllable, matrix K cannot be determined.
(No solution exists.)

Determination of Matrix K Using Ackermann’s Formula. There is a well-known
formula, known as Ackermann’s formula, for the determination of the state feedback
gain matrix K. We shall present this formula in what follows.

Consider the system

where we use the state feedback control u=–Kx. We assume that the system is
completely state controllable. We also assume that the desired closed-loop poles are at
s=m1 , s=m2 , p , s=mn.

Use of the state feedback control

modifies the system equation to

(10–14)

Let us define

The desired characteristic equation is

Since the Cayley–Hamilton theorem states that satisfies its own characteristic
equation, we have

(10–15)

We shall utilize Equation (10–15) to derive Ackermann’s formula. To simplify the
derivation, we consider the case where n=3. (For any other positive integer n, the
following derivation can be easily extended.)

Consider the following identities:

 A
� 3 = (A - BK)3 = A3 - A2 BK - ABKA

� - BKA
� 2

 A
� 2 = (A - BK)2 = A2 - ABK - BKA

�
 A
� = A - BK

 I = I

fAA� B = A
� n + a1  A� n - 1 + p + an - 1  A� + an  I = 0

A
�

 = sn + a1 sn - 1 + p + an - 1 s + an = 0

 ∑s I - A + BK∑ = @s I - A
� @ = As - m1B As - m2B p As - mnB

A
� = A - BK

x# = (A - BK) x

u = -Kx

x# = Ax + Bu
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Multiplying the preceding equations in order by a3 , a2 , a1 , and a0 (where a0=1),
respectively, and adding the results, we obtain

(10–16)

Referring to Equation (10–15), we have

Also, we have

Substituting the last two equations into Equation (10–16), we have

Since we obtain

(10–17)

Since the system is completely state controllable, the inverse of the controllability matrix

exists. Premultiplying both sides of Equation (10–17) by the inverse of the controllability
matrix, we obtain

Premultiplying both sides of this last equation by [0 0 1], we obtain

which can be rewritten as

This last equation gives the required state feedback gain matrix K.
For an arbitrary positive integer n, we have

(10–18)K = [0 0 p 0 1] CB � AB � p � An - 1 B D-1
f(A)

K = [0 0 1] CB � AB � A2 B D-1
f(A)

[0 0 1] CB � AB � A2 B D-1
f(A) = [0 0 1]Ca2  K + a1  KA

� + KA
� 2

a1  K + KA
�

K
S = K

CB � AB � A2 B D-1
f(A) = Ca2  K + a1  KA

� + KA
� 2

a1  K + KA
�

K
S

CB � AB � A2 B D
= CB � AB � A2 B D Ca2  K + a1  KA

� + KA
� 2

a1  K + KA
�

K
S

f(A) = BAa2  K + a1  KA
� + KA

� 2B + ABAa1  K + KA
� B + A2 BK

fAA� B = 0,

fAA� B = f(A) - a2  BK - a1  BKA
� - BKA

� 2 - a1  ABK - ABKA
� - A2 BK

a3  I + a2  A + a1  A2 + A3 = f(A) Z 0

a3  I + a2  A� + a1  A� 2 + A
� 3 = fAA� B = 0

 - ABKA
� - BKA

� 2

 = a3  I + a2  A + a1  A2 + A3 - a2  BK - a1  ABK - a1  BKA
� - A2 BK

 - ABKA
� - BKA

� 2

 = a3  I + a2(A - BK) + a1AA2 - ABK - BKA
� B + A3 - A2BK

a3  I + a2  A� + a1  A� 2 + A
� 3
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xu

A

B

–K

�
+

+

Figure 10–2
Regulator system.

Equation (10–18) is known as Ackermann’s formula for the determination of the state
feedback gain matrix K.

Regulator Systems and Control Systems. Systems that include controllers can
be divided into two categories: regulator systems (where the reference input is constant,
including zero) and control systems (where the reference input is time varying). In what
follows we shall consider regulator systems. Control systems will be treated in Section
10–7.

Choosing the Locations of Desired Closed-Loop Poles. The first step in the
pole-placement design approach is to choose the locations of the desired closed-loop
poles. The most frequently used approach is to choose such poles based on experience
in the root-locus design, placing a dominant pair of closed-loop poles and choosing other
poles so that they are far to the left of the dominant closed-loop poles.

Note that if we place the dominant closed-loop poles far from the jv axis, so that the
system response becomes very fast, the signals in the system become very large, with
the result that the system may become nonlinear. This should be avoided.

Another approach is based on the quadratic optimal control approach.This approach
will determine the desired closed-loop poles such that it balances between the acceptable
response and the amount of control energy required. (See Section 10–8.) Note that
requiring a high-speed response implies requiring large amounts of control energy.Also,
in general, increasing the speed of response requires a larger, heavier actuator, which will
cost more.

EXAMPLE 10–1 Consider the regulator system shown in Figure 10–2. The plant is given by

where

The system uses the state feedback control u=–Kx. Let us choose the desired closed-loop poles
at

(We make such a choice because we know from experience that such a set of closed-loop poles
will result in a reasonable or acceptable transient response.) Determine the state feedback gain
matrix K.

s = -2 + j4,  s = -2 - j4,  s = -10

A = C 0

0

-1

1

0

-5

0

1

-6

S ,  B = C0

0

1

S
x# = Ax + Bu
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First, we need to check the controllability matrix of the system. Since the controllability matrix
M is given by

we find that |M|=–1, and therefore, rank M=3. Thus, the system is completely state control-
lable and arbitrary pole placement is possible.

Next, we shall solve this problem.We shall demonstrate each of the three methods presented
in this chapter.

Method 1: The first method is to use Equation (10–13).The characteristic equation for the system is

Hence,

The desired characteristic equation is

Hence,

Referring to Equation (10–13), we have

where T=I for this problem because the given state equation is in the controllable canonical form.
Then we have

Method 2: By defining the desired state feedback gain matrix K as

and equating with the desired characteristic equation, we obtain

= s3 + 14s2 + 60s + 200

= s3 + A6 + k3Bs2 + A5 + k2Bs + 1 + k1

= 3 s

0
1 + k1

-1
s

5 + k2

0
-1

s + 6 + k3

3
∑s I - A + BK∑ = 3 C s

0
0

0
s

0

0
0
s

S - C 0
0

-1

1
0

-5

0
1

-6
S + C0

0
1
S Ck1 k2 k3 D 3

∑s I - A + BK∑

K = Ck1 k2 k3 D
 = [199 55 8]

 K = [200 - 1 � 60 - 5 � 14 - 6]

K = Ca3 - a3 � a2 - a2 � a1 - a1 D  T-1

a1 = 14,  a2 = 60,  a3 = 200

 = s3 + a1 s2 + a2 s + a3 = 0

 (s + 2 - j4)(s + 2 + j4)(s + 10) = s3 + 14s2 + 60s + 200

a1 = 6,  a2 = 5,  a3 = 1

= s3 + a1 s2 + a2 s + a3 = 0

= s3 + 6s2 + 5s + 1

∑s I - A∑ = 3 s0
1

-1
s

5

0
-1

s + 6
3

M = CB � AB � A2 B D = C0

0

1

0

1

-6

1

-6

31

S
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Thus,

from which we obtain

or

Method 3: The third method is to use Ackermann’s formula. Referring to Equation (10–18), we
have

Since

and

we obtain

As a matter of course, the feedback gain matrix K obtained by the three methods are the same.
With this state feedback, the closed-loop poles are placed at s=–2 ; j4 and s=–10, as desired.

It is noted that if the order n of the system were 4 or higher, methods 1 and 3 are recom-
mended, since all matrix computations can be carried out by a computer. If method 2 is used,
hand computations become necessary because a computer may not handle the characteristic
equation with unknown parameters k1, k2, p , kn.

 = [199 55 8]

 = [0 0 1]C5

6

1

6

1

0

1

0

0

S C199

-8

-7

55

159

-43

8

7

117

S
 K = [0 0 1]C0

0

1

0

1

-6

1

-6

31

S -1C199

-8

-7

55

159

-43

8

7

117

S
CB � AB � A2 B D = C0

0

1

0

1

-6

1

-6

31

S
 = C199

-8

-7

55

159

-43

8

7

117

S
 + 60C 0

0

-1

1

0

-5

0

1

-6

S + 200C1

0

0

0

1

0

0

0

1

S
 = C 0

0

-1

1

0

-5

0

1

-6

S 3

+ 14C 0

0

-1

1

0

-5

0

1

-6

S 2

 f(A) = A3 + 14 A2 + 60 A + 200 I

K = [0 0 1] CB � AB � A2 B D-1
f(A)

K = [199 55 8]

k1 = 199,  k2 = 55,  k3 = 8

6 + k3 = 14,  5 + k2 = 60,  1 + k1 = 200
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Comments. It is important to note that matrix K is not unique for a given system,
but depends on the desired closed-loop pole locations (which determine the speed and
damping of the response) selected. Note that the selection of the desired closed-loop
poles or the desired characteristic equation is a compromise between the rapidity of the
response of the error vector and the sensitivity to disturbances and measurement nois-
es. That is, if we increase the speed of error response, then the adverse effects of distur-
bances and measurement noises generally increase. If the system is of second order,
then the system dynamics (response characteristics) can be precisely correlated to the
location of the desired closed-loop poles and the zero(s) of the plant. For higher-order
systems, the location of the closed-loop poles and the system dynamics (response char-
acteristics) are not easily correlated. Hence, in determining the state feedback gain ma-
trix K for a given system, it is desirable to examine by computer simulations the response
characteristics of the system for several different matrices K (based on several different
desired characteristic equations) and to choose the one that gives the best overall system
performance.

10–3 SOLVING POLE-PLACEMENT PROBLEMS WITH MATLAB

Pole-placement problems can be solved easily with MATLAB. MATLAB has two
commands—acker and place—for the computation of feedback-gain matrix K. The
command acker is based on Ackermann’s formula.This command applies to single-input
systems only.The desired closed-loop poles can include multiple poles (poles located at
the same place).

If the system involves multiple inputs, for a specified set of closed-loop poles the
state-feedback gain matrix K is not unique and we have an additional freedom (or free-
doms) to choose K. There are many approaches to constructively utilize this additional
freedom (or freedoms) to determine K. One common use is to maximize the stability
margin.The pole placement based on this approach is called the robust pole placement.
The MATLAB command for the robust pole placement is place.

Although the command place can be used for both single-input and multiple-input
systems, this command requires that the multiplicity of poles in the desired closed-loop
poles be no greater than the rank of B. That is, if matrix B is an n*1 matrix, the
command place requires that there be no multiple poles in the set of desired closed-
loop poles.

For single-input systems, the commands acker and place yield the same K. (But for
multiple-input systems, one must use the command place instead of acker.)

It is noted that when the single-input system is barely controllable, some computa-
tional problem may occur if the command acker is used. In such a case the use of the
place command is preferred, provided that no multiple poles are involved in the de-
sired set of closed-loop poles.

To use the command acker or place, we first enter the following matrices in the
program:

A matrix, B matrix, J matrix

where J matrix is the matrix consisting of the desired closed-loop poles such that

J = Cm1 m2 p  mn D
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Then we enter

K = acker(A,B,J)

or

K = place(A,B,J)

It is noted that the command eig (A-B*K) may be used to verify that K thus obtained
gives the desired eigenvalues.

EXAMPLE 10–2 Consider the same system as treated in Example 10–1. The system equation is

where

By using state feedback control it is desired to have the closed-loop poles at s=mi

(i=1, 2, 3), where

Determine the state feedback-gain matrix K with MATLAB.
MATLAB programs that generate matrix K are shown in MATLAB Programs 10–1 and 10–2.

MATLAB Program 10–1 uses command acker and MATLAB Program 10–2 uses command place.

m1 = -2 + j4,  m2 = -2 - j4,  m3 = -10

u = -Kx,

A = C 0

0

-1

1

0

-5

0

1

-6

S ,  B = C0

0

1

S
x# = Ax + Bu

MATLAB Program 10–1

A = [0  1  0;0  0  1;-1  -5  -6];
B = [0;0;1];
J = [-2+j*4  -2-j*4  -10];
K = acker(A,B,J)

K =

199    55    8

MATLAB Program 10–2

A = [0  1  0;0  0  1;-1  -5  -6];
B = [0;0;1];
J = [-2+j*4  -2-j*4  -10];
K = place(A,B,J)

place: ndigits = 15

K =

199.0000    55.0000    8.0000
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EXAMPLE 10–3 Consider the same system as discussed in Example 10–1. It is desired that this regulator system
have closed-loop poles at

The necessary state feedback gain matrix K was obtained in Example 10–1 as follows:

Using MATLAB, obtain the response of the system to the following initial condition:

Response to Initial Condition: To obtain the response to the given initial condition x(0), we
substitute u=–Kx into the plant equation to get

To plot the response curves (x1 versus t, x2 versus t, and x3 versus t), we may use the command
initial. We first define the state-space equations for the system as follows:

where we included u (a three-dimensional input vector). This u vector is considered 0 in the
computation of the response to the initial condition. Then we define

sys = ss(A - BK, eye(3), eye(3), eye(3))

and use the initial command as follows:

x = initial(sys, [1;0;0],t)

where t is the time duration we want to use, such as

t = 0:0.01:4;

Then obtain x1, x2, and x3 as follows:

x1 = [1  0  0]*x';

x2 = [0  1  0]*x';

x3 = [0  0  1]*x';

and use the plot command. This program is shown in MATLAB Program 10–3. The resulting
response curves are shown in Figure 10–3.

y = Ix + Iu

x# = (A - BK) x + Iu

x# = (A - BK) x,  x(0) = C1

0

0

S

x(0) = C1

0

0

S
K = [199 55 8]

s = -2 + j4,  s = -2 - j4,  s = -10
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Response to Initial Condition

st
at

e 
va

ri
ab

le
 x

1

−0.5
0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

st
at

e 
va

ri
ab

le
 x

2

−3

−1

−2

0

1

st
at

e 
va

ri
ab

le
 x

3

−10

0

−5

5

10

t (sec)

Figure 10–3
Response to initial
condition.

MATLAB Program 10–3

% Response to initial condition:

A = [0  1  0;0  0  1;-1  -5  -6];
B = [0;0;1];
K = [199  55  8];
sys = ss(A-B*K, eye(3), eye(3), eye(3));
t = 0:0.01:4;
x = initial(sys,[1;0;0],t);
x1 = [1  0  0]*x';
x2 = [0  1  0]*x';
x3 = [0  0  1]*x';

subplot(3,1,1); plot(t,x1), grid
title('Response to Initial Condition')
ylabel('state variable x1')

subplot(3,1,2); plot(t,x2),grid
ylabel('state variable x2')

subplot(3,1,3); plot(t,x3),grid
xlabel('t (sec)')
ylabel('state variable x3')
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x = Ax + Bu
.

y = Cx

x2

x3

xn

k2

k1

k3

kn

r

…

u

x
y = x1

+
–

+
–

Figure 10–4
Type 1 servo system
when the plant has
an integrator.

10–4 DESIGN OF SERVO SYSTEMS

In this section we shall discuss the pole-placement approach to the design of type 1
servo systems. Here we shall limit our systems each to have a scalar control signal u and
a scalar output y.

In what follows we shall first discuss a problem of designing a type 1 servo system
when the plant involves an integrator.Then we shall discuss the design of a type 1 servo
system when the plant has no integrator.

Design of Type 1 Servo System when the Plant Has An Integrator. Assume
that the plant is defined by

(10–19)

(10–20)

where

As stated earlier, we assume that both the control signal u and the output signal y are
scalars. By a proper choice of a set of state variables, it is possible to choose the output
to be equal to one of the state variables. ASee the method presented in Chapter 2 for
obtaining a state-space representation of the transfer function system in which the output
y becomes equal to x1. B

Figure 10–4 shows a general configuration of the type 1 servo system when the plant
has an integrator. Here we assumed that y=x1. In the present analysis we assume that

 C = 1 * n constant matrix

 B = n * 1 constant matrix

 A = n * n constant matrix

 y = output signal (scalar)

 u = control signal (scalar)

 x = state vector for the plant (n-vector)

 y = Cx

 x# = Ax + Bu
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the reference input r is a step function. In this system we use the following state-feedback
control scheme:

(10–21)

where

Assume that the reference input (step function) is applied at t=0. Then, for t>0, the
system dynamics can be described by Equations (10–19) and (10–21), or

(10–22)

We shall design the type 1 servo system such that the closed-loop poles are located at
desired positions. The designed system will be an asymptotically stable system, y(q)
will approach the constant value r, and u(q) will approach zero. (r is a step input.)

Notice that at steady state we have

(10–23)

Noting that r(t) is a step input, we have r(q)=r(t)=r(constant) for t>0. By
subtracting Equation (10–23) from Equation (10–22), we obtain

(10–24)

Define

Then Equation (10–24) becomes

(10–25)

Equation (10–25) describes the error dynamics.
The design of the type 1 servo system here is converted to the design of an asymp-

totically stable regulator system such that e(t) approaches zero, given any initial condi-
tion e(0). If the system defined by Equation (10–19) is completely state controllable,
then, by specifying the desired eigenvalues m1 ,m2 , p ,mn for the matrix A-BK, matrix
K can be determined by the pole-placement technique presented in Section 10–2.

The steady-state values of x(t) and u(t) can be found as follows: At steady state
(t=q), we have, from Equation (10–22),

x# (q) = 0 = (A - BK) x(q) + Bk1 r

e# = (A - BK) e

x(t) - x(q) = e(t)

x# (t) - x# (q) = (A - BK) Cx(t) - x(q) D
x# (q) = (A - BK) x(q) + Bk1 r(q)

x# = Ax + Bu = (A - BK) x + Bk1 r

K = Ck1 k2
p kn D

= -Kx + k1 r

u = - C0 k2 k3
p kn D F

x1

x2

�

�

�

xn

V + k1Ar - x1B
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Since the desired eigenvalues of A-BK are all in the left-half s plane, the inverse of
matrix A-BK exists. Consequently, x(q) can be determined as

Also, u(q) can be obtained as

(See Example 10–4 to verify this last equation.)

EXAMPLE 10–4 Design a type 1 servo system when the plant transfer function has an integrator.Assume that the
plant transfer function is given by

The desired closed-loop poles are and s=–10. Assume that the system
configuration is the same as that shown in Figure 10–4 and the reference input r is a step function.
Obtain the unit-step response of the designed system.

Define state variables x1, x2, and x3 as follows:

Then the state-space representation of the system becomes

(10–26)

(10–27)
where

Referring to Figure 10–4 and noting that n=3, the control signal u is given by

(10–28)
where

The state-feedback gain matrix K can be obtained easily with MATLAB. See MATLAB 
Program 10–4.

K = Ck1 k2 k3 D
u = - Ak2 x2 + k3 x3B + k1Ar - x1B = -Kx + k1 r

A = C0

0

0

1

0

-2

0

1

-3

S ,  B = C0

0

1

S ,  C = [1 0 0]

 y = Cx

 x# = Ax + Bu

 x3 = x
#
2

 x2 = x
#
1

 x1 = y

s = -2 ; j213

Y(s)

U(s)
=

1

s(s + 1)(s + 2)

u(q) = -Kx(q) + k1 r = 0

x(q) = -(A - BK)-1 Bk1 r

MATLAB Program 10–4

A = [0  1  0;0  0  1;0  -2  -3];
B = [0;0;1];
J = [-2+j*2*sqrt(3)  -2-j*2*sqrt(3)  -10];
K = acker(A,B,J)

K =

160.0000    54.0000    11.0000
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The state feedback gain matrix K is thus

K = [160  54  11]

Unit-Step Response of the Designed System: The unit-step response of the designed system can
be obtained as follows:

Since

from Equation (10–22) the state equation for the designed system is

(10–29)

and the output equation is

(10–30)

Solving Equations (10–29) and (10–30) for y(t) when r is a unit-step function gives the unit-step
response curve y(t) versus t. MATLAB Program 10–5 yields the unit-step response. The result-
ing unit-step response curve is shown in Figure 10–5.

y = [1 0 0]Cx1

x2

x3

S

Cx
#
1

x
#
2

x
#
3

S = C 0
0

-160

1
0

-56

0
1

-14
S Cx1

x2

x3

S + C   0
  0
160
S r

A - BK = C0

0

0

1

0

-2

0

1

-3

S - C0

0

1

S [160 54 11] = C 0

0

-160

1

0

-56

0

1

-14

S

MATLAB Program 10–5

% ---------- Unit-step response ----------

% ***** Enter the state matrix, control matrix, output matrix,
% and direct transmission matrix of the designed system *****

AA = [0  1  0;0  0  1;-160  -56  -14];
BB = [0;0;160];
CC = [1  0  0];
DD = [0];

% ***** Enter step command and plot command *****

t = 0:0.01:5;
y = step(AA,BB,CC,DD,1,t);
plot(t,y)
grid
title('Unit-Step Response')
xlabel('t Sec')
ylabel('Output y')
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Unit-Step Response

O
ut

pu
ty

0

0.6

1.2

0.8

0.4

0.2

1

t Sec
0 3.510.5 2.5 54 4.51.5 2 3

Figure 10–5
Unit-step response
curve y(t) versus t
for the system
designed in 
Example 10–4.

Note that since

we have

At steady state the control signal u becomes zero.

Design of Type 1 Servo System when the Plant Has No Integrator. If the plant
has no integrator (type 0 plant), the basic principle of the design of a type 1 servo sys-
tem is to insert an integrator in the feedforward path between the error comparator
and the plant, as shown in Figure 10–6. (The block diagram of Figure 10–6 is a basic
form of the type 1 servo system where the plant has no integrator.) From the diagram,
we obtain

(10–31)

(10–32)

(10–33)

(10–34)

where  x = state vector of the plant (n-vector)

 j
#

= r - y = r - Cx

 u = -Kx + kI j

 y = Cx

 x# = Ax + Bu

 = -[160 54 11]C r

0

0

S + 160r = 0

 u(q) = -[160 54 11]Cx1(q)

x2(q)

x3(q)

S + 160r

u(q) = -Kx(q) + k1 r(q) = -Kx(q) + k1 r
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We assume that the plant given by Equation (10–31) is completely state controllable.The
transfer function of the plant can be given by

To avoid the possibility of the inserted integrator being canceled by the zero at the origin
of the plant, we assume that Gp(s) has no zero at the origin.

Assume that the reference input (step function) is applied at t=0. Then, for t>0,
the system dynamics can be described by an equation that is a combination of Equations
(10–31) and (10–34):

(10–35)

We shall design an asymptotically stable system such that x(q),j(q), and u(q) approach
constant values, respectively. Then, at steady state, and we get y(q)=r.

Notice that at steady state we have

(10–36)

Noting that r(t) is a step input, we have r(q)=r(t)=r (constant) for t>0. By
subtracting Equation (10–36) from Equation (10–35), we obtain

(10–37)Bx# (t) - x# (q)

j
#
(t) - j

#
(q)
R = B A

-C
0
0
R Bx(t) - x(q)

j(t) - j(q)
R + BB

0
R Cu(t) - u(q) D

Bx# (q)

j
#
(q)
R = B A

-C
0
0
R Bx(q)

j(q)
R + BB

0
Ru(q) + B0

1
R r(q)

j
#
(t) = 0,

Bx# (t)

j
#
(t)
R = B A

-C
0
0
R Bx(t)

j(t)
R + BB

0
Ru(t) + B0

1
R r(t)

Gp(s) = C(s I - A)-1 B

C = 1 * n constant matrix

 B = n * 1 constant matrix

 A = n * n constant matrix

 r = reference input signal (step function, scalar)

 j = output of the integrator (state variable of the system, scalar)

 y = output signal (scalar)

 u = control signal (scalar)

y

K

A

BkI C��
xr j

.
j u

+
–

+
–

+
+

Figure 10–6
Type 1 servo system.
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Define

Then Equation (10–37) can be written as

(10–38)

where

(10–39)

Define a new (n+1)th-order error vector e(t) by

-vector

Then Equation (10–38) becomes

(10–40)

where

and Equation (10–39) becomes

(10–41)

where

The state error equation can be obtained by substituting Equation (10–41) into
Equation (10–40):

(10–42)

If the desired eigenvalues of matrix (that is, the desired closed-loop poles) are
specified as m1 , m2 , p , mn+1, then the state-feedback gain matrix K and the integral
gain constant kI can be determined by the pole-placement technique presented in Section
10–2, provided that the system defined by Equation (10–40) is completely state
controllable. Note that if the matrix

has rank n+1, then the system defined by Equation (10–40) is completely state
controllable. (See Problem A–10–12.)

B A
-C

B
0
R

Â - B̂K̂

e# = AÂ - B̂K̂Be
K̂ = CK � -kI D

ue = -K̂e

Â = B A
-C

0
0
R ,  B̂ = BB

0
R

e# = Âe + B̂ue

e(t) = Bxe(t)

je(t)
R = (n + 1)

ue(t) = -Kxe(t) + kI je(t)

Bx# e(t)

j
#
e(t)
R = B A

-C
0
0
R Bxe(t)

je(t)
R + BB

0
Rue(t)

 u(t) - u(q) = ue(t)

 j(t) - j(q) = je(t)

 x(t) - x(q) = xe(t)
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0
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� sin u
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� cos u

�

u

Figure 10–8
Inverted-pendulum
control system.

As is usually the case, not all state variables can be directly measurable. If this is the
case, we need to use a state observer. Figure 10–7 shows a block diagram of a type 1
servo system with a state observer. [In the figure, each block with an integral symbol
represents an integrator (1/s).] Detailed discussions of state observers are given in
Section 10–5.

EXAMPLE 10–5 Consider the inverted-pendulum control system shown in Figure 10–8. In this example, we are
concerned only with the motion of the pendulum and motion of the cart in the plane of the page.

It is desired to keep the inverted pendulum upright as much as possible and yet control the
position of the cart—for instance, move the cart in a step fashion. To control the position of
the cart, we need to build a type 1 servo system. The inverted-pendulum system mounted on a
cart does not have an integrator.Therefore, we feed the position signal y (which indicates the po-
sition of the cart) back to the input and insert an integrator in the feedforward path, as shown

y

K

A

BkI C��
xr j

.
j u

Observer

+
–

+
–

+
+

Figure 10–7
Type 1 servo system with state observer.
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x = Ax + Bu
.

y = Cx

k1

kI�

k2

k3

k4

r u

x
yj j

.

+
–

+
–

Figure 10–9
Inverted-pendulum
control system. (Type
1 servo system when
the plant has no
integrator.)

in Figure 10–9.We assume that the pendulum angle u and the angular velocity are small, so that
and We also assume that the numerical values for M, m, and l are

given as

Earlier in Example 3–6 we derived the equations for the inverted-pendulum system shown in
Figure 3–6, which is the same as that in Figure 10–8. Referring to Figure 3–6, we started with the
force-balance and torque-balance equations and ended up with Equations (3–20) and (3–21) to
model the inverted-pendulum system. Referring to Equations (3–20) and (3–21), the equations for
the inverted-pendulum control system shown in Figure 10–8 are

(10–43)

(10–44)

When the given numerical values are substituted, Equations (10–43) and (10–44) become

(10–45)

(10–46)

Let us define the state variables x1, x2, x3, and x4 as

Then, referring to Equations (10–45) and (10–46) and Figure 10–9 and considering the cart position
x as the output of the system, we obtain the equations for the system as follows:

(10–47)

(10–48)

(10–49)

(10–50) j
#

= r - y = r - Cx

 u = -Kx + kI j

 y = Cx

 x# = Ax + Bu

 x4 = x
#

 x3 = x

 x2 = u
#

 x1 = u

x
$ = 0.5u - 0.4905u

u
$

= 20.601u - u

 Mx
$ = u - mgu

 Mlu
$

= (M + m)gu - u

M = 2 kg,  m = 0.1 kg,  l = 0.5 m

uu
#
2 � 0.cos u � 1,sin u � u,

u
#



748 Chapter 10 / Control Systems Design in State Space

where

For the type 1 servo system, we have the state error equation as given by Equation (10–40):

(10–51)

where

and the control signal is given by Equation (10–41):

where

To obtain a reasonable speed and damping in the response of the designed system (for
example, the settling time of approximately 4 ~ 5 sec and the maximum overshoot of 15% ~ 16%
in the step response of the cart), let us choose the desired closed-loop poles at s=mi

(i=1, 2, 3, 4, 5), where

We shall determine the necessary state-feedback gain matrix by the use of MATLAB.
Before we proceed further, we must examine the rank of matrix P, where

Matrix P is given by

(10–52)

The rank of this matrix can be found to be 5. Therefore, the system defined by Equation (10–51)
is completely state controllable, and arbitrary pole placement is possible. MATLAB Program
10–6 produces the state feedback gain matrix K̂.

P = B A
-C

B
0
R = E 0

20.601
0

-0.4905
0

1
0
0
0
0

0
0
0
0

-1

0
0
1
0
0

0
-1

0
0.5

0

U

P = B A
-C

B
0
R

m1 = -1 + j13 ,  m2 = -1 - j13 ,  m3 = -5,  m4 = -5,  m5 = -5

K̂ = CK � -kI D = Ck1 k2 k3 k4 � -kI D
ue = -K̂e

Â = B A
-C

0
0
R = E 0

20.601
0

-0.4905
0

1
0
0
0
0

0
0
0
0

-1

0
0
1
0
0

0
0
0
0
0

U ,  B̂ = BB
0
R = E 0

-1
0

0.5
0

U
e# = Âe + B̂ue

A = D 0

20.601

0

-0.4905

1

0

0

0

0

0

0

0

0

0

1

0

T ,  B = D 0

-1

0

0.5

T ,  C = [0 0 1 0]
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MATLAB Program 10–6

A = [0  1  0  0; 20.601  0  0  0;  0  0  0  1; -0.4905  0  0  0];
B = [0;-1;0;0.5];
C = [0  0  1  0];
Ahat = [A zeros(4,1); -C  0];
Bhat = [B;0];
J = [-1+j*sqrt(3)  -1-j*sqrt(3)  -5  -5  -5];
Khat = acker(Ahat,Bhat,J)

Khat =

-157.6336  -35.3733  -56.0652  -36.7466  50.9684

Thus, we get

and

Unit Step-Response Characteristics of the Designed System. Once we determine the feed-
back gain matrix K and the integral gain constant kI, the step response in the cart position can be
obtained by solving the following equation, which is obtained by substituting Equation (10–49)
into Equation (10–35):

(10–53)

The output y(t) of the system is x3(t), or

(10–54)

Define the state matrix, control matrix, output matrix, and direct transmission matrix of the
system given by Equations (10–53) and (10–54) as AA, BB, CC, and DD, respectively. MATLAB
Program 10–7 may be used to obtain the step-response curves of the designed system. Notice
that, to obtain the unit-step response, we entered the command

[y,x,t] = step(AA,BB,CC,DD,1,t)

Figure 10–10 shows curves x1 versus t, x2 versus t, x3 (= output y) versus t, x4 versus t, and x5

(= j) versus t. Notice that y(t) C= x3(t) D has approximately 15% overshoot and the settling time
is approximately 4.5 sec. j(t) C= x5(t) D approaches 1.1.This result can be derived as follows: Since

or

D0

0

0

0

T = D 0

20.601

0

-0.4905

1

0

0

0

0

0

0

0

0

0

1

0

T D 0

0

r

0

T + D 0

-1

0

0.5

Tu(q)

x# (q) = 0 = Ax(q) + Bu(q)

y = [0 0 1 0 0]Bx
j
R + [0]r

Bx#

j
# R = BA - BK

- C
BkI

0
R Bx
j
R + B0

1
R r

kI = -50.9684

K = Ck1 k2 k3 k4 D = [-157.6336 -35.3733 -56.0652 -36.7466]
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MATLAB Program 10–7

%**** The following program is to obtain step response
% of the inverted-pendulum system just designed *****

A = [0  1  0  0;20.601  0  0  0;0  0  0  1;-0.4905  0  0  0];
B = [0;-1;0;0.5];
C = [0  0  1  0]
D = [0];
K = [-157.6336  -35.3733  -56.0652  -36.7466];
KI = -50.9684;
AA = [A - B*K  B*KI;-C  0];
BB = [0;0;0;0;1];
CC = [C  0];
DD = [0];

%***** To obtain response curves x1 versus t, x2 versus t,
% x3 versus t, x4 versus t, and x5 versus t, separately, enter
% the following command *****

t = 0:0.02:6;
[y,x,t] = step(AA,BB,CC,DD,1,t);

x1 = [1  0  0  0  0]*x';
x2 = [0  1  0  0  0]*x';
x3 = [0  0  1  0  0]*x';
x4 = [0  0  0  1  0]*x';
x5 = [0  0  0  0  1]*x';

subplot(3,2,1); plot(t,x1); grid
title('x1 versus t')
xlabel('t Sec'); ylabel('x1')

subplot(3,2,2); plot(t,x2); grid
title('x2 versus t')
xlabel('t Sec'); ylabel('x2')

subplot(3,2,3); plot(t,x3); grid
title('x3 versus t')
xlabel('t Sec'); ylabel('x3')

subplot(3,2,4); plot(t,x4); grid
title('x4 versus t')
xlabel('t Sec'); ylabel('x4')

subplot(3,2,5); plot(t,x5); grid
title('x5 versus t')
xlabel('t Sec'); ylabel('x5')
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we get

Since u(q)=0, we have, from Equation (10–33),

and so

Hence, for r=1, we have

It is noted that, as in any design problem, if the speed and damping are not quite satisfactory,
then we must modify the desired characteristic equation and determine a new matrix Computer
simulations must be repeated until a satisfactory result is obtained.

10–5 STATE OBSERVERS

In the pole-placement approach to the design of control systems, we assumed that all
state variables are available for feedback. In practice, however, not all state variables are
available for feedback. Then we need to estimate unavailable state variables.

K̂.

j(q) = 1.1

j(q) =
1

kI
 CKx(q) D =

1

kI
 k3 x3(q) =

-56.0652

-50.9684
 r = 1.1r

u(q) = 0 = -Kx(q) + kI j(q)

u(q) = 0

0

0.2
x1 versus t

0 642
t Sec

0

2

–1

1

x3 versus t

0 642

0.5

1.5
x5 versus t

0 642
0

1

t Sec

t Sec

x1
x3

x5

0

0.5

–0.5

x2 versus t

0 642
t Sec
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–1

1
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0 642
t Sec
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Figure 10–10
Curves x1 versus t, x2

versus t, x3

(=output y) versus
t, x4 versus t, and
x5 (=j) versus t.
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Estimation of unmeasurable state variables is commonly called observation.A device (or
a computer program) that estimates or observes the state variables is called a state
observer, or simply an observer. If the state observer observes all state variables of the
system, regardless of whether some state variables are available for direct measurement,
it is called a full-order state observer.There are times when this will not be necessary, when
we will need observation of only the unmeasurable state variables, but not of those that
are directly measurable as well. For example, since the output variables are observable
and they are linearly related to the state variables, we need not observe all state variables,
but observe only n-m state variables, where n is the dimension of the state vector and
m is the dimension of the output vector.

An observer that estimates fewer than n state variables, where n is the dimension of
the state vector, is called a reduced-order state observer or, simply, a reduced-order
observer. If the order of the reduced-order state observer is the minimum possible, the
observer is called a minimum-order state observer or minimum-order observer. In this
section, we shall discuss both the full-order state observer and the minimum-order state
observer.

State Observer. A state observer estimates the state variables based on the
measurements of the output and control variables. Here the concept of observability
discussed in Section 9–7 plays an important role. As we shall see later, state observers
can be designed if and only if the observability condition is satisfied.

In the following discussions of state observers, we shall use the notation to
designate the observed state vector. In many practical cases, the observed state vector

is used in the state feedback to generate the desired control vector.
Consider the plant defined by

(10–55)

(10–56)

The observer is a subsystem to reconstruct the state vector of the plant. The mathe-
matical model of the observer is basically the same as that of the plant, except that we
include an additional term that includes the estimation error to compensate for
inaccuracies in matrices A and B and the lack of the initial error. The estimation error
or observation error is the difference between the measured output and the estimated
output.The initial error is the difference between the initial state and the initial estimated
state. Thus, we define the mathematical model of the observer to be

(10–57)

where is the estimated state and is the estimated output.The inputs to the observer
are the output y and the control input u. Matrix Ke, which is called the observer gain
matrix, is a weighting matrix to the correction term involving the difference between 
the measured output y and the estimated output This term continuously corrects
the model output and improves the performance of the observer. Figure 10–11 shows the
block diagram of the system and the full-order state observer.

C x� .

C x�x�

 = AA - Ke  CB x� + Bu + Ke y

 x� = A x� + Bu + Ke(y - C x� )

 y = Cx

 x# = Ax + Bu

x�

x�
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Figure 10–11
Block diagram of
system and full-order
state observer, when
input u and output y
are scalars.

Full-Order State Observer. The order of the state observer that will be discussed
here is the same as that of the plant. Assume that the plant is defined by Equations
(10–55) and (10–56) and the observer model is defined by Equation (10–57).

To obtain the observer error equation, let us subtract Equation (10–57) from
Equation (10–55):

(10–58)

Define the difference between x and as the error vector e, or

Then Equation (10–58) becomes

(10–59)

From Equation (10–59), we see that the dynamic behavior of the error vector is deter-
mined by the eigenvalues of matrix A-Ke C. If matrix A-Ke C is a stable matrix,
the error vector will converge to zero for any initial error vector e(0). That is, will
converge to x(t) regardless of the values of x(0) and If the eigenvalues of matrix
A-Ke C are chosen in such a way that the dynamic behavior of the error vector is
asymptotically stable and is adequately fast, then any error vector will tend to zero (the
origin) with an adequate speed.

If the plant is completely observable, then it can be proved that it is possible to
choose matrix Ke such that A-Ke C has arbitrarily desired eigenvalues. That is, the
observer gain matrix Ke can be determined to yield the desired matrix A-Ke C. We
shall discuss this matter in what follows.

x� (0).
x� (t)

e# = AA - Ke  CBe
e = x - x�

x�

= AA - Ke  CB(x - x� )

x# - x� = Ax - A x� - Ke(Cx - C x� )
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Dual Problem. The problem of designing a full-order observer becomes that of de-
termining the observer gain matrix Ke such that the error dynamics defined by Equation
(10–59) are asymptotically stable with sufficient speed of response. (The asymptotic
stability and the speed of response of the error dynamics are determined by the
eigenvalues of matrix A-Ke C.) Hence, the design of the full-order observer becomes
that of determining an appropriate Ke such that A-Ke C has desired eigenvalues.Thus,
the problem here becomes the same as the pole-placement problem we discussed in
Section 10–2. In fact, the two problems are mathematically the same. This property is
called duality.

Consider the system defined by

In designing the full-order state observer, we may solve the dual problem, that is, solve
the pole-placement problem for the dual system

assuming the control signal v to be

If the dual system is completely state controllable, then the state feedback gain matrix
K can be determined such that matrix A*-C*K will yield a set of the desired
eigenvalues.

If m1 , m2 , p , mn are the desired eigenvalues of the state observer matrix, then by
taking the same mi’s as the desired eigenvalues of the state-feedback gain matrix of the
dual system, we obtain

Noting that the eigenvalues of A*-C*K and those of A-K*C are the same, we have

Comparing the characteristic polynomial and the characteristic poly-
nomial for the observer system [refer to Equation (10–57)], we find
that Ke and K* are related by

Thus, using the matrix K determined by the pole-placement approach in the dual system,
the observer gain matrix Ke for the original system can be determined by using the
relationship Ke=K*. (See Problem A–10–10 for the details.)

Necessary and Sufficient Condition for State Observation. As discussed, a
necessary and sufficient condition for the determination of the observer gain matrix Ke

for the desired eigenvalues of A-Ke C is that the dual of the original system

z# = A* z + C*v

Ke = K*

@s I - AA - Ke  CB @ @s I - (A - K* C) @@s I - (A* - C* K) @ = @s I - (A - K* C) @
@s I - (A* - C* K) @ = As - m1B As - m2B p As - mnB

v = -Kz

n = B* z

z# = A* z + C*v

 y = Cx

 x# = Ax + Bu



Section 10–5 / State Observers 755

be completely state controllable. The complete state controllability condition for this
dual system is that the rank of

be n. This is the condition for complete observability of the original system defined by
Equations (10–55) and (10–56).This means that a necessary and sufficient condition for
the observation of the state of the system defined by Equations (10–55) and (10–56) is
that the system be completely observable.

Once we select the desired eigenvalues (or desired characteristic equation), the full-
order state observer can be designed, provided the plant is completely observable. The
desired eigenvalues of the characteristic equation should be chosen so that the state
observer responds at least two to five times faster than the closed-loop system
considered. As stated earlier, the equation for the full-order state observer is

(10–60)

It is noted that thus far we have assumed the matrices A, B, and C in the observer
to be exactly the same as those of the physical plant. If there are discrepancies in A, B,
and C in the observer and in the physical plant, the dynamics of the observer error are
no longer governed by Equation (10–59). This means that the error may not approach
zero as expected.Therefore, we need to choose Ke so that the observer is stable and the
error remains acceptably small in the presence of small modeling errors.

Transformation Approach to Obtain State Observer Gain Matrix Ke . By
following the same approach as we used in deriving the equation for the state feedback
gain matrix K, we can obtain the following equation:

(10–61)

where Ke is an n*1 matrix,

and

[Refer to Problem A–10–10 for the derivation of Equation (10–61).]

 W = G
an - 1
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p
p

p
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a1
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�

�

�

0

0
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0

�

�
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W
 N = CC* � A* C* � p � (A*)n - 1C* D

Q = (WN*)-1

Ke = QF
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an - 1 - an - 1

�

�

�

a1 - a1

V = (WN*)-1F
an - an

an - 1 - an - 1

�

�

�

a1 - a1

V

x� = AA - Ke  CB x� + Bu + Ke y

CC* � A* C* � p � (A*)n - 1 C* D



756 Chapter 10 / Control Systems Design in State Space

Direct-Substitution Approach to Obtain State Observer Gain Matrix Ke .
Similar to the case of pole placement, if the system is of low order, then direct substitution
of matrix Ke into the desired characteristic polynomial may be simpler. For example, if
x is a 3-vector, then write the observer gain matrix Ke as

Substitute this Ke matrix into the desired characteristic polynomial:

By equating the coefficients of the like powers of s on both sides of this last equation,
we can determine the values of ke1, ke2, and ke3. This approach is convenient if n=1,
2, or 3, where n is the dimension of the state vector x. (Although this approach can be
used when n=4, 5, 6, p , the computations involved may become very tedious.)

Another approach to the determination of the state observer gain matrix Ke is to
use Ackermann’s formula. This approach is presented in the following.

Ackermann’s Formula. Consider the system defined by

(10–62)

(10–63)

In Section 10–2 we derived Ackermann’s formula for pole placement for the system
defined by Equation (10–62).The result was given by Equation (10–18), rewritten thus:

For the dual of the system defined by Equations (10–62) and (10–63),

the preceding Ackermann’s formula for pole placement is modified to

(10–64)

As stated earlier, the state observer gain matrix Ke is given by K*, where K is given by
Equation (10–64). Thus,

(10–65)Ke = K* = f(A*)*G
C

CA
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�

�

CAn - 2

CAn - 1

W
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G
0
0
�

�

�
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W = f(A)G
C

CA
�

�

�

CAn - 2

CAn - 1

W
-1

G
0
0
�

�

�

0
1

W

K = [0 0 p  0 1] CC* � A* C* � p � (A*)n - 1 C* D-1
f(A*)

n = B* z

z# = A* z + C*v

K = [0 0 p  0 1] CB � AB � p � An - 1 B D-1
f(A)

 y = Cx

 x# = Ax + Bu

@s I - AA - Ke  CB @ = As - m1B As - m2B As - m3B
Ke = Cke1

ke2

ke3

S
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where f(s) is the desired characteristic polynomial for the state observer, or

where m1,m2, p ,mn are the desired eigenvalues. Equation (10–65) is called Ackermann’s
formula for the determination of the observer gain matrix Ke .

Comments on Selecting the Best Ke . Referring to Figure 10–11, notice that the
feedback signal through the observer gain matrix Ke serves as a correction signal to
the plant model to account for the unknowns in the plant. If significant unknowns are
involved, the feedback signal through the matrix Ke should be relatively large. Howev-
er, if the output signal is contaminated significantly by disturbances and measurement
noises, then the output y is not reliable and the feedback signal through the matrix Ke

should be relatively small. In determining the matrix Ke , we should carefully examine
the effects of disturbances and noises involved in the output y.

Remember that the observer gain matrix Ke depends on the desired characteristic
equation

The choice of a set of is, in many instances, not unique. As a general rule,
however, the observer poles must be two to five times faster than the controller poles
to make sure the observation error (estimation error) converges to zero quickly. This
means that the observer estimation error decays two to five times faster than does the
state vector x. Such faster decay of the observer error compared with the desired
dynamics makes the controller poles dominate the system response.

It is important to note that if sensor noise is considerable, we may choose the observer
poles to be slower than two times the controller poles, so that the bandwidth of the sys-
tem will become lower and smooth the noise. In this case the system response will be
strongly influenced by the observer poles. If the observer poles are located to the right
of the controller poles in the left-half s plane, the system response will be dominated by
the observer poles rather than by the control poles.

In the design of the state observer, it is desirable to determine several observer gain
matrices Ke based on several different desired characteristic equations. For each of the
several different matrices Ke , simulation tests must be run to evaluate the resulting
system performance. Then we select the best Ke from the viewpoint of overall system
performance. In many practical cases, the selection of the best matrix Ke boils down to
a compromise between speedy response and sensitivity to disturbances and noises.

EXAMPLE 10–6 Consider the system

where

We use the observed state feedback such that

u = -K x�

A = B0

1

20.6

0
R ,  B = B0

1
R ,  C = [0 1]

 y = Cx

 x# = Ax + Bu

m1 , m2 , p , mn

As - m1B As - m2B p As - mnB = 0

f(s) = As - m1B As - m2B p As - mnB
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Design a full-order state observer, assuming that the system configuration is identical to that
shown in Figure 10–11. Assume that the desired eigenvalues of the observer matrix are

The design of the state observer reduces to the determination of an appropriate observer gain
matrix Ke .

Let us examine the observability matrix. The rank of

is 2. Hence, the system is completely observable and the determination of the desired observer gain
matrix is possible. We shall solve this problem by three methods.

Method 1: We shall determine the observer gain matrix by use of Equation (10–61). The given
system is already in the observable canonical form. Hence, the transformation matrix
Q=(WN*)–1 is I. Since the characteristic equation of the given system is

we have

The desired characteristic equation is

Hence,

Then the observer gain matrix Ke can be obtained from Equation (10–61) as follows:

Method 2: Referring to Equation (10–59):

the characteristic equation for the observer becomes

Define

Then the characteristic equation becomes

(10–66)= s2 + ke2 s - 20.6 + ke1 = 0

2 B s

0

0

s
R - B 0

1

20.6

0
R + Bke1

ke2
R [0 1] 2 = 2 s

-1

-20.6 + ke1

s + ke2

2
Ke = Bke1

ke2
R

@s I - A + Ke  C @ = 0

e# = AA - Ke  CBe
Ke = (WN*)-1Ba2 - a2

a1 - a1
R = B1

0
0
1
R B100 + 20.6

20 - 0
R = B120.6

20
R

a1 = 20,  a2 = 100

(s + 10)2 = s2 + 20s + 100 = s2 + a1 s + a2 = 0

a1 = 0,  a2 = -20.6

∑s I - A∑ = 2 s
-1

-20.6

s
2 = s2 - 20.6 = s2 + a1 s + a2 = 0

[C* � A* C*] = B0
1

1
0
R

m1 = -10,  m2 = -10
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Since the desired characteristic equation is

by comparing Equation (10–66) with this last equation, we obtain

or

Method 3: We shall use Ackermann’s formula given by Equation (10–65):

where

Thus,

and

As a matter of course, we get the same Ke regardless of the method employed.
The equation for the full-order state observer is given by Equation (10–57),

or

Finally, it is noted that, similar to the case of pole placement, if the system order n is 4 or
higher, methods 1 and 3 are preferred, because all matrix computations can be carried out by a
computer, while method 2 always requires hand computation of the characteristic equation
involving unknown parameters ke1, ke2, p , ken.

Effects of the Addition of the Observer on a Closed-Loop System. In the
pole-placement design process, we assumed that the actual state x(t) was available for
feedback. In practice, however, the actual state x(t) may not be measurable, so we will
need to design an observer and use the observed state for feedback as shown in Fig-
ure 10–12. The design process, therefore, becomes a two-stage process, the first stage
being the determination of the feedback gain matrix K to yield the desired characteristic
equation and the second stage being the determination of the observer gain matrix Ke

to yield the desired observer characteristic equation.
Let us now investigate the effects of the use of the observed state rather than

the actual state x(t), on the characteristic equation of a closed-loop control system.
x� (t),

x� (t)

B x�1

x�2
R = B0

1

-100

-20
R B x�1

x�2
R + B0

1
Ru + B120.6

20
Ry

x� = AA - Ke  CB x� + Bu + Ke y

 = B120.6

20
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120.6
R B0

1

1

0
R B 0

1
R = B120.6
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R

 Ke = AA2 + 20A + 100IB B0

1

1

0
R -1B0

1
R

f(A) = A2 + 20A + 100I

f(s) = As - m1B As - m2B = s2 + 20s + 100

Ke = f(A)B C
CA
R -1B0

1
R

Ke = B120.6

20
R

ke1 = 120.6,  ke2 = 20

s2 + 20s + 100 = 0



760 Chapter 10 / Control Systems Design in State Space

Consider the completely state controllable and completely observable system defined
by the equations

For the state-feedback control based on the observed state 

With this control, the state equation becomes

(10–67)

The difference between the actual state x(t) and the observed state has been
defined as the error e(t):

Substitution of the error vector e(t) into Equation (10–67) gives

(10–68)

Note that the observer error equation was given by Equation (10–59), repeated here:

(10–69)

Combining Equations (10–68) and (10–69), we obtain

(10–70)Bx#

e#
R = BA - BK

0
BK

A - Ke  C
R Bx

e
R

e# = AA - Ke  CBe
x# = (A - BK) x + BKe

e(t) = x(t) - x� (t)

x� (t)

x# = Ax - BK x� = (A - BK) x + BK(x - x� )

u = -K x�

x� ,

 y = Cx

 x# = Ax + Bu

u y

y~
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B C
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Figure 10–12
Observed-state
feedback control
system.
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Equation (10–70) describes the dynamics of the observed-state feedback control system.
The characteristic equation for the system is

or

Notice that the closed-loop poles of the observed-state feedback control system consist
of the poles due to the pole-placement design alone and the poles due to the observer
design alone. This means that the pole-placement design and the observer design are
independent of each other. They can be designed separately and combined to form the
observed-state feedback control system. Note that, if the order of the plant is n, then the
observer is also of nth order (if the full-order state observer is used), and the resulting
characteristic equation for the entire closed-loop system becomes of order 2n.

Transfer Function of the Observer-Based Controller. Consider the plant defined by

Assume that the plant is completely observable. Assume that we use observed-state
feedback control Then, the equations for the observer are given by

(10–71)

(10–72)

where Equation (10–71) is obtained by substituting into Equation (10–57).
By taking the Laplace transform of Equation (10–71), assuming a zero initial

condition, and solving for we obtain

By substituting this into the Laplace transform of Equation (10–72), we obtain

(10–73)

Then the transfer function U(s)/Y(s) can be obtained as

Figure 10–13 shows the block diagram representation for the system. Notice that the
transfer function

acts as a controller for the system. Hence, we call the transfer function

(10–74)
U(s)

-Y(s)
=

num
den

= KAs I - A + Ke C + BKB-1 Ke

KAs I - A + Ke  C + BKB-1 Ke

U(s)

Y(s)
= -KAs I - A + Ke C + BKB-1 Ke

U(s) = -KAs I - A + Ke C + BKB-1Ke Y(s)

X
�

(s)

X
�

(s) = As I - A + Ke C + BKB-1 Ke Y(s)

X
�

(s),

u = -K x�
 u = -K x�

 x� = AA - Ke C - BKB x� + Ke y

u = -K x� .

 y = Cx

 x# = Ax + Bu

@s I - A + BK @ @s I - A + Ke  C @ = 0

2 s I - A + BK
0

-BK
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the observer-based controller transfer function or, simply, the observer-controller transfer
function.

Note that the observer-controller matrix

may or may not be stable, although A-BK and A-Ke C are chosen to be stable. In
fact, in some cases the matrix A-Ke C-BK may be poorly stable or even unstable.

EXAMPLE 10–7 Consider the design of a regulator system for the following plant:

(10–75)

(10–76)

where

Suppose that we use the pole-placement approach to the design of the system and that the
desired closed-loop poles for this system are at s=mi (i=1, 2), where m1=–1.8+j2.4 and
m2=–1.8-j2.4. The state-feedback gain matrix K for this case can be obtained as follows:

Using this state-feedback gain matrix K, the control signal u is given by

Suppose that we use the observed-state feedback control instead of the actual-state feedback
control, or

where we choose the observer poles to be at

s=–8, s=–8

Obtain the observer gain matrix Ke and draw a block diagram for the observed-state feedback
control system. Then obtain the transfer function for the observer controller, and
draw another block diagram with the observer controller as a series controller in the feedforward
path. Finally, obtain the response of the system to the following initial condition:

x(0) = B1

0
R ,  e(0) = x(0) - x� (0) = B0.5

0
R

U(s)�[-Y(s)]

u = -K x� = -[29.6 3.6]B x�1

x�2
R

u = -Kx = -[29.6 3.6]Bx1

x2
R

K = [29.6 3.6]

A = B 0

20.6

1

0
R ,  B = B0

1
R ,  C = [1 0]

 y = Cx

 x# = Ax + Bu

A - Ke  C - BK

R(s) = 0 Y(s)U(s)
Plant

–Y(s)
K(sI – A + KeC + BK)–1Ke+

–
Figure 10–13
Block diagram
representation of
system with a
controller-observer.
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For the system defined by Equation (10–75), the characteristic polynomial is

Thus,

The desired characteristic polynomial for the observer is

Hence,

For the determination of the observer gain matrix, we use Equation (10–61), or

where

Hence,

(10–77)

Equation (10–77) gives the observer gain matrix Ke . The observer equation is given by Equation
(10–60):

(10–78)

Since

Equation (10–78) becomes

or

The block diagram of the system with observed-state feedback is shown in Figure 10–14(a).
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Referring to Equation (10–74), the transfer function of the observer-controller is

As a matter of course, the same transfer function can be obtained with MATLAB. For example,
MATLAB Program 10–8 produces the transfer function of the observer controller. Figure 10–14(b)
shows a block diagram of the system.

=
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(a)

778.2s + 3690.7
s2 + 19.6s + 151.2Figure 10–14

(a) Block diagram of
system with
observed-state
feedback; (b) block
diagram of transfer-
function system.
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MATLAB Program 10–8

% Obtaining transfer function of observer controller --- full-order observer

A = [0  1;20.6  0];
B = [0;1];
C = [1  0];
K = [29.6  3.6];
Ke = [16;84.6];
AA = A-Ke*C-B*K;
BB = Ke;
CC = K;
DD = 0;
[num,den] = ss2tf(AA,BB,CC,DD)

num =

1.0e+003*

0   0.7782   3.6907

den =

1.0000  19.6000  151.2000

The dynamics of the observed-state feedback control system just designed can be described
by the following equations: For the plant,

For the observer,

The system, as a whole, is of fourth order. The characteristic equation for the system is

The characteristic equation can also be obtained from the block diagram for the system shown in
Figure 10–14(b). Since the closed-loop transfer function is

Y(s)

R(s)
=

778.2s + 3690.7As2 + 19.6s + 151.2B As2 - 20.6B + 778.2s + 3690.7

= s4 + 19.6s3 + 130.6s2 + 374.4s + 576 = 0
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MATLAB Program 10–9

A = [0  1; 20.6  0];
B = [0;1];
C = [1  0];
K = [29.6  3.6];
Ke = [16; 84.6];
sys = ss([A-B*K  B*K; zeros(2,2)  A-Ke*C],eye(4),eye(4),eye(4));
t = 0:0.01:4;
z = initial(sys,[1;0;0.5;0],t);
x1 = [1  0  0  0]*z';
x2 = [0  1  0  0]*z';
e1 = [0  0  1  0]*z';
e2 = [0  0  0  1]*z';

subplot(2,2,1); plot(t,x1 ),grid
title('Response to Initial Condition')
ylabel('state variable x1')

subplot(2,2,2); plot(t,x2),grid
title('Response to Initial Condition')
ylabel('state variable x2')

subplot(2,2,3); plot(t,e1),grid
xlabel('t (sec)'), ylabel('error state variable e1')

subplot(2,2,4); plot(t,e2),grid
xlabel('t (sec)'), ylabel('error state variable e2')

the characteristic equation is

As a matter of course, the characteristic equation is the same for the system in state-space
representation and in transfer-function representation.

Finally, we shall obtain the response of the system to the following initial condition:

Referring to Equation (10–70), the response to the initial condition can be determined from

A MATLAB Program to obtain the response is shown in MATLAB Program 10–9.The resulting
response curves are shown in Figure 10–15.

Bx#
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R Bx

e
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0

T
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0
R ,  e(0) = B0.5

0
R

= s4 + 19.6s3 + 130.6s2 + 374.4s + 576 = 0

As2 + 19.6s + 151.2B As2 - 20.6B + 778.2s + 3690.7
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Figure 10–16
Observed-state
feedback control
system with a
minimum-order
observer.

Minimum-Order Observer. The observers discussed thus far are designed to
reconstruct all the state variables. In practice, some of the state variables may be accu-
rately measured. Such accurately measurable state variables need not be estimated.

Suppose that the state vector x is an n-vector and the output vector y is an m-vector
that can be measured. Since m output variables are linear combinations of the state
variables, m state variables need not be estimated. We need to estimate only n-m
state variables. Then the reduced-order observer becomes an (n-m)th-order observ-
er. Such an (n-m)th-order observer is the minimum-order observer. Figure 10–16
shows the block diagram of a system with a minimum-order observer.
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It is important to note, however, that if the measurement of output variables involves
significant noises and is relatively inaccurate, then the use of the full-order observer
may result in a better system performance.

To present the basic idea of the minimum-order observer, without undue mathe-
matical complications, we shall present the case where the output is a scalar (that is,
m=1) and derive the state equation for the minimum-order observer. Consider the
system

(10–79)

(10–80)

where the state vector x can be partitioned into two parts xa (a scalar) and xb Can
(n-1)-vector D . Here the state variable xa is equal to the output y and thus can be
directly measured, and xb is the unmeasurable portion of the state vector. Then the
partitioned state and output equations become

(10–81)

(10–82)

where

From Equation (10–81), the equation for the measured portion of the state becomes

or

(10–83)

The terms on the left-hand side of Equation (10–83) can be measured. Equation (10–83)
acts as the output equation. In designing the minimum-order observer, we consider the
left-hand side of Equation (10–83) to be known quantities.Thus, Equation (10–83) relates
the measurable quantities and unmeasurable quantities of the state.

From Equation (10–81), the equation for the unmeasured portion of the state
becomes

(10–84)

Noting that terms Abaxa and Bbu are known quantities, Equation (10–84) describes the
dynamics of the unmeasured portion of the state.

x# b = Aba xa + Abb  xb + Bb u

x
#
a - Aaa xa - Ba u = Aab  xb

x
#
a = Aaa xa + Aab  xb + Ba u

 Bb = (n - 1) * 1 matrix

 Ba = scalar

 Abb = (n - 1) * (n - 1) matrix

 Aba = (n - 1) * 1 matrix

 Aab = 1 * (n - 1) matrix

 Aaa = scalar

 y = [1 � 0] cxa

xb
d

 cx# a

x# b
d = cAaa

Aba
 Aab

Abb
d cxa

xb
d + cBa

Bb
du

 y = Cx

 x# = Ax + Bu
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Full-Order State Observer Minimum-Order State Observer

A Abb

Bu

y

C Aab

Ke    (n*1 matrix) Ke    [(n-1)*1 matrix]

x
#
a - Aaa xa - Ba u

Aba xa + Bb u

x� bx�

Table 10–1 List of Necessary Substitutions for Writing
the Observer Equation for the Minimum-Order
State Observer

In what follows we shall present a method for designing a minimum-order observer.
The design procedure can be simplified if we utilize the design technique developed for
the full-order state observer.

Let us compare the state equation for the full-order observer with that for the
minimum-order observer. The state equation for the full-order observer is

and the “state equation” for the minimum-order observer is

The output equation for the full-order observer is

and the “output equation” for the minimum-order observer is

The design of the minimum-order observer can be carried out as follows: First, note that
the observer equation for the full-order observer was given by Equation (10–57), which
we repeat here:

(10–85)

Then, making the substitutions of Table 10–1 into Equation (10–85), we obtain

(10–86)

where the state observer gain matrix Ke is an (n-1)*1 matrix. In Equation (10–86),
notice that in order to estimate , we need the derivative of xa. This presents a difficulty,
because differentiation amplifies noise. If xa (= y) is noisy, the use of is unacceptable.x

#
a

x� b

x� b = AAbb - Ke  AabB x� b + Aba xa + Bb u + KeAx# a - Aaa xa - Ba uB
x� = AA - Ke  CB x� + Bu + Ke y

x
#
a - Aaa xa - Ba u = Aab  xb

y = Cx

x# b = Abb  xb + Aba xa + Bb u

x# = Ax + Bu
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To avoid this difficulty, we eliminate in the following way. First rewrite Equation
(10–86) as

(10–87)

Define

and
(10–88)

Then Equation (10–87) becomes

(10–89)

Define

Then Equation (10–89) becomes

(10–90)

Equation (10–90) and Equation (10–88) together define the minimum-order observer.
Since

where 0 is a row vector consisting of (n-1) zeros, if we define

then we can write in terms of and y as follows:

(10–91)

This equation gives the transformation from 
Figure 10–17 shows the block diagram of the observed-state feedback control system

with the minimum-order observer, based on Equations (10–79), (10–80), (10–90), (10–91)
and

Next we shall derive the observer error equation. Using Equation (10–83), Equation
(10–86) can be modified to

(10–92)x� b = AAbb - Ke  AabB x� b + Aba xa + Bb u + Ke  Aab  xb

u = -K x� .

H� to x� .

x� = ĈH� + D̂y

H�x�

Ĉ = c 0
In - 1
d ,  D̂ = c 1

Ke
d

x� = c xa

x� b
d = c y

x� b
d = c 0

In - 1
d C x� b - Ke y D + c 1

Ke
dy

y = C1 � 0 D cxa

xb
d
H� = ÂH� + B̂y + F̂u

 F̂ = Bb - Ke  Ba

 B̂ = ÂKe + Aba - Ke Aaa

 Â = Abb - Ke  Aab

 + Aba - Ke Aaa Dy + ABb - Ke BaBu H� = AAbb - Ke  AabBH� + C AAbb - Ke  AabBKe

x� b - Ke y = x� b - Ke xa = H�

xb - Ke y = xb - Ke xa = H

 + ABb - Ke BaBu + C AAbb - Ke  AabBKe + Aba - Ke Aaa Dy = AAbb - Ke  AabB A x� b - Ke yB x� b - Ke x# a = AAbb - Ke  AabB x� b + AAba - Ke AaaBy + ABb - Ke BaBu
x
#
a
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u yx

x

�

�

CB

–K

Minimum-order observer

Transformation

~

~

h ~h
.

+
+

+
+

+

+
+

D

C

F

A

B

x
.

^

^

^

^

A

^

By subtracting Equation (10–92) from Equation (10–84), we obtain

(10–93)

Define

Then Equation (10–93) becomes

(10–94)

This is the error equation for the minimum-order observer. Note that e is an (n-1)-
vector.

The error dynamics can be chosen as desired by following the technique developed
for the full-order observer, provided that the rank of matrix

is n-1. (This is the complete observability condition applicable to the minimum-order
observer.)

F
Aab

Aab  Abb

�

�

�

Aab  An - 2
bb

V

e# = AAbb - Ke  AabBe
e = xb - x� b = H - H�

x# b - x� b = AAbb - Ke  AabB Axb - x� bB

Figure 10–17
System with
observed-state
feedback, where the
observer is the
minimum-order
observer.
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The characteristic equation for the minimum-order observer is obtained from
Equation (10–94) as follows:

(10–95)

where are desired eigenvalues for the minimum-order observer. The
observer gain matrix Ke can be determined by first choosing the desired eigenvalues for
the minimum-order observer [that is, by placing the roots of the characteristic equation,
Equation (10–95), at the desired locations] and then using the procedure developed for
the full-order observer with appropriate modifications. For example, if the formula for
determining matrix Ke given by Equation (10–61) is to be used, it should be modified to

(10–96)

where Ke is an matrix and

Note that are coefficients in the characteristic equation for the state
equation

Also, if Ackermann’s formula given by Equation (10–65) is to be used, then it should be
modified to

(10–97)Ke = fAAbbB G
Aab

Aab  Abb

�

�

�

Aab  An - 3
bb

Aab  An - 2
bb

W
-1

G
0

0

�

�

�

0

1

W

@s I - Abb @ = sn - 1 + â1 sn - 2 + p + ân - 2 s + ân - 1 = 0

â1 , â2 , p , ân - 2

Ŵ = G
ân - 2

ân - 3

�

�

�

â1

1

ân - 3

ân - 4

�

�

�

1
0

p
p

p
p

â1

1
�

�

�

0
0

1
0
�

�

�

0
0

W = (n - 1) * (n - 1) matrix

N̂ = CAab* � Abb* Aab* � p � AAbb*Bn - 2 Aab* D = (n - 1) * (n - 1) matrix

(n - 1) * 1

Ke = Q̂F
ân - 1 - ân - 1

ân - 2 - ân - 2

�

�

�

â1 - â1

V = AŴN̂*B-1F
ân - 1 - ân - 1

ân - 2 - ân - 2

�

�

�

â1 - â1

V

m1 , m2 , p , mn - 1

 = sn - 1 + â1 sn - 2 + p + ân - 2 s + ân - 1 = 0

 @s I - Abb + Ke  Aab @ = As - m1B As - m2B p As - mn - 1B
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where

Observed-State Feedback Control System with Minimum-Order Observer.
For the case of the observed-state feedback control system with full-order state observer,
we have shown that the closed-loop poles of the observed-state feedback control system
consist of the poles due to the pole-placement design alone, plus the poles due to the
observer design alone. Hence, the pole-placement design and the full-order observer
design are independent of each other.

For the observed-state feedback control system with minimum-order observer, the
same conclusion applies. The system characteristic equation can be derived as

(10–98)

(See Problem A–10–11 for the details.) The closed-loop poles of the observed-state feed-
back control system with a minimum-order observer comprise the closed-loop poles
due to pole placement Cthe eigenvalues of matrix (A-BK) D and the closed-loop poles
due to the minimum-order observer Cthe eigenvalues of matrix (Abb-Ke Aab) D .There-
fore, the pole-placement design and the design of the minimum-order observer are
independent of each other.

Determining Observer Gain Matrix Ke with MATLAB. Because of the duality
of pole-placement and observer design, the same algorithm can be applied to both the
pole-placement problem and the observer-design problem. Thus, the commands acker
and place can be used to determine the observer gain matrix Ke .

The closed-loop poles of the observer are the eigenvalues of matrix A-Ke C. The
closed-loop poles of the pole-placement are the eigenvalues of matrix A-BK.

Referring to the duality problem between the pole-placement problem and observer-
design problem, we can determine Ke by considering the pole-placement problem for the
dual system. That is, we determine Ke by placing the eigenvalues of A*-C*Ke at the
desired place. Since Ke=K*, for the full-order observer we use the command

Ke = acker(A',C',L)'

where L is the vector of the desired eigenvalues for the observer. Similarly, for the full-
order observer, we may use

Ke = place(A',C',L)'

provided L does not include multiple poles. [In the above commands, prime (') indicates
the transpose.] For the minimum-order (or reduced-order) observers, use the following
commands:

Ke = acker(Abb',Aab',L)'

or

Ke = place(Abb',Aab',L)'

@s I - A + BK @ @s I - Abb + Ke  Aab @ = 0

fAAbbB = An - 1
bb + â1  An - 2

bb + p + ân - 2  Abb + ân - 1  I
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EXAMPLE 10–8 Consider the system

where

Let us assume that we want to place the closed-loop poles at

Then the necessary state-feedback gain matrix K can be obtained as follows:

K=[90 29 4]

(See MATLAB Program 10–10 for a MATLAB computation of this matrix K.)
Next, let us assume that the output y can be measured accurately so that state variable x1

(which is equal to y) need not be estimated. Let us design a minimum-order observer. (The
minimum-order observer is of second order.) Assume that we choose the desired observer poles
to be at

s=–10, s=–10

Referring to Equation (10–95), the characteristic equation for the minimum-order observer is

In what follows, we shall use Ackermann’s formula given by Equation (10–97).

(10–99)

where

Since

we have

Abb = B 0

-11

1

-6
R ,  Ba = 0,  Bb = B0

1
R

Aaa = 0,  Aab = [1 0],  Aba = B 0

-6
R

x� = c xa

x�b
d = D x1

x�2

x�3

T  ,  A = D 0

0
-6

1

0
-11

0

1
-6

T ,  B = D0

0
1

T
fAAbbB = A2

bb + â1  Abb + â2  I = A2
bb + 20Abb + 100I

Ke = fAAbbB C Aab

Aab  Abb

S - 1B0
1
R

 = s2 + 20s + 100 = 0

 = (s + 10)(s + 10)

 @s I - Abb + Ke  Aab @ = As - m1B As - m2B

s1 = -2 + j213 ,  s2 = -2 - j213 ,  s3 = -6

A = C 0

0

-6

1

0

-11

0

1

-6

S ,  B = C0

0

1

S ,  C = [1 0 0]

 y = Cx

 x# = Ax + Bu
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MATLAB Program 10–10

A = [0  1  0;0  0  1;-6  -11  -6];
B = [0;0;1];
J = [-2+j*2*sqrt(3)  -2-j*2*sqrt(3)  -6];
K = acker(A,B,J)

K =

90.0000    29.0000    4.0000

Abb = [0  1;-11  -6];
Aab = [1  0];
L = [-10  -10];
Ke = acker(Abb',Aab',L)'

Ke =

14
5

Equation (10–99) now becomes

(A MATLAB computation of this Ke is given in MATLAB Program 10–10.)

 = B 89

-154

14

5
R B0

1
R = B14

5
R

 Ke = b B 0

-11

1

-6
R 2

+ 20B 0

-11

1

-6
R + 100B1

0

0

1
R r B1

0

0

1
R -1B0

1
R

Referring to Equations (10–88) and (10–89), the equation for the minimum-order observer can
be given by

(10–100)

where

Noting that

the equation for the minimum-order observer, Equation (10–100), becomes

or B h�2

h�3
R = B-14

-16
1

-6
R B h�2

h�3
R + B-191

-260
Ry + B0

1
Ru

+ B 0
-6
R - B14

5
R0 ry + b B0

1
R - B14

5
R0 ru

B h�2

h�3
R = B-14

-16
1

-6
R B h�2

h�3
R + b B-14

-16
1

-6
R B14

5
R

Abb - Ke  Aab = B 0

-11

1

-6
R - B14

5
R [1 0] = B-14

-16

1

-6
R

H� = x� b - Ke y = x� b - Ke x1

H� = AAbb - Ke  AabBH� + C AAbb - Ke  AabBKe + Aba - Ke Aaa Dy + ABb - Ke BaBu
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where

or

If the observed-state feedback is used, then the control signal u becomes

where K is the state feedback gain matrix. Figure 10–18 is a block diagram showing the configu-
ration of the system with observed-state feedback, where the observer is the minimum-order
observer.

u = -K x� = -KC x1

x�2

x�3

S
B x�2

x�3
R = B h�2

h�3
R + Ke x1

B h�2

h�3
R = B x�2

x�3
R - Ke y

u yx

x

�

�

Plant

C

A

B

Minimum-order observer

Transformation

0
1

0
h~ ~

~

0
1
0

0
0
1

x1

Kex1

1

Ke

1
14
5

0
–6

14
5

–14
–16

1
–6

Bb – KeBa

Abb – KeAab

Aba – KeAaa

h ~h
.

Ke

+
+

+
+

+

+
+

+
+[ –90 –29 –4 ]

–K

Figure 10–18
System with observed state feedback, where the observer is the minimum-order observer designed in
Example 10–8.
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Transfer Function of Minimum-Order Observer-Based Controller. In the
minimum-order observer equation given by Equation (10–89):

define, similar to the case of the derivation of Equation (10–90),

Then, the following three equations define the minimum-order oberver:

(10–101)

(10–102)

(10–103)

Since Equation (10–103) can be rewritten as

(10–104)

by substituting Equation (10–104) into Equation (10–101), we obtain

(10–105)
Define

Then Equations (10–105) and (10–104) can be written as

(10–106)

(10–107)

Equations (10–106) and (10–107) define the minimum-order observer-based controller.
By considering u as the output and –y as the input, U(s) can be written as

Since the input to the observer controller is –Y(s), rather than Y(s), the transfer function
of the observer controller is

(10–108)

This transfer function can be easily obtained by using the following MATLAB statement:

[num,den] = ss2tf(Atilde, Btilde, -Ctilde, -Dtilde) (10–109)

U(s)

-Y(s)
=

num
den

= - CC� As I - A
� B-1B

� + D
� D

 = - CC� As I - A
� B-1B

� + D
� D[-Y(s)]

 U(s) = CC� As I - A
� B-1B

� + D
� DY(s)

 u = C
�
H� + D

�
y

 H� = A
�
H� + B

�
y

D
� = - AKa + Kb  KeBC
� = -Kb

B
� = B̂ - F̂AKa + Kb  KeBA
� = Â - F̂Kb

 = AÂ - F̂KbBH� + CB̂ - F̂AKa + Kb  KeB Dy H� = ÂH� + B̂y + F̂ C-KbH
� - AKa + Kb  KeBy D

 = -KbH
� - AKa + Kb  KeBy u = -K x� = - CKa Kb D B y

x� b
R = -Ka y - Kb  x� b

 u = -K x�
 H� = x� b - Ke y
 H� = ÂH� + B̂y + F̂u

 F̂ = Bb - Ke Ba

 B̂ = ÂKe + Aba - Ke Aaa

 Â = Abb - Ke Aab

H� = AAbb - Ke AabBH� + C AAbb - Ke  AabBKe + Aba - Ke  Aaa Dy + ABb - Ke BaBu
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10–6 DESIGN OF REGULATOR SYSTEMS WITH OBSERVERS

In this section we shall consider a problem of designing regulator systems by using the
pole-placement-with-observer approach.

Consider the regulator system shown in Figure 10–19. (The reference input is zero.)
The plant transfer function is

Using the pole-placement approach, design a controller such that when the system is
subjected to the following initial condition:

where x is the state vector for the plant and e is the observer error vector, the maximum
undershoot of y(t) is 25 to 35% and the settling time is about 4 sec.Assume that we use
the minimum-order observer. (We assume that only the output y is measurable.)

We shall use the following design procedure:

1. Derive a state-space model of the plant.
2. Choose the desired closed-loop poles for pole placement. Choose the desired

observer poles.
3. Determine the state feedback gain matrix K and the observer gain matrix Ke .
4. Using the gain matrices K and Ke obtained in step 3, derive the transfer function of

the observer controller. If it is a stable controller, check the response to the given ini-
tial condition. If the response is not acceptable, adjust the closed-loop pole location
and/or observer pole location until an acceptable response is obtained.

Design step 1: We shall derive the state-space representation of the plant. Since the
plant transfer function is

the corresponding differential equation is

Referring to Section 2–5, let us define the state variables x1, x2, and x3 as follows:

 x3 = x
#
2 - b2 u

 x2 = x
#
1 - b1 u

 x1 = y - b0 u

y
% + 10y

$ + 24y
# = 10u

# + 20u

Y(s)

U(s)
=

10(s + 2)

s(s + 4)(s + 6)

x(0) = C1

0

0

S ,  e(0) = B1

0
R

G(s) =
10(s + 2)

s(s + 4)(s + 6)

r = 0 yu
Plant

–y
Controller+

–

Figure 10–19
Regulator system.
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Also, is defined by

where and

[See Equation (2–35) for the calculation of b’s.] Then the state-space equation and out-
put equation can be obtained as

Design step 2: As the first trial, let us choose the desired closed-loop poles at

s=–1+j2, s=–1-j2, s=–5

and choose the desired observer poles at

s=–10, s=–10

Design step 3: We shall use MATLAB to compute the state feedback gain matrix K
and the observer gain matrix Ke. MATLAB Program 10–11 produces matrices K and Ke.

 y = [1 0 0]Cx1

x2

x3

S + [0]u

 Cx
#
1

x
#
2

x
#
3

S = C0

0

0

1

0

-24

0

1

-10

S Cx1

x2

x3

S + C 0

10

-80

Su

b3 = -80.b2 = 10,b1 = 0,b0 = 0,

= -24x2 - 10x3 + b3 u

x
#
3 = -a3x1 - a2x2 - a1x3 + b3u

x
#
3

MATLAB Program 10–11

% Obtaining the state feedback gain matrix K

A = [0  1  0;0  0  1;0  -24  -10];
B = [0;10;-80];
C = [1  0  0];
J = [-1+j*2  -1-j*2  -5];
K = acker(A,B,J)

K =

1.2500    1.2500    0.19375

% Obtaining the observer gain matrix Ke

Aaa = 0; Aab = [1  0]; Aba = [0;0]; Abb = [0  1;-24  -10];Ba = 0; Bb = [10;-80];
L = [-10  -10];
Ke = acker(Abb',Aab',L)'

Ke =

10
-24
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MATLAB Program 10–12

% Determination of transfer function of observer controller

A = [0  1  0;0  0  1;0  -24  -10];
B = [0;10;-80];
Aaa = 0; Aab = [1  0]; Aba = [0;0]; Abb = [0  1;-24  -10];
Ba = 0; Bb = [10;-80];
Ka = 1.25; Kb = [1.25    0.19375];
Ke = [10;-24];
Ahat = Abb - Ke*Aab;
Bhat = Ahat*Ke + Aba - Ke*Aaa;
Fhat = Bb - Ke*Ba;
Atilde = Ahat - Fhat*Kb;
Btilde = Bhat - Fhat*(Ka + Kb*Ke);
Ctilde = -Kb;
Dtilde = -(Ka + Kb*Ke);
[num,den] = ss2tf(Atilde, Btilde, -Ctilde, -Dtilde)

num =
9.1000  73.5000  125.0000

den =

1.0000  17.0000  -30.0000

In the program, matrices J and L represent the desired closed-loop poles for pole place-
ment and the desired poles for the observer, respectively. The matrices K and Ke are
obtained as

Design step 4: We shall determine the transfer function of the observer controller.
Referring to Equation (10–108), the transfer function of the observer controller can be
given by

We shall use MATLAB to calculate the transfer function of the observer controller.
MATLAB Program 10–12 produces this transfer function. The result is

Define the system with this observer controller as System 1. Figure 10–20 shows the
block diagram of System 1.

 =
9.1(s + 5.6425)(s + 2.4344)

(s + 18.6119)(s - 1.6119)

 Gc(s) =
9.1s2 + 73.5s + 125

s2 + 17s - 30

Gc(s) =
U(s)

-Y(s)
=

num
den

= - CC� As I - A
� B-1B

� + D
� D

 Ke = B 10

-24
R K = [1.25 1.25 0.19375]
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MATLAB Program 10–13

% Obtaining the characteristic equation

[num1,den1] = ss2tf(A-B*K,eye(3),eye(3),eye(3),1);
[num2,den2] = ss2tf(Abb-Ke*Aab,eye(2),eye(2),eye(2),1);
charact_eq = conv(den1,den2)

charact_eq =

1.0e+003*

0.0010   0.0270   0.2550   1.0250   2.0000   2.5000

r = 0 yu
+

–
9.1s2 + 73.5s + 125

s2 + 17s – 30
10(s + 2)

s(s + 4) (s + 6)

Observer controller Plant

The observer controller has a pole in the right-half s plane (s=1.6119). The exis-
tence of an open-loop right-half s plane pole in the observer controller means that the
system is open-loop unstable, although the closed-loop system is stable. The latter can
be seen from the characteristic equation for the system:

(See MATLAB Program 10–13 for the calculation of the characteristic equation.)
A disadvantage of using an unstable controller is that the system becomes unstable

if the dc gain of the system becomes small. Such a control system is neither desirable nor
acceptable. Hence, to get a satisfactory system, we need to modify the closed-loop pole
location and/or observer pole location.

 = (s + 1 + j2)(s + 1 - j2)(s + 5)(s + 10)(s + 10) = 0

 = s5 + 27s4 + 255s3 + 1025s2 + 2000s + 2500

∑s I - A + BK∑ � @s I - Abb + Ke  Aab @

Figure 10–20
Block diagram of
System 1.

Second trial: Let us keep the desired closed-loop poles for pole placement as before,
but modify the observer pole locations as follows:

s=–4.5, s=–4.5

Thus,

L=[–4.5 –4.5]

Using MATLAB, we find the new Ke to be

Ke = B -1

6.25
R
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MATLAB Program 10–14

% Determination of transfer function of observer controller.

A = [0  1  0;0  0  1;0  -24  -10];
B = [0;10;-80];
Aaa = 0; Aab = [1  0]; Aba = [0;0]; Abb = [0  1;-24  -10];
Ba = 0; Bb = [10;-80];
Ka = 1.25; Kb = [1.25  0.19375];
Ke = [-1;6.25];
Ahat = Abb - Ke*Aab;
Bhat = Ahat*Ke + Aba - Ke*Aaa;
Fhat = Bb - Ke*Ba;
Atilde = Ahat - Fhat*Kb;
Btilde = Bhat - Fhat*(Ka + Kb*Ke);
Ctilde = -Kb;
Dtilde = -(Ka + Kb*Ke);
[num,den] = ss2tf(Atilde,Btilde,-Ctilde,-Dtilde)

num =

1.2109  11.2125  25.3125

den =

1.0000  6.0000  2.1406

Next, we shall obtain the transfer function of the observer controller. MATLAB
Program 10–14 produces this transfer function as follows:

 =
1.2109(s + 5.3582)(s + 3.9012)

(s + 5.619)(s + 0.381)

 Gc(s) =
1.2109s2 + 11.2125s + 25.3125

s2 + 6s + 2.1406

Notice that this is a stable controller. Define the system with this observer controller as
System 2. We shall proceed to obtain the response of System 2 to the given initial
condition:

By substituting into the state-space equation for the plant, we obtain

(10–110)= Ax - BK bx - B0
e
R r = Ax - BKx + B CKa Kb D B0

e
R

x# = Ax - BK x� = Ax - BKB xa

x� b
R = Ax - BKB xa

xb - e
Ru = -K x�

x(0) = C1

0

0

S ,  e(0) = B1

0
R
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The error equation for the minimum-order observer is
(10–111)

By combining Equations (10–110) and (10–111), we get

with the initial condition

MATLAB Program 10–15 produces the response to the given initial condition. The
response curves are shown in Figure 10–21.They seem to be acceptable.

Bx(0)

e(0)
R = E1

0
0
1
0

U
B x#

e#
R = BA - BK

0
BKb

Abb - Ke Aab
R Bx

e
R

e# = AAbb - Ke  AabBe

MATLAB Program 10–15

% Response to initial condition.

A = [0  1  0;0  0  1;0  -24  -10];
B = [0;10;-80];
K = [1.25  1.25  0.19375];
Kb = [1.25  0.19375];
Ke = [-1;6.25];
Aab = [1  0]; Abb = [0  1;-24  -10];
AA = [A-B*K  B*Kb; zeros(2,3)  Abb-Ke*Aab];
sys = ss(AA,eye(5),eye(5),eye(5));
t = 0:0.01:8;
x = initial(sys,[1;0;0;1;0],t);
x1 = [1  0  0  0  0]*x';
x2 = [0  1  0  0  0]*x';
x3 = [0  0  1  0  0]*x';
e1 = [0  0  0  1  0]*x';
e2 = [0  0  0  0  1]*x';

subplot(3,2,1); plot(t,x1); grid
xlabel ('t (sec)'); ylabel('x1')

subplot(3,2,2); plot(t,x2); grid
xlabel ('t (sec)'); ylabel('x2')

subplot(3,2,3); plot(t,x3); grid
xlabel ('t (sec)'); ylabel('x3')

subplot(3,2,4); plot(t,e1); grid
xlabel('t (sec)'); ylabel('e1')

subplot(3,2,5); plot(t,e2); grid
xlabel('t (sec)'); ylabel('e2')
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Next, we shall check the frequency-response characteristics.The Bode diagram of the
open-loop system just designed is shown in Figure 10–22.The phase margin is about 40°
and the gain margin is ±q dB.The Bode diagram of the closed-loop system is shown in
Figure 10–23. The bandwidth of the system is approximately 3.8 rad/sec.
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Figure 10–21
Response to the
given initial
condition; x1(0)=1,
x2(0)=0, x3(0)=0,
e1(0)=1, e2(0)=0.
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Bode diagram for the
open-loop transfer
function of System 2.
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Finally, we shall compare the root-locus plots of the first system with L=[–10 –10]
and the second system with L=[–4.5 –4.5]. The plot for the first system given in
Figure 10–24(a) shows that the system is unstable for small dc gain and becomes stable
for large dc gain. The plot for the second system given in Figure 10–24(b), on the other
hand, shows that the system is stable for any positive dc gain.
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Bode Diagram of System 2 — Closed Loop
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Figure 10–23
Bode diagram for the
closed-loop transfer
function of System 2.

Root-Locus Plot of (91s3 + 917s2 + 2720s + 2500)/
(s5 + 27s4 + 164s3 + 108s2 − 720s)
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Root-Locus Plot of (12.109s3 + 136.343s2 + 477.375s + 506.25)/
(s5 + 16s4 + 86.1406s3 + 165.406s2 + 51.3744s)
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Figure 10–24
(a) Root-locus plot of the system with observer poles at s=–10 and s=–10; (b) root-locus plot of the
system with observer poles at s=–4.5 and s=–4.5.
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Comments
1. In designing regulator systems, note that if the dominant controller poles are placed

far to the left of the jv axis, the elements of the state feedback gain matrix K will
become large. Large gain values will make the actuator output become large, so
that saturation may take place. Then the designed system will not behave as
designed.

2. Also, by placing the observer poles far to the left of the jv axis, the observer
controller becomes unstable, although the closed-loop system is stable.An unstable
observer controller is not acceptable.

3. If the observer controller becomes unstable, move the observer poles to the right
in the left-half s plane until the observer controller becomes stable.Also, the desired
closed-loop pole locations may need to be modified.

4. Note that if the observer poles are placed far to the left of the jv axis, the band-
width of the observer will increase and will cause noise problems. If there is a
serious noise problem, the observer poles should not be placed too far to the left
of the jv axis.The general requirement is that the bandwidth should be sufficiently
low so that the sensor noise will not become a problem.

5. The bandwidth of the system with the minimum-order observer is higher than that
of the system with the full-order observer, provided that the multiple observer
poles are placed at the same place for both observers. If the sensor noise is a seri-
ous problem, use of a full-order observer is recomnended.

10–7 DESIGN OF CONTROL SYSTEMS WITH OBSERVERS

In Section 10–6 we discussed the design of regulator systems with observers. (The systems
did not have reference or command inputs.) In this section we consider the design of
control systems with observers when the systems have reference inputs or command
inputs. The output of the control system must follow the input that is time varying. In
following the command input, the system must exhibit satisfactory performance (a
reasonable rise time, overshoot, settling time, and so on).

In this section we consider control systems that are designed by use of the pole-
placement-with-observer approach. Specifically, we consider control systems using
observer controllers. In Section 10–6 we discussed regulator systems, whose block
diagram is shown in Figure 10–25. This system has no reference input, or r=0. When
the system has a reference input, several different block diagram configurations are
conceivable, each having an observer controller.Two of these configurations are shown
in Figures 10–26 (a) and (b); we shall consider them in this section.

r = 0 yu
Plant

–y Observer
controller

+
–

Figure 10–25
Regulator system.
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r y
Plant

r + u

Observer
controller

+
–

–u

r yu
Plant

r – y Observer
controller

+
–

(a)

(b)

r yuObserver
controller

+
–

1
s(s2 + 1)

Plant

Figure 10–27
Control system with
observer controller
in the feedforward
path.

Configuration 1: Consider the system shown in Figure 10–27. In this system the refer-
ence input is simply added at the summing point. We would like to design the observer
controller such that in the unit-step response the maximum overshoot is less than 30%
and the settling time is about 5 sec.

In what follows we first design a regulator system.Then, using the observer controller
designed, we simply add the reference input r at the summing point.

Before we design the observer controller, we need to obtain a state-space represen-
tation of the plant. Since

we obtain

By choosing the state variables as

we get

 y = Cx

 x# = Ax + Bu

 x3 = y
$

 x2 = y
#

 x1 = y

y
% + y

# = u

Y(s)

U(s)
=

1

sAs2 + 1B

Figure 10–26
(a) Control system
with observer
controller in the
feedforward path;
(b) Control system
with observer
controller in the
feedback path.
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where

Next, we choose the desired closed-loop poles for pole placement at

s=–1+j, s=–1-j, s=–8

and the desired observer poles at

s=–4, s=–4

The state feedback gain matrix K and the observer gain matrix Ke can be obtained as
follows:

See MATLAB Program 10–16.

 Ke = B 8

15
R K = [16 17 10]

A = C0

0

0

1

0

-1

0

1

0

S ,  B = C0

0

1

S ,  C = [1 0 0]

MATLAB Program 10–16

A = [0  1  0;0  0  1;0  -1  0];
B = [0;0;1];
J = [-1+j  -1-j  -8];
K = acker(A,B,J)

K =

16  17  10

Aab = [1  0];
Abb = [0  1;-1  0];
L = [-4  -4];
Ke = acker(Abb',Aab',L)'

Ke =
8
15

The transfer function of the observer controller is obtained by use of MATLAB
Program 10–17. The result is

 =
302(s + 0.5017 + j0.772)(s + 0.5017 - j0.772)

(s + 9 + j5.6569)(s + 9 - j5.6569)

 Gc(s) =
302s2 + 303s + 256

s2 + 18s + 113
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Figure 10–28 shows the block diagram of the regulator system just designed. Figure
10–29 shows the block diagram of a possible configuration of the control system based
on the regulator system shown in Figure 10–28. The unit-step response curve for this
control system is shown in Figure 10–30.The maximum overshoot is about 28% and the
settling time is about 4.5 sec.Thus, the designed system satisfies the design requirements.

MATLAB Program 10–17

% Determination of transfer function of observer controller

A = [0  1  0;0  0  1;0  -1  0];
B = [0;0;1];
Aaa = 0; Aab = [1  0]; Aba = [0;0]; Abb = [0  1;-1  0];
Ba = 0; Bb = [0;1];
Ka = 16; Kb=[17  10];
Ke = [8;15];
Ahat = Abb - Ke*Aab;
Bhat = Ahat*Ke + Aba - Ke*Aaa;
Fhat = Bb - Ke*Ba;
Atilde = Ahat - Fhat*Kb;
Btilde = Bhat - Fhat*(Ka + Kb*Ke);
Ctilde = -Kb;
Dtilde = -(Ka + Kb*Ke);
[num,den] = ss2tf(Atilde,Btilde,-Ctilde,-Dtilde)

num =

302.0000  303.0000  256.0000
den =

1  18  113

y–y u

–
302s2 + 303s + 256

s2 + 18s + 113

Observer controller

1
s(s2 + 1)

Plant

yr – yr u

–
+ 302s2 + 303s + 256

s2 + 18s + 113
1

s(s2 + 1)

Observer controller Plant
Figure 10–29
Control system with
observer controller
in the feedforward
path.

Figure 10–28
Regulator system
with observer
controller.
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O
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Unit-Step Response of
(302s2 + 303s + 256)/(s5 +18s4 + 114s3 + 320s2 + 416s + 256)
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Figure 10–30
Unit-step response of
the control system
shown in Figure
10–29.

Configuration 2: A different configuration of the control system is shown in Figure
10–31.The observer controller is placed in the feedback path.The input r is introduced
into the closed-loop system through the box with gain N. From this block diagram, the
closed-loop transfer function is obtained as

We determine the value of constant N such that for a unit-step input r, the output y is
unity as t approaches infinity. Thus we choose

The unit-step response of the system is shown in Figure 10–32. Notice that the maxi-
mum overshoot is very small, approximately 4%. The settling time is about 5 sec.

N =
256

113
= 2.2655

Y(s)

R(s)
=

NAs2 + 18s + 113B
sAs2 + 1B As2 + 18s + 113B + 302s2 + 303s + 256

yNr + u

–u

r

–
+

302s2 + 303s + 256
s2 + 18s + 113

1
s(s2 + 1)

N

Figure 10–31
Control system with
observer controller
in the feedback path.
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Figure 10–32
The unit-step
response of the
system shown in
Figure 10–31. (The
closed-loop poles for
pole placement are
at s=–1 ; j,
s=–8. The observer
poles are at s=–4,
s=–4.)

Comments. We considered two possible configurations for the closed-loop control
systems using observer controllers. As stated earlier, other configurations are possible.

The first configuration,which places the observer controller in the feedforward path,gen-
erally gives a fairly large overshoot.The second configuration,which places the observer con-
troller in the feedback path,gives a smaller overshoot.This response curve is quite similar to
that of the system designed by the pole-placement approach without using the observer con-
troller. See the unit-step response curve of the system, shown in Figure 10–33, designed by
the pole-placement approach without observer.Here the desired closed-loop poles used are

s = -1 + j,  s = -1 - j,  s = -8

O
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Unit-Step Response of System without Observer
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Figure 10–33
The unit-step
response of the
control system
designed by the pole
placement approach
without observer.
(The closed-loop
poles are at
s=–1 ; j, s=–8.)
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Frequency (rad/sec)

Bode Diagrams of Closed-Loop Systems
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Figure 10–34
Bode diagrams of
closed-loop system 1
(shown in Figure
10–29) and closed-
loop system 2 (shown
in Figure 10–31).

Note that, in these two systems, the rise time and settling time are determined primari-
ly by the desired closed-loop poles for pole placement. (See Figures 10–32 and 10–33.)

The Bode diagrams of closed-loop system 1 (shown in Figure 10–29) and closed-
loop system 2 (shown in Figure 10–31) are shown in Figure 10–34. From this figure, we
find that the bandwidth of system 1 is 5 rad�sec and that of system 2 is 1.3 rad�sec.

Summary of State-Space Design Method

1. The state-space design method based on the pole-placement-combined-with-
observer approach is very powerful. It is a time-domain method.The desired closed-
loop poles can be arbitrarily placed, provided the plant is completely state
controllable.

2. If not all state variables can be measured, an observer must be incorporated to
estimate the unmeasurable state variables.

3. In designing a system using the pole-placement approach, several different sets of
desired closed-loop poles need be considered, the response characteristics
compared, and the best one chosen.

4. The bandwidth of the observer controller is generally large, because we choose
observer poles far to the left in the s plane. A large bandwidth passes high-
frequency noises and causes the noise problem.

5. Adding an observer to the system generally reduces the stability margin. In some
cases, an observer controller may have zero(s) in the right-half s plane, which
means that the controller may be stable but of nonminimum phase. In other cases,
the controller may have pole(s) in the right-half s plane—that is, the controller is
unstable. Then the designed system may become conditionally stable.

6. When the system is designed by the pole-placement-with-observer approach, it is
advisable to check the stability margins (phase margin and gain margin), using a
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frequency-response method. If the system designed has poor stability margins, it
is possible that the designed system may become unstable if the mathematical
model involves uncertainties.

7. Note that for nth-order systems, classical design methods (root-locus and
frequency-response methods) yield low-order compensators (first or second order).
Since the observer-based controllers are nth-order Cor (N-m)th-order if the
minimum-order observer is used D for an nth-order system, the designed system
will become 2nth order Cor (2n-m)th order D . Since lower-order compensators are
cheaper than higher-order ones, the designer should first apply classical methods
and, if no suitable compensators can be determined, then try the pole-placement-
with-observer design approach presented in this chapter.

10–8 QUADRATIC OPTIMAL REGULATOR SYSTEMS

An advantage of the quadratic optimal control method over the pole-placement method
is that the former provides a systematic way of computing the state feedback control gain
matrix.

Quadratic Optimal Regulator Problems. We shall now consider the optimal
regulator problem that, given the system equation 

(10–112)

determines the matrix K of the optimal control vector

(10–113)

so as to minimize the performance index

(10–114)

where Q is a positive-definite (or positive-semidefinite) Hermitian or real symmetric
matrix and R is a positive-definite Hermitian or real symmetric matrix. Note that the
second term on the right-hand side of Equation (10–114) accounts for the expenditure
of the energy of the control signals. The matrices Q and R determine the relative
importance of the error and the expenditure of this energy. In this problem, we assume
that the control vector u(t) is unconstrained.

As will be seen later, the linear control law given by Equation (10–113) is the optimal
control law. Therefore, if the unknown elements of the matrix K are determined so as
to minimize the performance index, then u(t)=–Kx(t) is optimal for any initial state
x(0). The block diagram showing the optimal configuration is shown in Figure 10–35.

J = 3
q

0
(x*Qx + u* Ru) dt

u(t) = -Kx(t)

x# = Ax + Bu

x = Ax + Bu
. xu

–K

Figure 10–35
Optimal regulator
system.
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Now let us solve the optimization problem. Substituting Equation (10–113) into
Equation (10–112), we obtain

In the following derivations, we assume that the matrix A-BK is stable, or that the
eigenvalues of A-BK have negative real parts.

Substituting Equation (10–113) into Equation (10–114) yields

Let us set

where P is a positive-definite Hermitian or real symmetric matrix. Then we obtain

Comparing both sides of this last equation and noting that this equation must hold true
for any x, we require that

(10–115)

It can be proved that if A-BK is a stable matrix, there exists a positive-definite ma-
trix P that satisfies Equation (10–115). (See Problem A–10–15.)

Hence our procedure is to determine the elements of P from Equation (10–115) and
see if it is positive definite. (Note that more than one matrix P may satisfy this equation.
If the system is stable, there always exists one positive-definite matrix P to satisfy this
equation.This means that, if we solve this equation and find one positive-definite matrix
P, the system is stable. Other P matrices that satisfy this equation are not positive definite
and must be discarded.)

The performance index J can be evaluated as

Since all eigenvalues of A-BK are assumed to have negative real parts, we have
Therefore, we obtain

(10–116)

Thus, the performance index J can be obtained in terms of the initial condition x(0)
and P.

To obtain the solution to the quadratic optimal control problem, we proceed as
follows: Since R has been assumed to be a positive-definite Hermitian or real symmetric
matrix, we can write

R = T* T

J = x*(0) Px(0)

x(q) S 0.

J = 3
q

0
x*(Q + K* RK)x dt = -x* Px 2q

0
= -x*(q) Px(q) + x*(0) Px(0)

(A - BK)* P + P(A - BK) = -(Q + K* RK)

x*(Q + K* RK) x = -x# * Px - x* Px# = -x*C(A - BK)*  P + P(A - BK) D  x

x*(Q + K*RK) x = -
d

dt
(x*Px)

= 3
q

0
x*(Q + K*RK) x dt

J = 3
q

0
(x*Qx + x*K*RKx) dt

x# = Ax - BKx = (A - BK) x
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where T is a nonsingular matrix. Then Equation (10–115) can be written as

which can be rewritten as

The minimization of J with respect to K requires the minimization of

with respect to K. (See Problem A–10–16.) Since this last expression is nonnegative, the
minimum occurs when it is zero, or when

Hence,
(10–117)

Equation (10–117) gives the optimal matrix K.Thus, the optimal control law to the quad-
ratic optimal control problem when the performance index is given by Equation (10–114)
is linear and is given by

The matrix P in Equation (10–117) must satisfy Equation (10–115) or the following
reduced equation:

(10–118)

Equation (10–118) is called the reduced-matrix Riccati equation. The design steps may
be stated as follows:

1. Solve Equation (10–118), the reduced-matrix Riccati equation, for the matrix P.
[If a positive-definite matrix P exists (certain systems may not have a positive-
definite matrix P), the system is stable, or matrix A-BK is stable.]

2. Substitute this matrix P into Equation (10–117). The resulting matrix K is the
optimal matrix.

A design example based on this approach is given in Example 10–9. Note that if the
matrix A-BK is stable, the present method always gives the correct result.

Finally, note that if the performance index is given in terms of the output vector
rather than the state vector, that is,

then the index can be modified by using the output equation

to

(10–119)

and the design steps presented in this section can be applied to obtain the optimal
matrix K.

J = 3
q

0
(x* C* QCx + u* Ru) dt

y = Cx

J = 3
q

0
(y* Qy + u* Ru) dt

A* P + PA - PBR-1 B* P + Q = 0

u(t) = -Kx(t) = -R-1 B* Px(t)

K = T-1(T*)-1 B* P = R-1 B* P

TK = (T*)-1 B* P

x* CTK - (T*)-1 B* P D* CTK - (T*)-1 B* P D  x

A*P + PA + CTK - (T*)- 1B *P D* CTK - (T*)- 1B *P D - PBR- 1B*P + Q = 0

(A* - K* B*) P + P(A - BK) + Q + K* T* TK = 0
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EXAMPLE 10–9 Consider the system shown in Figure 10–36. Assuming the control signal to be

determine the optimal feedback gain matrix K such that the following performance index is
minimized:

where

(m � 0)

From Figure 10–36, we find that the state equation for the plant is

where

We shall demonstrate the use of the reduced-matrix Riccati equation in the design of the
optimal control system. Let us solve Equation (10–118), rewritten as

Noting that matrix A is real and matrix Q is real symmetric, we see that matrix P is a real sym-
metric matrix. Hence, this last equation can be written as

This equation can be simplified toB 0
p11

0
p12
R + B0

0
p11

p12
R - B p2

12

p12 p22

p12 p22

p2
22
R + B1

0
0
m
R = B0

0
0
0
R

 - Bp11

p12

p12

p22
R B 0

1
R [1][0 1]Bp11

p12

p12

p22
R + B1

0

0

m
R = B0

0

0

0
R

 B0

1

0

0
R Bp11

p12

p12

p22
R + Bp11

p12

p12

p22
R B 0

0

1

0
R

A* P + PA - PBR-1 B* P + Q = 0

A = B0

0

1

0
R ,  B = B0

1
R

x# = Ax + Bu

Q = B1

0

0

m
R

J = 3
q

0
AxT Qx + u2B dt

u(t) = -Kx(t)

u x1

Plant

x2

–K

� �

Figure 10–36
Control system.
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from which we obtain the following three equations:

Solving these three simultaneous equations for p11, p12, and p22, requiring P to be positive definite,
we obtain

Referring to Equation (10–117), the optimal feedback gain matrix K is obtained as

Thus, the optimal control signal is

(10–120)

Note that the control law given by Equation (10–120) yields an optimal result for any initial state
under the given performance index. Figure 10–37 is the block diagram for this system.

Since the characteristic equation is

if m=1, the two closed-loop poles are located at

These correspond to the desired closed-loop poles when m=1.

Solving Quadratic Optimal Regulator Problems with MATLAB. In MATLAB,
the command

lqr(A,B,Q,R)

s = -0.866 + j 0.5,  s = -0.866 - j 0.5

∑s I - A + BK∑ = s2 + 1m + 2 s + 1 = 0

u = -Kx = -x1 - 1m + 2 x2

 = C1 1m + 2 D = Cp12 p22 D
 = [1][0 1]Bp11

p12

p12

p22
R K = R-1 B* P

P = Bp11

p12

p12

p22
R = B1m + 2

1

1

1m + 2
R

 m + 2p12 - p2
22 = 0

 p11 - p12 p22 = 0

 1 - p2
12 = 0

–
–

u x1

Plant

x2
� �

m + 2	
Figure 10–37
Optimal control of
the plant shown in
Figure 10–36.
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solves the continuous-time, linear, quadratic regulator problem and the associated Riccati
equation. This command calculates the optimal feedback gain matrix K such that the
feedback control law

minimizes the performance index

subject to the constraint equation

Another command

[K,P,E] = lqr(A,B,Q,R)

returns the gain matrix K, eigenvalue vector E, and matrix P, the unique positive-definite
solution to the associated matrix Riccati equation:

If matrix A-BK is a stable matrix, such a positive-definite solution P always exists.The
eigenvalue vector E gives the closed-loop poles of A-BK.

It is important to note that for certain systems matrix A-BK cannot be made a sta-
ble matrix, whatever K is chosen. In such a case, there does not exist a positive-definite
matrix P for the matrix Riccati equation. For such a case, the commands

K = lqr(A,B,Q,R)

[K,P,E] = lqr(A,B,Q,R)

do not give the solution. See MATLAB Program 10–18.

EXAMPLE 10–10 Consider the system defined by

Show that the system cannot be stabilized by the state-feedback control scheme

whatever matrix K is chosen. (Notice that this system is not state controllable.)
Define

Then

 = B-1 - k1

0

1 - k2

2
R

 A - BK = B-1

0

1

2
R - B1

0
R Ck1 k2 D

K = Ck1 k2 D
u = -Kx

Bx
#
1

x
#
2
R = B-1

0
1
2
R Bx1

x2
R + B1

0
Ru

PA + A* P - PBR-1 B* P + Q = 0

x# = Ax + Bu

J = 3
q

0
(x* Qx + u* Ru) dt

u = -Kx
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Hence, the characteristic equation becomes

The closed-loop poles are located at

Since the pole at s=2 is in the right-half s plane, the system is unstable whatever K matrix is
chosen. Hence, quadratic optimal control techniques cannot be applied to this system.

Let us assume that matrices Q and R in the quadratic performance index are given by

and that we write MATLAB Program 10–18. The resulting MATLAB solution is

K = [NaN  NaN]

(NaN means ‘not a number.’) Whenever the solution to a quadratic optimal control problem does
not exist, MATLAB tells us that matrix K consists of NaN.

Q = B1

0

0

1
R ,  R = [1]

s = -1 - k1 ,  s = 2

= As + 1 + k1B(s - 2) = 0

∑s I - A + BK∑ = 2 s + 1 + k1

0
-1 + k2

s - 2
2

MATLAB Program 10–18

% ---------- Design of quadratic optimal regulator system ----------

A = [-1 1;0  2];
B = [1;0];
Q = [1  0;0  1];
R = [1];

K = lqr(A,B,Q,R)

Warning: Matrix is singular to working precision.

K =

NaN  NaN

% ***** If we enter the command [K,P,E] = lqr(A,B,Q,R), then *****

[K,P,E] = lqr(A,B,Q,R)

Warning: Matrix is singular to working precision.

K =

NaN  NaN

P =

-Inf  -Inf
-Inf  -Inf

E =

-2.0000
-1.4142
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EXAMPLE 10–11 Consider the system described by

where

The performance index J is given by

where

Assume that the following control u is used.

Determine the optimal feedback gain matrix K.
The optimal feedback gain matrix K can be obtained by solving the following Riccati equation

for a positive-definite matrix P:

The result is

Substituting this P matrix into the following equation gives the optimal K matrix:

Thus, the optimal control signal is given by

MATLAB 10–19 also yields the solution to this problem.

u = -Kx = -x1 - x2

= [1][0 1]B2
1

1
1
R = [1 1]

 K = R-1 B¿ P

P = B2

1

1

1
R

A¿ P + PA - PBR-1 B¿ P + Q = 0

u = -Kx

Q = B1

0

0

1
R ,  R = [1]

J = 3
q

0
(x¿ Qx + u¿ Ru) dt

A = B0

0

1

-1
R ,  B = B0

1
R

x# = Ax + Bu

MATLAB Program 10–19

% ---------- Design of quadratic optimal regulator system ----------

A = [0  1;0  -1];
B = [0;1];
Q = [1  0; 0  1];
R = [1];

K = lqr(A,B,Q,R)

K =

1.0000 1.0000
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EXAMPLE 10–12 Consider the system given by

where

The performance index J is given by

where

Obtain the positive-definite solution matrix P of the Riccati equation, the optimal feedback gain
matrix K, and the eigenvalues of matrix A-BK.

MATLAB Program 10–20 will solve this problem.

Q = C1
0
0

0
1
0

0
0
1
S ,  R = [1]

J = 3
q

0
(x¿ Qx + u¿ Ru) dt

A = C 0
0

-35

1
0

-27

0
1

-9
S ,  B = C0

0
1
S

x# = Ax + Bu

MATLAB Program 10–20

% ---------- Design of quadratic optimal regulator system ----------

A = [0  1  0;0  0  1;-35  -27  -9];
B = [0;0;1];
Q = [1  0  0;0  1  0;0  0  1];
R = [1];
[K,P,E] = lqr(A,B,Q,R)

K =

0.0143 0.1107 0.0676

P =

4.2625 2.4957 0.0143
2.4957 2.8150 0.1107
0.0143 0.1107 0.0676

E = 

-5.0958
-1.9859 + 1.7110i
-1.9859 - 1.7110i
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Next, let us obtain the response x of the regulator system to the initial condition x(0), where

With state feedback u=–Kx, the state equation for the system becomes

Then the system, or sys, can be given by

sys = ss(A-B*K, eye(3), eye(3), eye(3))

MATLAB Program 10–21 produces the response to the given initial condition. The response
curves are shown in Figure 10–38.

x# = Ax + Bu = (A - BK) x

x(0) = C1

0

0

S

EXAMPLE 10–13 Consider the system shown in Figure 10–39. The plant is defined by the following state-space
equations:

where

The control signal u is given by

u = k1Ar - x1B - Ak2 x2 + k3 x3B = k1 r - Ak1 x1 + k2 x2 + k3 x3B
A = C0

0
0

1
0

-2

0
1

-3
S , B = C0

0
1
S ,  C = [1 0 0],  D = [0]

 y = Cx + Du

 x# = Ax + Bu

MATLAB Program 10–21

% Response to initial condition.

A = [0  1  0;0  0  1;-35  -27  -9];
B = [0;0;1];
K = [0.0143  0.1107  0.0676];
sys = ss(A-B*K, eye(3),eye(3),eye(3));
t = 0:0.01:8;
x = initial(sys,[1;0;0],t);
x1 = [1  0  0]*x';
x2 = [0  1  0]*x';
X3 = [0  0  1]*x';

subplot(2,2,1); plot(t,x1); grid
xlabel('t (sec)'); ylabel('x1')

subplot(2,2,2); plot(t,x2); grid
xlabel('t (sec)'); ylabel('x2)

subplot(2,2,3); plot(t,x3); grid
xlabel('t (sec)'); ylabel('x3')
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Figure 10–38
Response curves to
initial condition.

In determining an optimal control law, we assume that the input is zero, or r=0.
Let us determine the state-feedback gain matrix K, where

such that the following performance index is minimized:

where

Q = Cq11

0
0

0
q22

0

0
0

q33

S ,  R = 1,  x = Cx1

x2

x3

S = C y

y
#

y
$
S

J = 3
q

0
(x¿ Qx + u¿ Ru) dt

K = Ck1 k2 k3 D

+
–

+
–

x = Ax + Bu
.

k2

k3

y = Cxk1

r u
x

x2

x3

y = x1

Figure 10–39
Control system.
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To get a fast response, q11 must be sufficiently large compared with q22, q33, and R. In this problem,
we choose

To solve this problem with MATLAB, we use the command

K = lqr(A,B,Q,R)

MATLAB Program 10–22 yields the solution to this problem.

q11 = 100,  q22 = q33 = 1,  R = 0.01

MATLAB Program 10–22

% ---------- Design of quadratic optimal control system ----------

A = [0  1  0;0  0  1;0  -2  -3];
B = [0;0;1];
Q = [100  0  0;0  1  0;0  0  1];
R = [0.01];

K = Iqr(A,B,Q,R)

K =

100.0000    53.1200    11.6711

Next we shall investigate the step-response characteristics of the designed system using the
matrix K thus determined. The state equation for the designed system is

and the output equation is

To obtain the unit-step response, use the following command:

[y,x,t] = step(AA,BB,CC,DD)

where

AA=A-BK, BB=Bk1, CC=C, DD=D

MATLAB Program 10–23 produces the unit-step response of the designed system. Figure 10–40
shows the response curves x1, x2, and x3 versus t on one diagram.

y = Cx = [1 0 0]Cx1

x2

x3

S
 = (A - BK) x + Bk1 r

 = Ax + BA-Kx + k1 rB x# = Ax + Bu
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MATLAB Program 10–23

% ---------- Unit-step response of designed system ----------

A = [0  1  0;0  0  1;0  -2  -3];
B = [0;0;1]
C = [1  0  0];
D = [0];
K = [100.0000  53.1200  11.6711];
k1 = K(1); k2 = K(2); k3 = K(3);

% ***** Define the state matrix, control matrix, output matrix,
% and direct transmission matrix of the designed systems as AA,
% BB, CC, and DD *****

AA = A - B*K;
BB = B*k1;
CC = C;
DD = D;
t = 0:0.01:8;
[y,x,t] = step (AA,BB,CC,DD,1,t);

plot(t,x)
grid
title('Response Curves x1, x2, x3, versus t')
xlabel('t Sec')
ylabel('x1,x2,x3')
text(2.6,1.35,'x1')
text(1.2,1.5,'x2')
text(0.6,3.5,'x3')

Response Curves x1, x2, x3 versus t

x1
,x

2,
x3

5

–2

1

4

2

0

–1

3

t Sec
0 52 31 4 86 7

x3

x2 x1

Figure 10–40
Response curves x1

versus t, x2 versus t,
and x3 versus t.
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Concluding Comments on Optimal Regulator Systems

1. Given any initial state x(t0), the optimal regulator problem is to find an allowable
control vector u(t) that transfers the state to the desired region of the state space
and for which the performance index is minimized. For the existence of an optimal
control vector u(t), the system must be completely state controllable.

2. The system that minimizes (or maximizes, as the case may be) the selected
performance index is, by definition, optimal. Although the controller may have
nothing to do with “optimality” in many practical applications, the important point
is that the design based on the quadratic performance index yields a stable control
system.

3. The characteristic of an optimal control law based on a quadratic performance
index is that it is a linear function of the state variables, which implies that we need
to feed back all state variables.This requires that all such variables be available for
feedback. If not all state variables are available for feedback, then we need to
employ a state observer to estimate unmeasurable state variables and use the es-
timated values to generate optimal control signals.

Note that the closed-loop poles of the system designed by the use of the
quadratic optimal regulator approach can be found from

Since these closed-loop poles correspond to the desired closed-loop poles in the
pole-placement approach, the transfer functions of the observer controllers can
be obtained from either Equation (10–74) if the observer is of full-order type or
Equation (10–108) if the observer is of minimum-order type.

4. When the optimal control system is designed in the time domain, it is desirable to
investigate the frequency-response characteristics to compensate for noise effects.
The system frequency-response characteristics must be such that the system at-
tenuates highly in the frequency range where noise and resonance of components
are expected. (To compensate for noise effects, we must in some cases either modify
the optimal configuration and accept suboptimal performance or modify the
performance index.)

5. If the upper limit of integration in the performance index J given by Equation
(10–114) is finite, then it can be shown that the optimal control vector is still a
linear function of the state variables, but with time-varying coefficients. (Therefore,
the determination of the optimal control vector involves that of optimal time-
varying matrices.)

10–9 ROBUST CONTROL SYSTEMS

Suppose that given a control object (i.e., a system with a flexible arm) we wish to de-
sign a control system. The first step in the design of a control system is to obtain a
mathematical model of the control object based on the physical law. Quite often the
model may be nonlinear and possibly with distributed parameters. Such a model may
be difficult to analyze. It is desirable to approximate it by a linear constant-coefficient
system that will approximate the actual object fairly well. Note that even though the

∑s I - A + BK∑ = 0



model to be used for design purposes may be a simplified one, it is necessary that such
a model must include any intrinsic character of the actual object.Assuming that we can
get a model that approximates the actual system quite well, we must get a simplified
model for the purpose of designing the control system that will require a compensator
of lowest order possible. Thus, a model of a control object (whatever it may be) will
probably include an error in the modeling process. Note that in the frequency-response
approach to control systems design, we use phase and gain margins to take care of
the modeling errors. However, in the state-space approach, which is based on the dif-
ferential equations of the plant dynamics, no such “margins” are involved in the
design process.

Since the actual plant differs from the model used in the design, a question arises
whether the controller designed using a model will work satisfactorily with the actu-
al plant. To ensure that it will do so, robust control theory has been developed since
around 1980.

Robust control theory uses the assumption that the models we use in designing con-
trol systems have modeling errors.We shall present an introduction to this theory in this
section. Basically, the theory assumes that there is an uncertainty or error between the
actual plant and its mathematical model and includes such uncertainty or error in the
design process of the control system.

Systems designed based on the robust control theory will possess the following
properties:

(1) Robust stability. The control system designed is stable in the presence of
perturbation.

(2) Robust performance. The control system exhibits predetermined response
characteristics in the presence of perturbation.

This theory requires considerations based on frequency-response analysis and time-
domain analysis. Because of the mathematical complications associated with robust con-
trol theory, detailed discussion of robust control theory is beyond the scope of the senior
engineering student. In this section, only introductory discussion of robust control the-
ory is presented.

Uncertain Elements in Plant Dynamics. The term uncertainty refers to the dif-
ferences or errors between the model of the plant and the actual plant.

Uncertain elements that may appear in practical systems may be classified as struc-
tured uncertainty and unstructured uncertainty. An example of structured uncertainty is
any parametric variation in the plant dynamics, such as variations in poles and zeros
of the plant transfer function. Examples of unstructured uncertainty include frequency-
dependent uncertainty, such as high-frequency modes that we normally neglect in mod-
eling plant dynamics. For example, in the modeling of a flexible-arm system, the model
may include a finite number of modes of oscillation.The modes of oscillation that are not
included in the modeling behave as uncertainty of the system. Another example of un-
certainty occurs in the linearization of a nonlinear plant. If the actual plant is nonlinear
and its model is linear, then the difference acts as unstructured uncertainty.

In this section we consider the case where the uncertainty is unstructured. In addi-
tion we assume that the plant involves only one uncertainty. (Some plants may involve
multiple uncertain elements.)

Section 10–9 / Robust Control Systems 807



In the robust control theory, we define unstructured uncertainty as . Since the
exact description of is unknown, we use an estimate of (as to the magnitude
and phase characteristics) and use this estimate in the design of the controller that sta-
bilizes the control system. Stability of a system with unstructured uncertainty can then
be examined by use of the small gain theorem to be given following the definition of the

norm.

Norm. The norm of a stable single-input–single-output system is the largest
possible amplification factor of the steady-state response to sinusoidal excitation.

For a scalar (s), gives the maximum value of . It is called the norm.
See Figure 10–41.

In robust control theory we measure the magnitude of the transfer function by the
norm. Assume that the transfer function is proper and stable. [Note that a

transfer function is called proper if is limited and definite. If = 0, it
is called strictly proper.] The norm of is defined by

means the maximum singular value of . ( means .) Note that
the singular value of a transfer function is defined by

where is the ith largest eigenvalue of and it is always a non-negative real
value. By making smaller, we make the effect of input w on the output z smaller.
It is frequently the case that instead of using the maximum singular value , we use
the inequality

and limit the magnitude of (s) by .To make the magnitude of small, we choose
a small and require that .7£ 7q 6 gg

7£ 7qg£

7£ 7q 6 g

7£ 7q7£ 7q £*£li(£*£)

si(£) = 2li(£*£)

£
smaxs[£(jv)]s [£(jv)]

7£ 7q = s [£(jv)]

£(s)Hq

£(q)£(q)£(s)
£(s)Hq

Hq�£(jv)�7£ 7q£

HqH�

Hq

¢(s)¢(s)
¢(s)
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F(s)

||F ||
�|F

(j
v

)| 
in

 d
bv z

v

Figure 10–41
Bode diagram and
the norm .7£ 7qHq



Small-Gain Theorem. Consider the closed-loop system shown in Figure 10–42. In
the figure and M(s) are stable and proper transfer functions.

The small-gain theorem states that if

then this closed-loop system is stable. That is, if the norm of M(s) is smaller
than 1, this closed-loop system is stable. This theorem is an extension of the Nyquist
stability criterion.

It is important to note that the small-gain theorem gives a sufficient condition for sta-
bility. That is, a system may be stable even if it does not satisfy this theorem. However,
if a system satisfies the small-gain theorem, it is always stable.

System with Unstructured Uncertainty. In some cases an unstructured uncer-
tainty error may be considered multiplicative such that

where is the true plant dynamics and G is the model plant dynamics. In other cases
an unstructured uncertainty error may be considered additive such that

In either case we assume that the norm of or is bounded such that

where and are positive constants.

EXAMPLE 10–14 Consider a control system with unstructured multiplicative uncertainty.We shall consider robust
stability and robust performance of the system. (A system with unstructured additive uncertain-
ty will be discussed in Problem A–10–18.)

Robust Stability. Let us define

true plant dynamics

G=model of plant dynamics

unstructured multiplicative uncertainty

We assume that is stable and its upper bound is known.We also assume that and G are
related by

= G(I + ¢m)G
�

G
�¢m

¢m =

G
� =

gagm

7¢m 7 6 gm ,   7¢a 7 6 ga

¢a¢m

G
� = G + ¢a

G
�

G
� = G(1 + ¢m)

¢(s)Hq

7¢(s)M(s) 7q 6 1

¢(s)
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Closed-loop system.



Consider the system shown in Figure 10–43(a). Let us examine the transfer function between
point A and point B. Notice that Figure 10–43(a) can be redrawn as shown in Figure 10-43(b).The
transfer function between point A and point B can be given by

Define

(10–121)

Using Equation (10–121) we can redraw Figure 10–43(b) as Figure 10–43(c).Applying the small-
gain theorem to the system consisting of and T as shown in Figure 10–43(c), we obtain the
condition for stability to be

(10–122)

In general, it is impossible to precisely model Therefore, let us use a scalar transfer function
such that

where is the largest singular value of .
Consider, instead of Inequality (10–122), the following inequality:

(10–123)

If Inequality (10–123) holds true, Inequality (10–122) will always be satisfied. By making 
the norm of to be less than 1, we obtain the controller K that will make the system
stable.

Suppose that we cut the line at point A in Figure 10–43(a). Then we obtain Figure 10–43(d).
Replacing by , we obtain Figure 10–43(e). Redrawing Figure 10–43(e), we obtain Figure
10–43(f). Figure 10–43(f) is called a generalized plant diagram.

Referring to Equation (10–121), T is given by

(10–124)

Then Inequality (10–123) can be rewritten as

(10–125)

Clearly, for a stable plant model G(s), K(s)=0 will satisfy Inequality (10–125). However,
K(s)=0 is not the desirable transfer function for the controller. To find an acceptable trans-
fer function for K(s), we may add another condition—for example, that the resulting system will
have robust performance such that the system output follows the input with minimum error, or
another reasonable condition. In what follows we shall obtain the condition for robust
performance.

ß WmK(s)G(s)

1 + K(s)G(s)
ß

q

6 1

T =
KG

1 + KG

WmI¢m

WmTHq

7WmT 7q 6 1

¢m(jv)s{¢m(jv)}

s{¢m(jv)} 6 �Wm(jv)�

Wm(jv)
¢m .

7¢mT 7q 6 1

¢m

(1 + KG)-1 KG = T

KG

1 + KG
= (1 + KG)-1 KG
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Figure 10–43
(a) Block diagram of a system with unstructured multiplicative uncertainty;
(b)–(d) successive modifications of the block diagram of (a);
(e) block diagram showing a generalized plant with unstructured multiplicative uncertainty;
(f) generalized plant diagram.



Robust Performance. Consider the system shown in Figure 10–44. Suppose that we want
the output y(t) to follow the input r(t) as closely as possible, or we wish to have

Since the transfer function Y(s)/R(s) is

we have

Define

where S is commonly called the sensitivity function and T defined by Equation (10–124) is called
the complementary sensitivity function. In this robust performance problem we want to make
the norm of S smaller than the desired transfer function or which can be
written as 

(10–126)

Combining Inequalities (10–123) and (10–126), we get

where T+S=1, or

(10–127)

Our problem then becomes to find K(s) that will satisfy Inequality (10–127). Note that depend-
ing on the chosen Wm(s) and Ws(s) there may be many K(s) that satisfy Inequality (10–127), or
may be no K(s) that satisfies Inequality (10–127). Such a robust control problem using Inequality
(10–127) is called a mixed-sensitivity problem.

Figure 10–45(a) is a generalized plant diagram, where two conditions (robust stability and ro-
bust performance) are specified.A simplified version of this diagram is shown in Figure 10–45(b).

∑Wm(s) 
K(s)G(s)

1 + K(s)G(s)

Ws(s)
1

1 + K(s)G(s)

∑
q

6 1

gWmT

WsS
g

q
6 1

7Ws S 7q 6 1

7S 7q 6 Ws
-1Ws  

-1Hq

1

1 + KG
= S

E(s)

R(s)
=

R(s) - Y(s)

R(s)
= 1 -

Y(s)

R(s)
=

1
1 + KG

Y(s)

R(s)
 =  

KG

1 +  KG

lim
t S q

[r(t) - y(t)] =  lim
t S q

e(t) S 0

812 Chapter 10 / Control Systems Design in State Space

r e y
K(s) G(s)+

–

Figure 10–44
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K

(b)

w

u

z

y

P

G

w

u

y
K

WmI WsI

(a)

y

z2

z1
z

+
+

–

Figure 10–45
(a) Generalized 
plant diagram;
(b) simplfied version
of the generalized
plant diagram 
shown in (a).

Finding Transfer Function z(s)/w(s) from a Generalized Plant Diagram. Consider
the generalized plant diagram shown in Figure 10–46.

In this diagram w(s) is the exogenous disturbance and u(s) is the manipulated vari-
able. z(s) is the controlled variable and y(s) is the observed variable.

Consider this control system consisting of the generalized plant P(s) and the con-
troller K(s).The equation that relates the outputs z(s) and y(s) and the inputs w(s) and
u(s) of the generalized plant P(s) is

The equation that relates u(s) and y(s) is given by

u(s)=K(s)y(s)

Define the transfer function that relates the controlled variable z(s) to the exogenous
disturbance w(s) as (s). Then

z(s) = £(s)w(s)

£

B z(s)

y(s)
R = BP11

P21

P12

P22
R Bw(s)

u(s)
R



Note that can be determined as follows: Since

z(s)=P11w(s)+P12u(s)

y(s)=P21w(s)+P22u(s)

u(s)=K(s)y(s)

we obtain

y(s)=P21w(s)+P22K(s)y(s)

Hence

or

Therefore,

Hence,

(10–128)

EXAMPLE 10–15 Let us determine the P matrix in the generalized plant diagram of the control system considered
in Example 10–14. We derived Inequality (10–125) for the control system to be robust stable.
Rewriting Inequality (10–125), we have

(10–129)g WmKG

1 + KG
g

q
6 1

£(s) = P11 + P12K(s)[I - P22K(s)]-1P21

= {P11 + P12K(s)[I - P22K(s)]- 1P21}w(s)

z(s) = P11w(s) + P12K(s)[I - P22K(s)]-1P21w(s)

y(s) = [I - P22K(s)]-1P21w(s)

[I - P22K(s)]y(s) = P21w(s)

£(s)
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A generalized plant
diagram.



If we define

(10–130)

then Inequality (10–129) can be written as

Referring to Equation (10–128), rewritten as

notice that if we choose the generalized plant P matrix as 

(10–131)

Then we obtain

which is exactly the same as in Equation (10–130).
We derived in Example 10–14 that if we wished to have the output y follow the input r as

close as possible, we needed to make the norm of (s), where

(10–132)

less than 1. [See Inequality (10–126).]
Note that the controlled variable z is related to the exogenous disturbance w by

and referring to Equation (10–128)

Notice that if we choose the P matrix as

(10–133)

then we obtain

which is the same as in Equation (10–132).£2

 = Ws c 1

1 + KG
d

 = Ws c1 -
KG

1 + KG
d

 = Ws - WsKG(I + KG)-1

 £ = P11 + P12K(I - P22K)-1P21

P = cWs -WsG

I -G
d

£(s) = P11 + P12K(I - P22K)-1P21

z = £(s)w

£2 =
Ws

I + KG

£2Hq

£1

 = WmKG(I + KG)-1

£ = P11 + P12K(I - P22K)-1P21

P = c 0 WmG

I -G
d

£ = P11 + P12K(I - P22K)-1P21

7£1 7q 6 1

£1 =
WmKG

1 + KG
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If both the robust stability and robust performance conditions are required, the control sys-
tem must satisfy the condition given by Inequality (10–127), rewritten as

(10–134)

For the P matrix, we combine Equations (10–133) and (10–131) and get

(10–135)

If we construct P(s) as given by Equation (10–135), then the problem of designing a control
system to satisfy both robust stability and robust performance conditions can be formulated by
using the generalized plant represented by Equation (10–135). As mentioned earlier, such a
problem is called a mixed-sensitivity problem. By using the generalized plant given by Equation
(10–135) we are able to determine the controller K(s) that satisfies Inequality (10–134). The
generalized plant diagram for the system considered in Example 10–14 becomes as shown in
Figure 10–47.

H Infinity Control Problem. To design a controller K of a control system to sat-
isfy various stability and performance specifications, we utilize the concept of the gen-
eralized plant.

As mentioned earlier a generalized plant is a linear model consisting of a model of
the plant and weighting functions corresponding to the specifications for the required
performance. Referring to the generalized plant shown in Figure 10–48, the H infinity
control problem is a problem to design a controller K that will make the norm of
the transfer function from the exogenous disturbance w to the controlled variable z less
than a specified value.

Hq

P = CWs

0
I

-WsG

WmG

-G

S

∑Wm 
KG

1 + KG

Ws  
1

1 + KG

∑ 6 1
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Figure 10–47
Generalized plant of
the system discussed
in Example 10–15.



The reason to use generalized plants, rather than individual block diagrams of con-
trol systems, is that a number of control systems with uncertain elements have been
designed using generalized plants and, consequently, established design approaches
using such plants are available.

Note that any weighting function, such as W(s), is an important parameter to in-
fluence the resulting controller K(s). In fact, the goodness of the resulting designed
system depends on the choice of the weighting function or functions used in the de-
sign process.

Note that the controller that is the solution to the H infinity control problem is com-
monly called the H infinity controller.

Solving Robust Control Problems. There are three established approaches to
solve robust control problems. They are

1. Solve robust control problems by deriving the Riccati equations and solving them.
2. Solve robust control problems by using the linear matrix inequality approach.
3. Solve robust control problems that involve structural uncertainties by using the 

analysis and synthesis approach.

Solving robust control problems by use of any of the above methods requires a broad
mathematical background.

In this section we have presented only an introduction to the robust control theory.
Solving any robust control problem requires mathematical background beyond the
scope of the senior engineering student. Therefore, an interested reader may take a
graduate-level control course at an established college or university and study this sub-
ject in detail.

EXAMPLE PROBLEMS AND SOLUTIONS

A–10–1. Consider the system defined by

Suppose that this system is not completely state controllable.Then the rank of the controllability
matrix is less than n, or

(10–136)rank CB � AB � p � An - 1 B D = q 6 n

x# = Ax + Bu

m

m
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A generalized plant
diagram.



This means that there are q linearly independent column vectors in the controllability matrix. Let
us define such q linearly independent column vectors as f1 , f2 , p , fq. Also, let us choose n-q
additional n-vectors vq+1, vq+2, p , vn such that

is of rank n. By using matrix P as the transformation matrix, define

Show that can be given by

where A11 is a q*q matrix, A12 is a q*(n-q) matrix, A22 is an (n-q)*(n-q) matrix, and
0 is an (n-q)*q matrix. Show also that matrix can be given by

where B11 is a q*1 matrix and 0 is an (n-q)*1 matrix.

Solution. Notice that

or

(10–137)

Also,

(10–138)

Since we have q linearly independent column vectors f1, f2, p , fq, we can use the Cayley–Hamilton
theorem to express vectors Af1 , Af2 , p , Afq in terms of these q vectors. That is,

Afq = a1q  f1 + a2q  f2 + p + aqq  fq

�

�

�

Af2 = a12  f1 + a22  f2 + p + aq2  fq

Af1 = a11  f1 + a21  f2 + p + aq1  fq

B = PB̂

= C f1 � f2 � p � fq � vq + 1 � p � vn D  Â

CAf1 � Af2 � p � Afq � Avq + 1 � p � Avn D
AP = PÂ

B̂ = cB11

0
d

B̂

Â = cA11

0
 A12

A22
d

Â

P-1 AP = Â,  P-1 B = B̂

P = C f1 � f2 � p � fq � vq + 1 � vq + 2 � p � vn D
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Hence, Equation (10–137) may be written as follows:

Define

Then Equation (10–137) can be written as

= C f1 � f2 � p � fq � vq + 1 � p � vn D cA11

0
 A12

A22
d

CAf1 � Af2 � p � Afq � Avq + 1 � p � Avn D

 Eaq + 1q + 1

�

�

�

anq + 1

p

p

aq + 1n

�

�

�

ann

U = A22

 E 0

�

�

�

0

p

p

0

�

�

�

0

U = A21 = (n - q) * q zero matrix

 F
a1q + 1

a2q + 1

�

�

�

aqq + 1

p
p

p

a1n

a2n

�

�

�

aqn

V = A12

 F
a11

a21

�

�

�

aq1

p
p

p

a1q

a2q

�

�

�

aqq

V = A11

= C f1 � f2 � p � fq � vq + 1 � p � vn D 

a11

a21

�

�

�

aq1

0

�

�

�

0

p
p

p

p

p

a1q

a2q

�

�

�

aqq

0

�

�

�

0

a1q + 1

a2q + 1

�

�

�

aqq + 1

aq + 1q + 1

�

�

�

anq + 1

p
p

p

p

p

a1n

a2n

�

�

�

aqn

aq + 1n

�

�

�

ann

CAf1 � Af2 � p � Afq � Avq + 1 � p � Avn D



Thus,

Hence,

Next, referring to Equation (10–138), we have

(10–139)

Referring to Equation (10–136), notice that vector B can be written in terms of q linearly
independent column vectors f1 , f2 , p , fq. Thus, we have

Consequently, Equation (10–139) may be written as follows:

Thus,

where

A–10–2. Consider a completely state controllable system

Define the controllability matrix as M:

M = CB � AB � p � An - 1 B D
x# = Ax + Bu

B11 = F
b11

b21

�

�

�

bq1

V

B̂ = cB11

0
d

b11  f1 + b21  f2 + p + bq1  fq = C f1 � f2 � p � fq � vq + 1 � p � vn D

b11

b21

�

�

�

bq1

0

�

�

�

0

B = b11  f1 + b21  f2 + p + bq1  fq

B = C f1 � f2 � p � fq � vq + 1 � p � vn D  B̂

P-1 AP = Â = cA11

0
 A12

A22
d

AP = P cA11

0
 A12

A22
d
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Show that

where a1, a2, p , an are the coefficients of the characteristic polynomial

Solution. Let us consider the case where n=3. We shall show that

(10–140)

The left-hand side of Equation (10–140) is

The right-hand side of Equation (10–140) is

(10–141)

The Cayley–Hamilton theorem states that matrix A satisfies its own characteristic equation or, in
the case of n=3,

(10–142)

Using Equation (10–142), the third column of the right-hand side of Equation (10–141) becomes

Thus, Equation (10–141) becomes

Hence, the left-hand side and the right-hand side of Equation (10–140) are the same. We have
thus shown that Equation (10–140) is true. Consequently,

The preceding derivation can be easily extended to the general case of any positive integer n.

A–10–3. Consider a completely state controllable system

Define

M = CB � AB � p � An - 1 B D
x# = Ax + Bu

M-1 AM = C0

1

0

0

0

1

-a3

-a2

-a1

S

CB � AB � A2 B D C0

1

0

0

0

1

-a3

-a2

-a1

S = CAB � A2 B � A3 B D
-a3  B - a2  AB - a1  A2 B = A-a3  I - a2  A - a1  A2BB = A3 B

A3 + a1  A2 + a2  A + a3  I = 0

CB � AB � A2 B D C0

1

0

0

0

1

-a3

-a2

-a1

S = CAB � A2 B � -a3  B - a2  AB - a1  A2 B D
AM = A CB � AB � A2 B D = CAB � A2 B � A3 B D

AM = MC0

1

0

0

0

1

-a3

-a2

-a1

S
∑s I - A∑ = sn + a1 sn - 1 + p + an - 1 s + an

M-1 AM = G
0

1

0

�

�

�

0

0

0

1

�

�

�

0

p
p
p

p

0

0

0

�

�

�

1

-an

-an - 1

-an - 2

�

�

�

-a1

W
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and

where the ai’s are coefficients of the characteristic polynomial

Define also

Show that

Solution. Let us consider the case where n=3. We shall show that

(10–143)

Referring to Problem A–10–2, we have

Hence, Equation (10–143) can be rewritten as

Therefore, we need to show that

(10–144)

The left-hand side of Equation (10–144) is

C0

1

0

0

0

1

-a3

-a2

-a1

S Ca2

a1

1

a1

1

0

1

0

0

S = C-a3

0

0

0

a1

1

0

1

0

S
C0

1

0

0

0

1

-a3

-a2

-a1

S  W = WC 0

0

-a3

1

0

-a2

0

1

-a1

S
W-1C0

1

0

0

0

1

-a3

-a2

-a1

S  W = C 0

0

-a3

1

0

-a2

0

1

-a1

S
M-1 AM = C0

1

0

0

0

1

-a3

-a2

-a1

S
T-1 AT = (MW)-1 A(MW) = W-1(M-1 AM) W = C 0

0

-a3

1

0

-a2

0

1

-a1

S

T-1 AT = G
0

0

�

�

�

0

-an

1

0

�

�

�

0

-an - 1

0

1

�

�

�

0

-an - 2

p
p

p
p

0

0

�

�

�

1

-a1

W ,  T-1 B = G
0

0

�

�

�

0

1

W
T = MW

∑s I - A∑ = sn + a1 sn - 1 + p + an - 1 s + an

W = G
an - 1

an - 2

�

�

�

a1

1

an - 2

an - 3

�

�

�

1

0

p
p

p
p

a1

1

�

�

�

0

0

1

0

�

�

�

0

0

W
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The right-hand side of Equation (10–144) is

Clearly, Equation (10–144) holds true. Thus, we have shown that

Next, we shall show that

(10–145)

Note that Equation (10–145) can be written as

Noting that

we have

The derivation shown here can be easily extended to the general case of any positive integer n.

A–10–4. Consider the state equation

where

The rank of the controllability matrix M,

is 2.Thus, the system is completely state controllable.Transform the given state equation into the
controllable canonical form.

Solution. Since

 = s2 + 2s + 1 = s2 + a1 s + a2

 ∑s I - A∑ = 2 s - 1

4

-1

s + 3
2 = (s - 1)(s + 3) + 4

M = CB � AB D = B0

2

2

-6
R

A = B 1

-4

1

-3
R ,  B = B0

2
R

x# = Ax + Bu

T-1 B = C0
0
1
S

TC0

0

1

S = CB � AB � A2 B D Ca2

a1

1

a1

1

0

1

0

0

S C0

0

1

S = CB � AB � A2 B D C1

0

0

S = B

B = TC0

0

1

S = MWC0

0

1

S
T-1 B = C0

0

1

S
T-1 AT = C 0

0

-a3

1

0

-a2

0

1

-a1

S
Ca2

a1

1

a1

1

0

1

0

0

S C 0

0

-a3

1

0

-a2

0

1

-a1

S = C-a3

0

0

0

a1

1

0

1

0

S
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we have

Define

where

Then

and

Define

Then the state equation becomes

Since

and

we have

which is in the controllable canonical form.

A–10–5. Consider a system defined by

where

A = B 0
-2

1
-3
R ,  B = B0

2
R ,  C = [1 0]

 y = Cx

 x# = Ax + Bu

B x̂
#

1

x̂
#

2
R = B 0

-1
1

-2
R B x̂1

x̂2
R + B0

1
Ru

T-1 B = B0.5
0.5

0
0.5
R B0

2
R = B0

1
R

T-1AT = B0.5

0.5

0

0.5
R B 1

-4

1

-3
R B 2

-2

0

2
R = B 0

-1

1

-2
R

x̂
#

= T-1 ATx̂ + T-1Bu

x = Tx̂

T-1 = B0.5

0.5

0

0.5
R

T = B0

2

2

-6
R B2

1

1

0
R = B 2

-2

0

2
R

M = B0

2

2

-6
R ,  W = B2

1

1

0
R

T = MW

a1 = 2,  a2 = 1
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The characteristic equation of the system is

The eigenvalues of matrix A are –1 and –2.
It is desired to have eigenvalues at –3 and –5 by using a state-feedback control u=–Kx.

Determine the necessary feedback gain matrix K and the control signal u.

Solution. The given system is completely state controllable, since the rank of

is 2. Hence, arbitrary pole placement is possible.
Since the characteristic equation of the original system is

we have

The desired characteristic equation is

Hence,

It is important to point out that the original state equation is not in the controllable canonical
form, because matrix B is not

Hence, the transformation matrix T must be determined.

Hence,

Referring to Equation (10–13), the necessary feedback gain matrix is given by

Thus, the control signal u becomes

u = -Kx = -[6.5 2.5]Bx1

x2
R

 = C15 - 2 � 8 - 3 D B0.5

0

0

0.5
R = [6.5 2.5]

 K = Ca2 - a2 � a1 - a1 D  T-1

T-1 = B0.5

0

0

0.5
R

T = MW = CB � AB D Ba1

1

1

0
R = B0

2

2

-6
R B3

1

1

0
R = B2

0

0

2
R

B0

1
R

a1 = 8,  a2 = 15

(s + 3)(s + 5) = s2 + 8s + 15 = s2 + a1 s + a2 = 0

a1 = 3,  a2 = 2

s2 + 3s + 2 = s2 + a1 s + a2 = 0

M = CB � AB D = B0
2

2
-6
R

∑s I - A∑ = 2 s
2

-1

s + 3
2 = s2 + 3s + 2 = (s + 1)(s + 2) = 0
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A–10–6. A regulator system has a plant

Define state variables as

By use of the state-feedback control u=–Kx, it is desired to place the closed-loop poles at

Obtain the necessary state-feedback gain matrix K with MATLAB.

Solution. The state-space equations for the system become

Hence,

(Note that, for the pole placement, matrices C and D do not affect the state-feedback gain
matrix K.)

Two MATLAB programs for obtaining state-feedback gain matrix K are given in MATLAB
Programs 10–24 and 10–25.

 C = [1 0 0],    D = [0]

 A = C 0

0

-6

1

0

-11

0

1

-6

S ,   B = C 0

0

10

S

 y = [1 0 0]Cx1

x2

x3

S + 0u

 Cx
#
1

x
#
2

x
#
3

S = C 0

0

-6

1

0

-11

0

1

-6

S Cx1

x2

x3

S + C 0

0

10

S u

s = -2 + j213 ,  s = -2 - j213 ,  s = -10

 x3 = x
#
2

 x2 = x
#
1

 x1 = y

Y(s)

U(s)
=

10

(s + 1)(s + 2)(s + 3)

MATLAB Program 10–24

A = [0  1  0;0  0  1;-6  -11  -6];
B = [0;0;10];
J = [-2+j*2*sqrt(3)  -2-j*2*sqrt(3)  -10];
K = acker(A,B,J)

K =

15.4000    4.5000    0.8000
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A–10–7. Consider a completely observable system

Define the observability matrix as N:

Show that

(10–146)

where a1, a2, p , an are the coefficients of the characteristic polynomial

Solution. Let us consider the case where n=3. Then Equation (10–146) can be written as

(10–147)

Equation (10–147) may be rewritten as

(10–148)

We shall show that Equation (10–148) holds true. The left-hand side of Equation (10–148) is

(10–149)N*A = C C
CA
CA2

S  A = C CA
CA2

CA3

S
N* A = C 0

0

-a3

1

0

-a2

0

1

-a1

S  N*

N*A(N*)-1 = C 0

0

-a3

1

0

-a2

0

1

-a1

S
∑s I - A∑ = sn + a1 sn - 1 + p + an - 1 s + an

N* A(N*)-1 = G
0

0

�

�

�

0

-an

1

0

�

�

�

0

an - 1

0

1

�

�

�

0

-an - 2

p
p

p
p

0

0

�

�

�

1

-a1

W

N = CC*� A*C* � p � (A*)n - 1 C* D
 y = Cx

 x# = Ax

MATLAB Program 10–25

A = [0  1  0;0  0  1;  -6  -11  -6];
B = [0;0;10];
J = [-2+j*2*sqrt(3)  -2-J*2*Sqrt(3)  -10];
K = place(A,B,J)
place: ndigits= 15

K =

15.4000    4.5000    0.8000
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The right-hand side of Equation (10–148) is

(10–150)

The Cayley–Hamilton theorem states that matrix A satisfies its own characteristic equation, or

Hence,

Thus, the right-hand side of Equation (10–150) becomes the same as the right-hand side of
Equation (10–149). Consequently,

which is Equation (10–148). This last equation can be modified to

The derivation presented here can be extended to the general case of any positive integer n.

A–10–8. Consider a completely observable system defined by

(10–151)

(10–152)

Define

and

where the a’s are coefficients of the characteristic polynomial

Define also

Q = (WN*)-1

∑s I - A∑ = sn + a1 sn - 1 + p + an - 1 s + an

W = G
an - 1

an - 2

�

�

�

a1

1

an - 2

an - 3

�

�

�

1

0

p
p

p
p

a1

1

�

�

�

0

0

1

0

�

�

�

0

0

W

N = CC* � A* C* � p � (A*)n - 1 C* D
 y = Cx + Du

 x# = Ax + Bu

N*A(N*)-1 = C 0

0

-a3

1

0

-a2

0

1

-a1

S
N*A = C 0

0

-a3

1

0

-a2

0

1

-a1

S  N*

-a1  CA2 - a2  CA - a3  C = CA3

A3 + a1  A2 + a2  A + a3  I = 0

 = C CA
CA2

-a3  C - a2  CA - a1  CA2

S
 C 0

0

-a3

1

0

-a2

0

1

-a1

S  N* = C 0

0

-a3

1

0

-a2

0

1

-a1

S C C
CA
CA2

S
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Show that

where the bk’s (k=0, 1, 2, p , n) are those coefficients appearing in the numerator of the transfer
function when C(sI-A)–1B+D is written as follows:

where D=b0.

Solution. Let us consider the case where n=3. We shall show that

(10–153)

Note that, by referring to Problem A–10–7, we have

Hence, we need to show that

or

(10–154)WC 0

0

-a3

1

0

-a2

0

1

-a1

S  = C0

1

0

0

0

1

-a3
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SW

WC 0

0
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0
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0

1
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S  W-1 = C0

1

0

0
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1
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S
(WN*) A(WN*)-1 = W CN* A(N*)-1 D  W-1 = WC 0

0

-a3

1

0

-a2

0

1

-a1

S  W-1

Q-1 AQ = (WN*) A(WN*)-1 = C0

1

0

0

0

1

-a3

-a2

-a1

S

C(s I - A)-1 B + D =
b0 sn + b1 sn - 1 + p + bn - 1 s + bn

sn + a1 sn - 1 + p + an - 1 s + an

Q-1 B = F
bn - an b0

bn - 1 - an - 1 b0

�

�

�

b1 - a1 b0

V
CQ = [0 0 p   0 1]

Q-1 AQ = G
0
1
0
�

�

�

0

0
0
1
�

�

�

0

p
p
p

p

0
0
0
�

�

�

1

-an

-an - 1

-an - 2

�

�

�
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The left-hand side of Equation (10–154) is

The right-hand side of Equation (10–154) is

Thus, we see that Equation (10–154) holds true. Hence, we have proved Equation (10–153).
Next we shall show that

or

Notice that

Hence, we have shown that

Next define

Then Equation (10–151) becomes

(10–155)

and Equation (10–152) becomes

(10–156)

Referring to Equation (10–153), Equation (10–155) becomes

C x̂
#

1

x̂
#

2

x̂
#

3

S = C0

1

0

0

0

1

-a3

-a2
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S C x̂1
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#
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 = [1 0 0]C C
CA
CA2
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[0 0 1](WN* ) = [0 0 1]Ca2
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1
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1
0

1
0
0
S C C
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CA2

S
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0
0

0
a1

1

0
1
0
S

C 0
1
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0
0
1
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S  W = C0
1
0

0
0
1
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S Ca2
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1
0

1
0
0
S
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0

0
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S
 W C 0
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1
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0

1

0

0
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1
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where

The transfer function G(s) for the system defined by Equations (10–155) and (10–156) is

Noting that

we have

Note that D=b0. Since

we have

Hence,

Thus, we have shown that

Note that what we have derived here can be easily extended to the case when n is any positive
integer.

A–10–9. Consider a system defined by

 y = Cx

x# = Ax + Bu

Q-1 B = Cg3

g2

g1

S = Cb3 - a3 b0

b2 - a2 b0

b1 - a1 b0

S
g1 = b1 - a1 b0 , g2 = b2 - a2 b0 , g3 = b3 - a3 b0

=
b0 s3 + b1 s2 + b2 s + b3

s3 + a1 s2 + a2 s + a3

=
b0 s3 + Ag1 + a1 b0Bs2 + Ag2 + a2 b0Bs + g3 + a3 b0

s3 + a1 s2 + a2 s + a3

=
g1 s2 + g2 s + g3

s3 + a1 s2 + a2 s + a3

+ b0

G(s) =
1

s3 + a1 s2 + a2 s + a3

C1 s s2 D Cg3
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S + D

C s

-1
0

0
s

-1
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s + a1

S -1

=
1
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C s2 + a1 s + a2
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1

-a3

s2 + a1 s
s

-a3 s
-a2 s - a3

s2

S
G(s) = [0 0 1]C s

-1
0

0
s

-1

a3

a2

s + a1

S -1Cg3

g2

g1

S + D

CQ = [0 0 1]

G(s) = CQAs I - Q-1 AQB-1 Q-1 B + D

Cg3

g2

g1

S = Q-1 B
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where

The rank of the observability matrix N,

is 2. Hence, the system is completely observable. Transform the system equations into the ob-
servable canonical form.

Solution. Since

we have

Define

where

Then

and

Define

Then the state equation becomes

or

(10–157)

The output equation becomes

y = CQx̂

= B0
1

-1
-2
R B x̂1

x̂2
R + B0

2
R u

B x̂
#

1

x̂
#

2
R = B-1

1
0
1
R B 1

-4
1

-3
R B-1

1
0
1
R B x̂1

x̂2
R + B-1

1
0
1
R B0

2
R u

x̂
#

= Q-1 AQx̂ + Q-1 Bu

x = Qx̂

Q-1 = B-1

1

0

1
R

Q = b B2
1

1
0
R B 1

-3
1

-2
R r -1

= B-1
1

0
1
R -1

= B-1
1

0
1
R

N = B 1

1
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-2
R ,  W = Ba1

1

1

0
R = B2

1

1

0
R

Q = (WN*)-1

a1 = 2,  a2 = 1

∑s I - A∑ = s2 + 2s + 1 = s2 + a1 s + a2

N = CC* � A* C* D = B1

1

-3

-2
R

A = B 1
-4

1
-3
R ,  B = B0

2
R ,  C = [1 1]
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or

(10–158)

Equations (10–157) and (10–158) are in the observable canonical form.

A–10–10. For the system defined by

consider the problem of designing a state observer such that the desired eigenvalues for the
observer gain matrix are m1 ,m2 , p ,mn .

Show that the observer gain matrix given by Equation (10–61), rewritten as

(10–159)

can be obtained from Equation (10–13) by considering the dual problem. That is, the matrix Ke

can be determined by considering the pole-placement problem for the dual system, obtaining the
state-feedback gain matrix K, and taking its conjugate transpose, or Ke=K*.

Solution. The dual of the given system is

(10–160)

Using the state-feedback control

Equation (10–160) becomes

Equation (10–13), which is rewritten here, is

(10–161)

where

For the original system, the observability matrix is

Hence, matrix T can also be written as

Since we have

and

(T*)-1 = (WN*)-1

T* = W* N* = WN*

W = W*,
T = NW

CC* � A* C* � p � (A*)n - 1 C* D = N

T = MW = CC* � A* C* � p � (A*)n - 1 C* D  W

K = Can - an � an - 1 - an - 1 � p � a2 - a2 � a1 - a1 D  T-1

z# = (A* - C* K) z

v = -Kz

n = B* z

z# = A* z + C* v

Ke = (WN*)-1F
an - an

an - 1 - an - 1

�

�

�

a1 - a1

V

 y = Cx

 x# = Ax + Bu

y = [1 1]B-1

1

0

1
R B x̂1

x̂2
R = [0 1]B x̂1

x̂2
R
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Taking the conjugate transpose of both sides of Equation (10–146), we have

Since Ke=K*, this last equation is the same as Equation (10–159). Thus, we obtained Equation
(10–159) by considering the dual problem.

A–10–11. Consider an observed-state feedback control system with a minimum-order observer described
by the following equations:

(10–162)

(10–163)
where

Axa is the state variable that can be directly measured, and corresponds to the observed state
variables. B

Show that the closed-loop poles of the system comprise the closed-loop poles due to pole
placement Cthe eigenvalues of matrix (A-BK)] and the closed-loop poles due to the minimum-
order observer [the eigenvalues of matrix 

Solution. The error equation for the minimum-order observer may be derived as given by
Equation (10–94), rewritten thus:

(10–164)
where

From Equations (10–162) and (10–163), we obtain

(10–165)

Combining Equations (10–164) and (10–165) and writing

we obtain

(10–166)

Equation (10–166) describes the dynamics of the observed-state feedback control system with a
minimum-order observer. The characteristic equation for this system is

or @s I - A + BK @ @s I - Abb + Ke  Aab @ = 0

2 s I - A + BK
0

-BKb

s I - Abb + Ke  Aab

2 = 0

Bx#

e#
R = BA - BK

0
BKb

Abb - Ke  Aab
R Bx

e
R

K = CKa � Kb D
 = Ax - BK ex - c0

e
d f = (A - BK) x + BK c0

e
d

 x# = Ax - BK x� = Ax - BK c xa

x� b
d = Ax - BK c xa

xb - e
d

e = xb - x� b

e# = AAbb - Ke  AabB  e

AAbb - Ke  AabB D
x� b

x = cxa

xb
d ,  x� = c xa

x�b
d

 u = -Kx�
 y = Cx

 x# = Ax + Bu

K* = AT-1B*F
an - an

an - 1 - an - 1

�

�

�

a1 - a1

V = (T*)-1F
an - an

an - 1 - an - 1

�

�

�

a1 - a1

V = (WN*)-1F
an - an

an - 1 - an - 1

�

�

�

a1 - a1

V
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The closed-loop poles of the observed-state feedback control system with a minimum-order
observer consist of the closed-loop poles due to pole placement and the closed-loop poles due to
the minimum-order observer. (Therefore, the pole-placement design and the design of the
minimum-order observer are independent of each other.)

A–10–12. Consider a completely state controllable system defined by

(10–167)

where

Suppose that the rank of the following matrix

is n+1. Show that the system defined by

(10–168)
where

is completely state controllable.

Solution. Define

Because the system given by Equation (10–167) is completely state controllable, the rank of matrix
M is n. Then the rank of

is n+1. Consider the following equation:

(10–169)

Since matrix

is of rank n+1, the left-hand side of Equation (10–169) is of rank n+1. Therefore, the right-hand
side of Equation (10–169) is also of rank n+1. Since

= CÂ  B̂ � Â2 B̂ � p � Ân B̂ � B̂ D= B AB
-CB

�

�

A2 B
-CAB

� p �

� p �

An B
-CAn - 1 B

�

�

B
0
R

B AM
-CM

B
0
R = B A CB � AB � p � An - 1 B D

-C CB � AB � p � An - 1 B D B
0
R

B A
-C

B
0
R

B A
-C

B
0
R BM

0
0
1
R = B AM

-CM
B
0
R

BM
0

0
1
R

M = CB � AB � p � An - 1 B D
Â = B A

-C
0
0
R ,  B̂ = BB

0
R  ,  ue = u(t) - u(q)

e# = Âe + B̂ue

B A
-C

B
0
R(n + 1) * (n + 1)

C = 1 * n constant matrix

B = n * 1 constant matrix

A = n * n constant matrix

y = output signal (scalar)

u = control signal (scalar)

x = state vector (n-vector)

 y = Cx

 x# = Ax + Bu
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we find that the rank of

is n+1. Thus, the system defined by Equation (10–168) is completely state controllable.

A–10–13. Consider the system shown in Figure 10–49. Using the pole-placement-with-observer approach,
design a regulator system such that the system will maintain the zero position Ay1=0 and y2=0 B
in the presence of disturbances. Choose the desired closed-loop poles for the pole-placement part
to be

and the desired poles for the minimum-order observer to be

First, determine the state feedback gain matrix K and observer gain matrix Ke . Then, obtain
the response of the system to an arbitrary initial condition—for example,

where e1 and e2 are defined by

Assume that m1=1 kg, m2=2 kg, k=36 N�m, and b=0.6 N-s�m.

Solution. The equations for the system are

By substituting the given numerical values for m1, m2, k, and b and simplifying, we obtain

Let us choose the state variables as follows:

 x4 = y
#
2

 x3 = y
#
1

 x2 = y2

 x1 = y1

 y
$

2 = 18y1 - 18y2 + 0.3y
#
1 - 0.3y

#
2

 y
$

1 = -36y1 + 36y2 - 0.6y
#
1 + 0.6y

#
2 + u

 m2 y$2 = kAy1 - y2B + bAy# 1 - y
#
2B m1 y$1 = kAy2 - y1B + bAy# 2 - y

#
1B + u

 e2 = y2 - y�2

 e1 = y1 - y�1

e1(0) = 0.1,   e2(0) = 0.05

y1(0) = 0.1,  y2(0) = 0,  y
#
1(0) = 0,  y

#
2(0) = 0

s = -15,  s = -16

s = -2 + j213 ,  s = -2 - j213 ,  s = -10,  s = -10

CB̂ � Â  B̂ � Â2 B̂ � p � Ân B̂ D

m1 m2

y1 y2

u
k

b

Regulator

Figure 10–49
Mechanical system.
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Then, the state-space equations become

Define

The state feedback gain matrix K and observer gain matrix Ke can be obtained easily by use of
MATLAB as follows:

(See MATLAB Program 10–26.)

 Ke = B14.4

0.3

0.6

15.7
RK = [130.4444 -41.5556 23.1000 15.4185]

A = E 0
0

-36
18

0
0

36
-18

1
0

-0.6
0.3

0
1

0.6
-0.3

U = CAaa

Aba

Aab

Abb

S ,  B = E 0
0
�

1
0

U = CBa

�

Bb

S

By1

y2
R = B1

0
0
1

0
0

0
0
R Dx1

x2

x3

x4

T
Dx

#
1

x
#
2

x
#
3

x
#
4

T = D 0
0

-36
18

0
0

36
-18

1
0

-0.6
0.3

0
1
0.6

-0.3

T Dx1

x2

x3

x4

T + D0
0
1
0

T u

MATLAB Program 10–26

A = [0  0  1  0;0  0  0  1;-36  36  -0.6  0.6;18  -18  0.3  -0.3];
B = [0;0;1;0];
J = [-2+j*2*sqrt(3)  -2-j*2*sqrt(3)  -10  -10];
K = acker(A,B,J)

K =

130.4444    -41.5556    23.1000    15.4185

Aab = [1  0;0  1];
Abb = [-0.6  0.6;0.3  -0.3];
L = [-15  -16];
Ke = place(Abb',Aab',L)'
place: ndigits= 15

Ke =

14.4000    0.6000
0.3000    15.7000

Response to Initial Condition: Next, we obtain the response of the designed system to the given
initial condition. Since

x� = B xa

x� b
R = B y

x� b
Ru = -K x�

x# = Ax + Bu



we have
(10–170)

Note that

where

Then, Equation (10–170) can be written as

(10–171)

Since, from Equation (10–94), we have

(10–172)

by combining Equations (10–171) and (10–172) into one equation, we have

The state matrix here is a 6*6 matrix. The response of the system to the given initial condition
can be obtained easily with MATLAB. (See MATLAB Program 10–27.) The resulting response
curves are shown in Figure 10–50. The response curves seem to be acceptable.

cx#
e#
d = cA - BK

0
 BKF       

Abb - Ke  Aab
d cx

e
d

e# = AAbb - Ke  AabB  e

x# = (A - BK) x + BKFe

F = c0
I
d

x - x� = c xa

xb
d - c xa

x� b
d = c 0

xb - x� b
d = c0

e
d = c0

I
de = Fe

x# = Ax - BK x� = (A - BK) x + BKAx - x� B

838 Chapter 10 / Control Systems Design in State Space

x 1
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e 2
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0
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x 4

−0.2

0.1

0
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0.2

Response to initial condition Response to initial condition

Figure 10–50
Response curves to
initial condition.
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MATLAB Program 10–27

% Response to initial condition

A = [0  0  1  0;0  0  0  1;-36  36  -0.6  0.6;18  -18  0.3  -0.3];
B = [0;0;1;0];
K = [130.4444  -41.5556  23.1000  15.4185];
Ke = [14.4  0.6;0.3  15.7];
F = [0  0;0  0;1  0;0  1];
Aab = [1  0;0  1];
Abb = [-0.6  0.6;0.3  -0.3];
AA = [A-B*K  B*K*F; zeros(2,4)  Abb-Ke*Aab];
sys = ss(AA,eye(6),eye(6),eye(6));
t = 0:0.01:4;
y = initial(sys,[0.1;0;0;0;0.1;0.05],t);
x1 = [1  0  0  0  0  0]*y';
x2 = [0  1  0  0  0  0]*y';
x3 = [0  0  1  0  0  0]*y';
x4 = [0  0  0  1  0  0]*y';
e1 = [0  0  0  0  1  0]*y';
e2 = [0  0  0  0  0  1]*y';

subplot(3,2,1); plot(t,x1); grid; title('Response to initial condition'),
xlabel('t (sec)'); ylabel('x1')
subplot(3,2,2); plot(t,x2); grid; title('Response to initial condition'),
xlabel('t (sec)'); ylabel('x2')
subplot(3,2,3); plot(t,x3); grid; xlabel('t (sec)'); ylabel('x3')
subplot(3,2,4); plot(t,x4); grid; xlabel('t (sec)'); ylabel('x4')
subplot(3,2,5); plot(t,e1); grid; xlabel('t (sec)');ylabel('e1')
subplot(3,2,6); plot(t,e2); grid; xlabel('t (sec)'); ylabel('e2')

r = 0 yu–y Observer
controller

+
–

4
s(s + 2)

PlantFigure 10–51
Regulator system.

A–10–14. Consider the system shown in Figure 10–51.Design both the full-order and minimum-order observers
for the plant.Assume that the desired closed-loop poles for the pole-placement part are located at

Assume also that the desired observer poles are located at
(a) s=–8, s=–8 for the full-order observer
(b) s=–8 for the minimum-order observer

Compare the responses to the initial conditions specified below:
(a) for the full-order observer:

x1(0) = 1,  x2(0) = 0,  e1(0) = 1,  e2(0) = 0

s = -2 + j213 ,  s = -2 - j2 13
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(b) for the minimum-order observer:

Also, compare the bandwidths of both systems.

Solution. We first determine the state-space representation of the system. By defining state
variables x1 and x2 as

we obtain

For the pole-placement part, we determine the state feedback gain matrix K. Using MATLAB,
we find K to be

K=[4 0.5]
(See MATLAB Program 10–28.)

Next, we determine the observer gain matrix Ke for the full-order observer. Using MATLAB,
we find Ke to be

(See MATLAB Program 10–28.)

Ke = B14

36
R

 y = [1 0]Bx1

x2
R Bx

#
1

x
#
2
R = B0

0

1

-2
R Bx1

x2
R + B0

4
R u

 x2 = y
#

 x1 = y

x1(0) = 1,  x2(0) = 0,  e1(0) = 1

MATLAB Program 10–28

% Obtaining matrices K and Ke.

A = [0  1;0  -2];
B = [0;4];
C = [1  0];
J = [-2+j*2*sqrt(3)  -2-j*2*sqrt(3)];
L = [-8  -8];
K = acker(A,B,J)

K =

4.0000  0.5000

Ke = acker(A',C',L)'

Ke =

14
36

Now we find the response of this system to the given initial condition. Referring to Equation
(10–70), we have

This equation defines the dynamics of the designed system using the full-order observer. MATLAB
Program 10–29 produces the response to the given initial condition.The resulting response curves
are shown in Figure 10–52.

Bx#

e#
R = BA - BK

0
BK

A - Ke  C
R Bx

e
R



Example Problems and Solutions 841

MATLAB Program 10–29

% Response to initial condition ---- full-order observer

A = [0  1;0  -2];
B = [0;4];
C = [1  0];
K = [4  0.5];
Ke = [14;36];
AA = [A-B*K  B*K; zeros(2,2)  A-Ke*C];
sys = ss(AA, eye(4), eye(4), eye(4));
t = 0:0.01:8;
x = initial(sys, [1;0;1;0],t);
x1 = [1  0  0  0]*x';
x2 = [0  1  0  0]*x';
e1 = [0  0  1  0]*x';
e2 = [0  0  0  1]*x';

subplot(2,2,1); plot(t,x1); grid
xlabel('t (sec)'); ylabel('x1')

subplot(2,2,2); plot(t,x2); grid
xlabel('t (sec)'); ylabel('x2')

subplot(2,2,3); plot(t,e1); grid
xlabel('t (sec)'); ylabel('e1')

subplot(2,2,4); plot(t,e2); grid
xlabel('t (sec)'); ylabel('e2')
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Figure 10–52
Response curves to
initial condition.
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MATLAB Program 10–31

% Obtaining Ke ---- minimum-order observer

Aab = [1];
Abb = [-2];
LL = [-8];
Ke = acker(Abb',Aab',LL)'

Ke =

6

MATLAB Program 10–30

% Determination of transfer function of observer controller ---- full-order observer

A = [0  1;0  -2];
B = [0;4];
C = [1  0];
K = [4  0.5];
Ke = [14;36];
[num,den] = ss2tf(A-Ke*C-B*K, Ke,K,0)

num =

0   74.0000   256.0000

den =

1   18   108

To obtain the transfer function of the observer controller, we use MATLAB. MATLAB
Program 10–30 produces this transfer function. The result is

num
den

=
74s + 256

s2 + 18s + 108
=

74(s + 3.4595)

(s + 9 + j5.1962)(s + 9 - j5.1962)

Next, we obtain the observer gain matrix Ke for the minimum-order observer. MATLAB
Program 10–31 produces Ke . The result is

Ke = 6

The response of the system with minimum-order observer to the initial condition can be ob-
tained as follows: By substituting into the plant equation given by Equation (10–79)u = -K x�
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MATLAB Program 10–32

% Response to intial condition ---- minimum-order observer

A = [0  1;0  -2];
B = [0;4];
K = [4  0.5];
Kb = 0.5;
Ke = 6;
Aab = 1; Abb = -2;
AA = [A-B*K  B*Kb; zeros(1,2)  Abb-Ke*Aab];
sys = ss(AA,eye(3),eye(3),eye(3));
t = 0:0.01:8;
x = initial(sys,[1;0;1],t);
x1 = [1  0  0]*x';
x2 = [0  1  0]*x';
e = [0  0  1]*x';

subplot(2,2,1); plot(t,x1); grid
xlabel('t (sec)'); ylabel('x1')

subplot(2,2,2); plot(t,x2); grid
xlabel('t (sec)'); ylabel('x2')

subplot(2,2,3); plot(t,e); grid
xlabel('t (sec)'); ylabel('e')

we find

or

The error equation is

Hence the system dynamics are defined by

Based on this last equation, MATLAB Program 10–32 produces the response to the given initial
condition. The resulting response curves are shown in Figure 10–53.

Bx#

e
# R = BA - BK

0
BKb

Abb - Ke Aab
R B x

e
R

e
# = AAbb - Ke AabB  e

x# = (A - BK) x + BKb e

= (A - BK) x + B CKa Kb D B0
e
R

x# = Ax - BK x� = Ax - BKx + BK(x - x� )
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Response curves to
initial condition.

The transfer function of the observer controller, when the system uses the minimum-order
observer, can be obtained by use of MATLAB Program 10–33. The result is

num
den

=
7s + 32
s + 10

=
7(s + 4.5714)

s + 10

MATLAB Program 10–33

% Determination of transfer function of observer controller ---- minimum-order observer

A = [0  1;0  -2];
B = [0;4];
Aaa = 0; Aab = 1; Aba = 0; Abb = -2;
Ba = 0; Bb = 4;
Ka = 4; Kb = 0.5;
Ke = 6;
Ahat = Abb - Ke*Aab;
Bhat = Ahat*Ke + Aba - Ke*Aaa;
Fhat = Bb - Ke*Ba;
Atilde = Ahat - Fhat*Kb;
Btilde = Bhat - Fhat*(Ka + Kb*Ke);
Ctilde = -Kb;
Dtilde = -(Ka + Kb*Ke);
[num,den] = ss2tf(Atilde, Btilde, -Ctilde, -Dtilde)

num =

7  32

den =

1  10
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The observer controller is clearly a lead compensator.
The Bode diagrams of System 1 (closed-loop system with full-order observer) and of Sys-

tem 2 (closed-loop system with minimum-order observer) are shown in Figure 10–54. Clearly, the
bandwidth of System 2 is wider than that of System 1. System 1 has a better high-frequency noise-
rejection characteristic than System 2.

A–10–15. Consider the system

where x is a state vector (n-vector) and A is an n*n constant matrix. We assume that A is non-
singular. Prove that if the equilibrium state x=0 of the system is asymptotically stable (that is, if
A is a stable matrix), then there exists a positive-definite Hermitian matrix P such that

where Q is a positive-definite Hermitian matrix.

Solution. The matrix differential equation.

has the solution

Integrating both sides of this matrix differential equation from t=0 to t=q, we obtain

X(q) - X(0) = A* a 3q

0
X dt b + a 3q

0
X dt b  A

X = eA* t QeAt

X
#

= A* X + XA,  X(0) = Q

A* P + PA = -Q

x# = Ax

Frequency (rad/sec)

Bode Diagrams of Systems
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Figure 10–54
Bode diagrams of System 1
(system with full-order
observer) and System 2
(system with minimum-
order observer).
System 1=
(296s+1024)�
(s4+20s3+144s2

+512s+1024);
System 2= (28s+128)�
(s3+12s2+48s+128).
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Noting that A is a stable matrix and, therefore, we obtain

Let us put

Note that the elements of are finite sums of terms like where the li are
the eigenvalues of A and mi is the multiplicity of li . Since the li possess negative real parts,

exists. Note that

Thus P is Hermitian (or symmetric if P is a real matrix). We have thus shown that for a stable A
and for a positive-definite Hermitian matrix Q, there exists a Hermitian matrix P such that

We now need to prove that P is positive definite. Consider the following Her-
mitian form:

Hence, P is positive definite. This completes the proof.

A–10–16. Consider the control system described by

(10–173)

where

Assuming the linear control law

(10–174)

determine the constants k1 and k2 so that the following performance index is minimized:

J = 3
q

0
xT x dt

u = -Kx = -k1 x1 - k2 x2

A = B0

0

1

0
R ,  B = B0

1
R

x# = Ax + Bu

= 0,   for x = 0

= 3
q

0
AeAt xB* QAeAt xB dt 7 0,   for x Z 0

x* Px = x* 3
q

0
eA* t QeAt dt x

A* P + PA = -Q.

P* = 3
q

0
eA* t QeAt dt = P

3
q

0
eA* t QeAt dt

teli t p , tmi - 1 eli t,eli t,eAt

P = 3
q

0
X dt = 3

q

0
eA* t QeAt dt

-X(0) = -Q = A* a 3q

0
X dt b + a 3q

0
X dt b  A

X(q) = 0,
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Consider only the case where the initial condition is

Choose the undamped natural frequency to be 2 rad�sec.

Solution. Substituting Equation (10–174) into Equation (10–173), we obtain

or

(10–175)

Thus,

Elimination of x2 from Equation (10–175) yields

Since the undamped natural frequency is specified as 2 rad�sec, we obtain

Therefore,

is a stable matrix if k2>0. Our problem now is to determine the value of k2 so that the
performance index

is minimized, where the matrix P is determined from Equation (10–115), rewritten

Since in this system Q=I and R=0, this last equation can be simplified to

(10–176)

Since the system involves only real vectors and real matrices, P becomes a real symmetric matrix.
Then Equation (10–176) can be written as

B0

1

-4

-k2
R Bp11

p12

p12

p22
R + Bp11

p12

p12

p22
R B 0

-4

1

-k2
R = B-1

0

0

-1
R

(A - BK)* P + P(A - BK) = -I

(A - BK)* P + P(A - BK) = -(Q + K* RK)

J = 3
q

0
xT x dt = xT(0) P(0) x(0)

A - BK

A - BK = B 0

-4

1

-k2
R

k1 = 4

x
$

1 + k2 x# 1 + k1 x1 = 0

A - BK = B 0

-k1

1

-k2
R

 = B 0

-k1

1

-k2
R Bx1

x2
R

 Bx
#
1

x
#
2
R = B0

0

1

0
R Bx1

x2
R + B0

1
R C-k1 x1 - k2 x2 D

x# = Ax - BKx

x(0) = B c

0
R
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Solving for the matrix P, we obtain

The performance index is then

(10–177)

To minimize J, we differentiate J with respect to k2 and set equal to zero as follows:

Hence,

With this value of k2, we have Thus, the minimum value of J is obtained by substi-
tuting into Equation (10–177), or

The designed system has the control law

The designed system is optimal in that it results in a minimum value for the performance index J
under the assumed initial condition.

A–10–17. Consider the same inverted-pendulum system as discussed in Example 10–5.The system is shown
in Figure 10–8, where M=2 kg, m=0.1 kg, and l=0.5 m. The block diagram for the system is
shown in Figure 10–9. The system equations are given by

j
#

= r - y = r - Cx

u = -Kx + kI j

y = Cx

x# = Ax + Bu

u = -4x1 - 120x2

Jmin =
15

2
 c2

k2 = 120
02J�0k2

2 7 0.

k2 = 120

0J

0k2
= a -5

2k2
2

+
1

8
b  c2 = 0

0J�0k2

= a 5
2k2

+
k2

8
b  c2

= [c 0]Bp11

p12

p12

p22
R B c

0
R = p11 c2

J = xT(0) Px(0)

P = Bp11

p12

p12

p22
R = D 5

2k2
+

k2

8
1
8

1
8
5

8k2

T
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where

Referring to Equation (10–51), the error equation for the system is given by

where

and the control signal is given by Equation (10–41):

where

Using MATLAB, determine the state feedback gain matrix such that the following
performance index J is minimized:

J = 3
q

0
(e* Qe + u* Ru) dt

K̂

x = Dx1

x2

x3

x4

T = D uu#
x

x
#
T

e = Bxe

je
R = Bx(t) - x(q)

j(t) - j(q)
R

K̂ = CK � -kI D = Ck1 k2 k3 k4 � -kI D
ue = -K̂e

Â = B A
-C

0
0
R = E 0

20.601
0

-0.4905
0

1
0
0
0
0

0
0
0
0

-1

0
0
1
0
0

0
0
0
0
0

U ,  B̂ = BB
0
R = E 0

-1
0

0.5
0

U

e# = Âe + B̂ue

A = D 0
20.601

0
-0.4905

1
0
0
0

0
0
0
0

0
0
1
0

T  ,  B = D 0
-1

0
0.5

T ,  C = [0 0 1 0]
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where

Obtain the unit-step response of the system designed.

Solution. A MATLAB program to determine is given in MATLAB Program 10–34.The result is

k1 = -188.0799,  k2 = -37.0738,  k3 = -26.6767,  k4 = -30.5824,  kI = -10.0000

K̂

Q = E100

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

U ,  R = 0.01

MATLAB Program 10–34

% Design of quadratic optimal control system

A = [0  1  0  0;20.601  0  0  0;0  0  0  1;-0.4905  0  0  0];
B = [0;-1;0;0.5];
C = [0  0  1  0];
D = [0];
Ahat = [A zeros(4,1);-C  0];
Bhat = [B;0];
Q = [100  0  0  0  0;0  1  0  0  0;0  0  1  0  0;0  0  0  1  0;0  0  0  0  1];
R = [0.01];
Khat = lqr(Ahat,Bhat,Q,R)

Khat =

-188.0799  -37.0738  -26.6767  -30.5824  10.0000

Unit-Step Response. Once we have determined the feedback gain matrix K and the integral gain
constant kI, we can determine the unit-step response of the designed system.The system equation
is

(10–178)

[Refer to Equation (10–35).] Since

Equation (10–178) can be written as follows:

(10–179)

The output equation is

y = [C    0]Bx
j
R + [0] r

Bx#

j
# R = BA - BK

-C
BkI

0
R Bx
j
R + B0

1
R r

u = -Kx + kI j

Bx#

j
# R = B A

-C
0
0
R Bx
j
R + BB

0
Ru + B0

1
R r



MATLAB Program 10–35 gives the unit-step response of the system given by Equation (10–179).
The resulting response curves are presented in Figure 10–55. It shows response curves 
versus t, versus t, versus t, versus t, and versus t, where
the input r(t) to the cart is a unit-step function All initial conditions are set equal
to zero. Figure 10–56 is an enlarged version of the cart position  versus t. The cart
moves backward a very small amount for the first 0.6 sec or so. (Notice that the cart velocity is
negative for the first 0.4 sec.) This is due to the fact that the inverted-pendulum-on-the-cart system
is a nonminimum-phase system.

y C= x3(t) DCr(t) = 1 m D . j C= x5(t) Dy
# C= x4(t) Dy C= x3(t) Du

# C= x2(t) D u C= x1(t) D
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MATLAB Program 10–35

% Unit-step response

A = [0  1  0  0;20.601  0  0  0;0  0  0  1;-0.4905  0  0  0];
B = [0;-1;0;0.5];
C = [0  0  1  0];
D = [0];
K = [-188.0799  -37.0738  -26.6767  -30.5824];
kI = -10.0000;
AA = [A-B*K  B*kI; -C  0];
BB = [0;0;0;0;1];
CC= [C  0];
DD = D;
t = 0:0.01:10;
[y,x,t] = step(AA,BB,CC,DD,1,t);
x1 = [1  0  0  0  0]*x';
x2 = [0  1  0  0  0]*x';
x3 = [0  0  1  0  0]*x';
x4 = [0  0  0  1  0]*x';
x5 = [0  0  0  0  1]*x';

subplot(3,2,1); plot(t,x1); grid;
xlabel('t (sec)'); ylabel('x1')

subplot(3,2,2); plot(t,x2); grid;
xlabel('t (sec)'); ylabel('x2')

subplot(3,2,3); plot(t,x3); grid;
xlabel('t (sec)'); ylabel('x3')

subplot(3,2,4); plot(t,x4); grid;
xlabel('t (sec)'); ylabel('x4')

subplot(3,2,5); plot(t,x5); grid;
xlabel('t (sec)'); ylabel('x5')

Comparing the step-response characteristics of this system with those of Example 10–5, we
notice that the response of the present system is less oscillatory and exhibits less maximum
overshoot in the position response Ax3 versus t B . The system designed by use of the quadratic
optimal regulator approach generally gives such characteristics—less oscillatory and well damped.
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Response curves to a
unit-step input.
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A–10–18. Consider the stability of a system with unstructured additive uncertainty as shown in Figure
10–57(a). Define

true plant dynamics
G=model of plant dynamics

unstructured additive uncertainty¢a =

G
� =
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Figure 10–57
(a) Block diagram of a system with unstructured additive uncertainty;
(b)–(d) successive modifications of the block diagram of (a);
(e) block diagram showing a generalized plant with unstructured additive uncertainty;
(f) generalized plant diagram.
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Assume that is stable and its upper bound is known.Assume also that and G are related by 

=G+ a

Obtain the condition that the controller K must satisfy for robust stability. Also, obtain a gener-
alized plant diagram for this system.

Solution. Let us obtain the transfer function between point A and point B in Figure 10–57(a).
Redrawing Figure 10–57(a), we obtain Figure 10–57(b).Then the transfer function between points
A and B can be obtained as

Define

Then Figure 10–57(b) can be redrawn as Figure 10–57(c). By using the small-gain theorem, the con-
dition for the robust stability of the closed-loop system can be obtained as 

(10–180)

Since it is impossible to model precisely, we need to find a scalar transfer function 
such that

for all v

and use this instead of a. Then, the condition for the robust stability of the closed-loop
system can be given by

(10–181)

If Inequality (10–181) holds true, then it is evident that Inequality (10–180) also holds true. So this
is the condition to guarantee the robust stability of the designed system. In Figure 10–57(e), a

in Figure 10–57(d) was replaced by .
To summarize, if we make the norm of the transfer function from w to z to be less than

1, the controller K that satisfies Inequality (10–181) can be determined.
Figure 10–57(e) can be redrawn as that shown in Figure 10–57(f), which is the generalized

plant diagram for the system considered.
Note that for this problem the matrix that relates the controlled variable z and the exoge-

nous disturbance w is given by

Noting that u(s)=K(s)y(s) and referring to Equation (10–128), is given by the elements
of the P matrix as follows:

To make this equal to we may choose P11=0, P12=Wa , P21=I, and
P22=�G. Then, the P matrix for this problem can be obtained as

P = B 0

I

Wa

-G
R

WaK(I + GK)-1,£(s)

£(s) = P11 + P12K(I - P22K)- 1P21

£(s)

z = £(s)w = (WaTa)w = [WaK(I + GK)-1]w

£

Hq

WaI
¢

7WaTa 7q 6 1

¢Wa(jv)

s{¢a(jv)} 6 �Wa(jv)�

Wa(jv)¢a

7¢aTa 7q 6 1

K(1 + GK)- 1 = Ta

K

1 + GK
 = K(1 + GK)-1

¢G
�

G
�¢a
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x = Ax + Bu
.

y = Cx
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y = x1
+

–
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–

Figure 10–58
Type 1 servo system.

PROBLEMS

B–10–1. Consider the system defined by

where

Transform the system equations into (a) controllable canon-
ical form and (b) observable canonical form.

B–10–2. Consider the system defined by

where

Transform the system equations into the observable canon-
ical form.

B–10–3. Consider the system defined by

where

By using the state-feedback control it is desired to
have the closed-loop poles at Deter-
mine the state-feedback gain matrix K.

B–10–4. Solve Problem B–10–3 with MATLAB.

s = -10.s = -2 ; j4,
u = -Kx,

A = C 0

0

-1

1

0

-5

0

1

-6

S ,  B = C0

1

1

S
 x# = Ax + Bu

A = C-1

1

0

0

-2

0

1

0

-3

S , B = C0

1

1

S , C = [1 1 1]

 y = Cx

 x# = Ax + Bu

C = [1 1 0]A = C-1

1

0

0

-2

0

1

0

-3

S ,  B = C0

0

1

S ,

 y = Cx

 x# = Ax + Bu

B–10–5. Consider the system defined by

Show that this system cannot be stabilized by the state-
feedback control whatever matrix K is chosen.

B–10–6. A regulator system has a plant

Define state variables as

By use of the state-feedback control it is desired
to place the closed-loop poles at

Determine the necessary state-feedback gain matrix K.

B–10–7. Solve Problem B–10–6 with MATLAB.

B–10–8. Consider the type 1 servo system shown in Figure
10–58. Matrices A, B, and C in Figure 10–58 are given by

Determine the feedback gain constants k1, k2, and k3 such
that the closed-loop poles are located at

Obtain the unit-step response and plot the output 
y(t)-versus-t curve.

s = -2 + j4,  s = -2 - j4,  s = -10

A = C0

0

0

1

0

-5

0

1

-6

S ,  B = C0

0

1

S ,  C = [1 0 0]

s = -2 + j213 ,  s = -2 - j213 ,  s = -10

u = -Kx,

 x3 = x
#
2

 x2 = x
#
1

 x1 = y

Y(s)

U(s)
=

10

(s + 1)(s + 2)(s + 3)

u = -Kx,

Bx
#
1

x
#
2
R = B0

0

1

2
R Bx1

x2
R + B1

0
R u
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B–10–9. Consider the inverted-pendulum system shown in
Figure 10–59. Assume that

M=2 kg, m=0.5 kg, l=1 m

Define state variables as

and output variables as

Derive the state-space equations for this system.
It is desired to have closed-loop poles at

Determine the state-feedback gain matrix K.
Using the state-feedback gain matrix K thus determined,

examine the performance of the system by computer simu-
lation.Write a MATLAB program to obtain the response of
the system to an arbitrary initial condition. Obtain the
response curves x1(t) versus t, x2(t) versus t, x3(t) versus t,
and x4(t) versus t for the following set of initial condition:

x1(0) = 0, x2(0) = 0, x3(0) = 0, x4(0) = 1 m�s

s = -4 + j4,  s = -4 - j4,  s = -20,  s = -20

y1 = u = x1 ,  y2 = x = x3

x1 = u,  x2 = u
#
,  x3 = x,  x4 = x

#

where

Design a full-order state observer. The desired observer
poles are s=–5 and s=–5.

B–10–11. Consider the system defined by

where

Design a full-order state observer, assuming that the desired
poles for the observer are located at

s=–10, s=–10, s=–15

B–10–12. Consider the system defined by

Given the set of desired poles for the observer to be

design a full-order observer.

B–10–13. Consider the double integrator system defined by

If we choose the state variables as

then the state-space representation for the system becomes
as follows:

 y = [1 0]Bx1

x2
R

 Bx
#
1

x
#
2
R = B0

0

1

0
R Bx1

x2
R + B0

1
R u

 x2 = y
#

 x1 = y

y
$ = u

s = -5 + j513 ,  s = -5 - j513 ,  s = -10

y = [1 0 0]Cx1

x2

x3

S
+ C 0

0
1.244
S u

Cx
#
1

x
#
2

x
#
3

S = C 0
0

1.244

1
0

0.3956

0
1

-3.145
S Cx1

x2

x3

S

A = C 0

0

-5

1

0

-6

0

1

0

S ,  B = C0

0

1

S ,  C = [1 0 0]

 y = Cx
 x# = Ax + Bu

A = B-1

1

1

-2
R ,  C = [1 0]

0

M

P

z

u

mg

m

� sin u

x

x

� cos u

�

u

Figure 10–59
Inverted-pendulum system.

B–10–10. Consider the system defined by

 y = Cx

 x# = Ax
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Y(s)R(s) U(s)Observer
controller

+
–

s2 + 2s + 50
s(s + 4) (s + 6)

Figure 10–60
Control system with observer controller in the
feedforward path.

It is desired to design a regulator for this system. Using the
pole-placement-with-observer approach, design an observer
controller.

Choose the desired closed-loop poles for the pole-
placement part to be

s=–0.7071+j0.7071, s=–0.7071-j0.7071

and assuming that we use a minimum-order observer, choose
the desired observer pole at

s=–5

B–10–14. Consider the system

where

Design a regulator system by the pole-placement-with-
observer approach. Assume that the desired closed-loop
poles for pole placement are located at

s=–1+j, s=–1-j, s=–5

The desired observer poles are located at

s=–6, s=–6, s=–6

Also, obtain the transfer function of the observer controller.

B–10–15. Using the pole-placement-with-observer approach,
design observer controllers (one with a full-order observer and
the other with a minimum-order observer) for the system
shown in Figure 10–60. The desired closed-loop poles for the
pole-placement part are

s=–1+j2, s=–1-j2, s=–5

A = C 0
0

-6

1
0

-11

0
1

-6
S ,   B = C0

0
1
S ,   C = [1 0 0]

 y = Cx

 x# = Ax + Bu

The desired observer poles are

s=–10, s=–10, s=–10 for the full-order observer

s=–10, s=–10 for the minimum-order observer.

Compare the unit-step responses of the designed systems.
Compare also the bandwidths of both systems.

B–10–16. Using the pole-placement-with-observer approach,
design the control systems shown in Figures 10–61(a) and (b).
Assume that the desired closed-loop poles for the pole place-
ment are located at

s=–2+j2, s=–2-j2

and the desired observer poles are located at

s=–8, s=–8

Obtain the transfer function of the observer controller.
Compare the unit-step responses of both systems. [In System
(b), determine the constant N so that the steady-state out-
put y(q) is unity when the input is a unit-step input.]

Y(s)R(s) Observer
controller

+
–

1
s(s + 1)

1
s(s + 1)

Y(s)

Observer
controller

+
–

(b)

R(s)
N

(a)

Plant

Figure 10–61
Control systems with observer controller: (a) observer
controller in the feedforward path; (b) observer controller
in the feedback path.

B–10–17. Consider the system defined by

where

a = adjustable parameter 7 0

A = C 0
0

-1

1
0

-2

0
1

-a

S
x# = Ax
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Determine the value of the parameter a so as to minimize
the following performance index:

Assume that the initial state x(0) is given by

B–10–18. Consider the system shown in Figure 10–62.
Determine the value of the gain K so that the damping ratio
z of the closed-loop system is equal to 0.5. Then determine
also the undamped natural frequency vn of the closed-loop
system. Assuming that e(0)=1 and evaluate

3
q

0
e2(t) dt

e
#
(0) = 0,

x(0) = C c1

0

0

S
J = 3

q

0
xT x dt

B–10–21. Consider the inverted-pendulum system shown
in Figure 10–59. It is desired to design a regulator system
that will maintain the inverted pendulum in a vertical po-
sition in the presence of disturbances in terms of angle u
and/or angular velocity The regulator system is required
to return the cart to its reference position at the end of
each control process. (There is no reference input to the
cart.)

The state-space equation for the system is given by

where

We shall use the state-feedback control scheme

Using MATLAB, determine the state-feedback gain matrix
such that the following performance

index J is minimized:

where

Then obtain the system response to the following initial
condition:

Plot response curves u versus t, versus t, x versus t, and
versus t.

x
#

u
#

Dx1(0)

x2(0)

x3(0)

x4(0)

T = D0.1

0

0

0

T

Q = D100

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

T ,  R = 1

J = 3
q

0
Ax* Qx + u* RuB dt

K = Ck1 k2 k3 k4 D
u = -Kx

B = D 0
-1

0
0.5

T ,  x = D uu#
x

x
#
T

A = D 0
20.601

0
-0.4905

1
0
0
0

0
0
0
0

0
0
1
0

T
x# = Ax + Bu

u
#
.

+
–

r = 0 cue
K

5

(s + 1) (2s + 1)

Figure 10–62
Control system.

B–10–19. Determine the optimal control signal u for the
system defined by

where

such that the following performance index is minimized:

B–10–20. Consider the system

It is desired to find the optimal control signal u such that
the performance index

is minimized. Determine the optimal signal u(t).

J = 3
q

0
AxT Qx + u2B dt,  Q = B1

0

0

m
R

Bx
#
1

x
#
2
R = B0

0

1

0
R Bx1

x2
R + B0

1
R u

J = 3
q

0
AxT x + u2B dt

A = B0

0

1

-1
R ,  B = B0

1
R

x# = Ax + Bu
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Appendix

Appendix A first presents the complex variable and complex function.Then it presents
tables of Laplace transform pairs and properties of Laplace transforms. Finally, it presents
frequently used Laplace transform theorems and Laplace transforms of pulse function
and impulse function.

Complex Variable. A complex number has a real part and an imaginary part, both
of which are constant. If the real part and/or imaginary part are variables, a complex
quantity is called a complex variable. In the Laplace transformation we use the notation
s as a complex variable; that is,

where s is the real part and v is the imaginary part.

Complex Function. A complex function G(s), a function of s, has a real part and
an imaginary part or

where Gx and Gy are real quantities. The magnitude of G(s) is and the
angle u of G(s) is The angle is measured counterclockwise from the pos-
itive real axis. The complex conjugate of G(s) is

Complex functions commonly encountered in linear control systems analysis are
single-valued functions of s and are uniquely determined for a given value of s.

G
–

(s) = Gx - jGy .
tan-1 AGy�GxB. 2Gx

2 + Gy
2 ,

G(s) = Gx + jGy

s = s + jv

Laplace Transform Tables



A complex function G(s) is said to be analytic in a region if G(s) and all its deriva-
tives exist in that region. The derivative of an analytic function G(s) is given by

Since can approach zero along an infinite number of different
paths. It can be shown, but is stated without a proof here, that if the derivatives taken
along two particular paths, that is, and are equal, then the deriva-
tive is unique for any other path and so the derivative exists.

For a particular path (which means that the path is parallel to the real
axis),

For another particular path (which means that the path is parallel to the
imaginary axis),

If these two values of the derivative are equal,

or if the following two conditions

are satisfied, then the derivative dG (s)/ ds is uniquely determined.These two conditions
are known as the Cauchy–Riemann conditions. If these conditions are satisfied, the func-
tion G(s) is analytic.

As an example, consider the following G(s):

Then

G(s + jv) =
1

s + jv + 1
= Gx + jGy

G(s) =
1

s + 1

0Gx

0s
=

0Gy

0v
  and  0Gy

0s
= -

0Gx

0v

0Gx

0s
+ j

0Gy

0s
=

0Gy

0v
- j

0Gx

0v

d

ds
G(s) = lim

j¢vS 0
 a ¢Gx

j¢v
+ j

¢Gy

j¢v
b = -j

0Gx

0v
+

¢Gy

0v

¢s = j¢v

d

ds
G(s) = lim

¢sS 0
 a ¢Gx

¢s
+ j

¢Gy

¢s
b =

0Gx

0s
+ j

0Gy

0s

¢s = ¢s
¢s = ¢s + j¢v

¢s = j¢v,¢s = ¢s

¢s = ¢s + j¢v, ¢s

d

ds
G(s) = lim

¢s S 0

G(s + ¢s) - G(s)

¢s
= lim

¢s S 0

¢G

¢s
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where

It can be seen that, except at s=–1 (that is, s=–1, v=0), G(s) satisfies the
Cauchy–Riemann conditions:

Hence G(s)=1/(s+1) is analytic in the entire s plane except at s=–1. The deriva-
tive dG (s)/ ds, except at s=1, is found to be

Note that the derivative of an analytic function can be obtained simply by differentiat-
ing G(s) with respect to s. In this example,

Points in the s plane at which the function G(s) is analytic are called ordinary
points, while points in the s plane at which the function G(s) is not analytic are called
singular points. Singular points at which the function G(s) or its derivatives approach
infinity are called poles. Singular points at which the function G(s) equals zero are
called zeros.

If G(s) approaches infinity as s approaches –p and if the function

for n=1, 2, 3, p

has a finite, nonzero value at s=–p, then s=–p is called a pole of order n. If n=1,
the pole is called a simple pole. If n=2, 3, p , the pole is called a second-order pole, a
third-order pole, and so on.

To illustrate, consider the complex function

G(s) =
K(s + 2)(s + 10)

s(s + 1)(s + 5)(s + 15)2

G(s)(s + p)n,

d

ds
a 1

s + 1
b = -

1

(s + 1)2

= -
1

(s + jv + 1)2 = -
1

(s + 1)2

d

ds
G(s) =

0Gx

0s
+ j

0Gy

0s
=

0Gy

0v
- j

0Gx

dv

0Gy

0s
= -

0Gx

0v
=

2v(s + 1)C(s + 1)2 + v2 D 2
0Gx

0s
=

0Gy

0v
=
v2 - (s + 1)2C(s + 1)2 + v2 D 2

Gx =
s + 1

(s + 1)2 + v2  and  Gy =
-v

(s + 1)2 + v2
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G(s) has zeros at s=–2, s=–10, simple poles at s=0, s=–1, s=–5, and a double
pole (multiple pole of order 2) at s=–15. Note that G(s) becomes zero at s=q. Since
for large values of s

G(s) possesses a triple zero (multiple zero of order 3) at s=q. If points at infinity are
included, G(s) has the same number of poles as zeros.To summarize, G(s) has five zeros
(s=–2, s=–10, s=q, s=q, s=q) and five poles (s=0, s=–1, s=–5,
s=–15, s=–15).

Laplace Transformation. Let us define

f(t)=a function of time t such that f(t)=0 for t<0

s=a complex variable

l=an operational symbol indicating that the quantity that it prefixes is to
be transformed by the Laplace integral 

F(s)=Laplace transform of f(t)

Then the Laplace transform of f(t) is given by

The reverse process of finding the time function f(t) from the Laplace transform F(s)
is called the inverse Laplace transformation.The notation for the inverse Laplace trans-
formation is l–1, and the inverse Laplace transform can be found from F(s) by the fol-
lowing inversion integral:

where c, the abscissa of convergence, is a real constant and is chosen larger than the real
parts of all singular points of F(s).Thus, the path of integration is parallel to the jv axis
and is displaced by the amount c from it.This path of integration is to the right of all sin-
gular points.

Evaluating the inversion integral appears complicated. In practice, we seldom use this
integral for finding f(t). We frequently use the partial-fraction expansion method given
in Appendix B.

In what follows we give Table A–1, which presents Laplace transform pairs of com-
monly encountered functions, and Table A–2, which presents properties of Laplace
transforms.

l-1 CF(s) D = f(t) =
1

2pj 3
c + jq

c - jq
F(s)est ds,  for t 7 0

l Cf(t) D = F(s) = 3
q

0
e-st dt Cf(t) D = 3

q

0
f(t)e-st dt

1q
0 e-st dt

G(s) �
K

s3
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f(t) F(s)

1 Unit impulse d(t) 1

2 Unit step 1(t)

3 t

4

5 tn (n=1, 2, 3, p)

6 e–at

7 te–at

8

9 tne–at (n=1, 2, 3, p)

10 sinvt

11 cosvt

12 sinhvt

13 coshvt

14

15

16

17
1

s(s + a)(s + b)

1

ab
c1 +

1

a - b
Abe-at - ae-btB d

s

(s + a)(s + b)

1

b - a
Abe-bt - ae-atB

1

(s + a)(s + b)

1

b - a
Ae-at - e-btB

1

s(s + a)

1

a
A1 - e-atB

s

s2 - v2

v

s2 - v2

s

s2 + v2

v

s2 + v2

n!

(s + a)n + 1

1

(s + a)n

1

(n - 1)!
tn - 1e-at  (n = 1, 2, 3, p )

1

(s + a)2

1

s + a

n!

sn + 1

1

sn

tn - 1

(n - 1)!
  (n = 1, 2, 3, p )

1

s2

1

s

Table A–1 Laplace Transform Pairs

(continues on next page)
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18

19

20 e–at sinvt

21 e–at cosvt

22

23

24

25 1-cosvt

26 vt-sinvt

27 sinvt-vt cosvt

28

29 t cosvt

30

31
s2As2 + v2B21

2v
(sinvt + vt cosvt)

sAs2 + v2
1B As2 + v2

2B1

v2
2 - v2

1

Acosv1 t - cosv2 tB  Av2
1 Z v2

2B
s2 - v2As2 + v2B2

sAs2 + v2B21

2v
t sinvt

2v3As2 + v2B2
v3

s2As2 + v2B
v2

sAs2 + v2B
(0 6 z 6 1, 0 6 f 6 p�2)

v2
n

sAs2 + 2zvn s + v2
nBf = tan-1 21 - z2

z

1 -
1

21 - z2
e-zvn t sin Avn21 - z2 t + fB

(0 6 z 6 1, 0 6 f 6 p�2)

s

s2 + 2zvn s + v2
nf = tan-1 21 - z2

z

-
1

21 - z2
e-zvn t sin Avn21 - z2 t - fB

v2
n

s2 + 2zvn s + v2
n

vn

21 - z2
e-zvn t sinvn21 - z2 t (0 6 z 6 1)

s + a

(s + a)2 + v2

v

(s + a)2 + v2

1

s2(s + a)

1

a2 Aat - 1 + e-atB
1

s(s + a)2

1

a2 A1 - e-at - ate-atBTable A–1 (continued)
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1

2

3

4

5

where

6

7

8

9

10

11

12

13

14

15

16

17

18 l Cf(t)g(t) D =
1

2pj 3
c + jq

c - jq
F(p)G(s - p) dp

l c 3 t

0
f1(t - t)f2(t) dt d = F1(s)F2(s)

l cf a 1

a
b d = aF(as)

l c 1
t

f(t) d = 3
q

s
F(s) ds  if lim

t S 0

1
t

f(t) exists

l C tnf(t) D = (-1)n dn

dsn F(s)  (n = 1, 2, 3, p )

l C t2f(t) D =
d2

ds2 F(s)

l C tf(t) D = -
dF(s)

ds

l Cf(t - a)1(t - a) D = e-asF(s)  a � 0

l Ce-atf(t) D = F(s + a)

3
q

0
f(t) dt = lim

s S 0
F(s)  if 3

q

0
f(t) dt exists

l c 3 t

0
f(t) dt d =

F(s)

s

l; c 3p3f(t)(dt)n d =
F(s)

sn + a
n

k = 1

1

sn - k + 1
c 3p3f(t)(dt)k d

t = 0 ;

l; c 3f(t) dt d =
F(s)

s
+

1

s
c 3f(t) dt d

t = 0 ;

f(t)
(k - 1)

=
dk - 1

dtk - 1
f(t)

l; c dn

dtn f(t) d = snF(s) - a
n

k = 1
sn - kf(0 ;)

(k - 1)

l; c d2

dt2 f(t) d = s2F(s) - sf(0 ;) - f
#
(0 ;)

l; c d

dt
f(t) d = sF(s) - f(0 ;)

l Cf1(t) ; f2(t) D = F1(s) ; F2(s)

l CAf(t) D = AF(s)

Table A–2 Properties of Laplace Transforms



Finally, we present two frequently used theorems, together with Laplace transforms
of the pulse function and impulse function.
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Initial value theorem

Final value theorem

Pulse function

Impulse function

=
As

s
= A

= lim
t0 S 0

d

dt0
[A(1 - e- st0)]

d

dt0
(t0s)

   = 0,     for t 6 0, t0 6 t

l Cg(t) D = lim
t0 S 0
c A

t0s
(1 - e- st0) dg(t) = lim

t0 S 0

A

t0
,  for 0 6 t 6 t0

l Cf(t) D =
A

t0s
-

A

t0s
e- st0f(t) =

A

t0
1(t) -

A

t0
1(t - t0)

f(q) = lim
t S q

f(t) = lim
s S 0

sF(s)

f(0+) = lim
t S 0 +

f(t) = lim
s S q

sF(s)
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Before we present MATLAB approach to the partial-fraction expansions of transfer
functions, we discuss the manual approach to the partial-fraction expansions of transfer
functions.

Partial-Fraction Expansion when F(s) Involves Distinct Poles Only. Consider
F(s) written in the factored form

for m<n

where p1, p2,p ,pn and z1, z2,p ,zm are either real or complex quantities,but for each com-
plex pi or zj there will occur the complex conjugate of pi or zj, respectively. If F(s) involves
distinct poles only, then it can be expanded into a sum of simple partial fractions as follows:

(B–1)

where ak (k=1, 2, p , n) are constants.The coefficient ak is called the residue at the pole
at s=–pk . The value of ak can be found by multiplying both sides of Equation (B–1)
by As+pk B and letting s=–pk , which gives

 = ak

+ p +
ak

s + pk
As + pkB + p +

an

s + pn
As + pkBR

s = -pk

c As + pkB B(s)

A(s)
d

s = -pk

= c a1

s + p1
 As + pkB +

a2

s + p2
As + pkB

F(s) =
B(s)

A(s)
=

a1

s + p1
+

a2

s + p2
+ p +

an

s + pn

F(s) =
B(s)

A(s)
=

KAs + z1B As + z2B p As + zmBAs + p1B As + p2B p As + pnB ,

Partial-Fraction Expansion



We see that all the expanded terms drop out with the exception of ak . Thus the residue
ak is found from

Note that, since f(t) is a real function of time, if p1 and p2 are complex conjugates, then
the residues a1 and a2 are also complex conjugates. Only one of the conjugates, a1 or a2 ,
needs to be evaluated, because the other is known automatically.

Since

f(t) is obtained as

for t � 0

EXAMPLE B–1 Find the inverse Laplace transform of

The partial-fraction expansion of F(s) is

where a1 and a2 are found as

Thus

for t � 0

EXAMPLE B–2 Obtain the inverse Laplace transform of

Here, since the degree of the numerator polynomial is higher than that of the denominator poly-
nomial, we must divide the numerator by the denominator.

G(s) = s + 2 +
s + 3

(s + 1)(s + 2)

G(s) =
s3 + 5s2 + 9s + 7

(s + 1)(s + 2)

= 2e-t - e-2t,

= l-1 c 2
s + 1

d + l-1 c -1
s + 2

df(t) = l-1 CF(s) D
a2 = c (s + 2)

s + 3

(s + 1)(s + 2)
d

s = -2
= c s + 3

s + 1
d

s = -2
= -1

a1 = c (s + 1)
s + 3

(s + 1)(s + 2)
d

s = -1
= c s + 3

s + 2
d

s = -1
= 2

F(s) =
s + 3

(s + 1)(s + 2)
=

a1

s + 1
+

a2

s + 2

F(s) =
s + 3

(s + 1)(s + 2)

f(t) = l-1 CF(s) D = a1 e-p1 t + a2 e-p2 t + p + an e-pn t,

l-1 c ak

s + pk
d = ak e-pk t

ak = c As + pkB B(s)

A(s)
d

s = -pk

868 Appendix B / Partial-Fraction Expansion



Note that the Laplace transform of the unit-impulse function d(t) is 1 and that the Laplace
transform of dd(t)/ dt is s. The third term on the right-hand side of this last equation is F(s) in
Example B–1. So the inverse Laplace transform of G(s) is given as

for t � 0–

EXAMPLE B–3 Find the inverse Laplace transform of

Notice that the denominator polynomial can be factored as

If the function F(s) involves a pair of complex-conjugate poles, it is convenient not to expand
F(s) into the usual partial fractions but to expand it into the sum of a damped sine and a damped
cosine function.

Noting that s2+2s+5=(s+1)2+22 and referring to the Laplace transforms of e–at sinvt
and e–at cosvt, rewritten thus,

the given F(s) can be written as a sum of a damped sine and a damped cosine function:

It follows that

for t � 0

Partial-Fraction Expansion when F(s) Involves Multiple Poles. Instead of dis-
cussing the general case, we shall use an example to show how to obtain the partial-
fraction expansion of F(s).

Consider the following F(s):

The partial-fraction expansion of this F(s) involves three terms,

F(s) =
B(s)

A(s)
=

b1

s + 1
+

b2

(s + 1)2 +
b3

(s + 1)3

F(s) =
s2 + 2s + 3

(s + 1)3

 = 5e-t sin 2t + 2e-t cos 2t,

 = 5l-1 c 2

(s + 1)2 + 22 d + 2l-1 c s + 1

(s + 1)2 + 22 d
 f(t) = l-1 CF(s) D

 = 5 
2

(s + 1)2 + 22 + 2 
s + 1

(s + 1)2 + 22

 F(s) =
2s + 12

s2 + 2s + 5
=

10 + 2(s + 1)

(s + 1)2 + 22

l Ce-at cosvt D =
s + a

(s + a)2 + v2

l Ce-at sinvt D =
v

(s + a)2 + v2

s2 + 2s + 5 = (s + 1 + j2)(s + 1 - j2)

F(s) =
2s + 12

s2 + 2s + 5

g(t) =
d

dt
d(t) + 2d(t) + 2e-t - e-2t,
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where b3, b2 , and b1 are determined as follows. By multiplying both sides of this last
equation by (s+1)3, we have

(B–2)

Then letting s=–1, Equation (B–2) gives

Also, differentiation of both sides of Equation (B–2) with respect to s yields

(B–3)

If we let s=–1 in Equation (B–3), then

By differentiating both sides of Equation (B–3) with respect to s, the result is

From the preceding analysis it can be seen that the values of b3, b2 , and b1 are found
systematically as follows:

 =
1

2
 (2) = 1

 =
1

2!
c d2

ds2 As2 + 2s + 3B d
s = -1

 b1 =
1

2!
e d2

ds2 c (s + 1)3
B(s)

A(s)
d f

s = -1

 = 0

 = (2s + 2)s = -1

 = c d

ds
 As2 + 2s + 3B d

s = -1

 b2 = e d

ds
c (s + 1)3 

B(s)

A(s)
d f

s = -1

 = 2

 = As2 + 2s + 3Bs = -1

 b3 = c (s + 1)3 
B(s)

A(s)
d

s = -1

d2

ds2 c (s + 1)3
B(s)

A(s)
d = 2b1

d

ds
c (s + 1)3

B(s)

A(s)
d

s = -1
= b2

d

ds
c (s + 1)3

B(s)

A(s)
d = b2 + 2b1(s + 1)

c (s + 1)3
B(s)

A(s)
d

s = -1
= b3

(s + 1)3
B(s)

A(s)
= b1(s + 1)2 + b2(s + 1) + b3

870 Appendix B / Partial-Fraction Expansion



We thus obtain

for t � 0

Comments. For complicated functions with denominators involving higher-order
polynomials, partial-fraction expansion may be quite time consuming. In such a case,
use of MATLAB is recommended.

Partial-Fraction Expansion with MATLAB. MATLAB has a command to
obtain the partial-fraction expansion of B(s)/A(s). Consider the following function
B(s)/A(s):

where some of ai and bj may be zero. In MATLAB row vectors num and den specify the
coefficients of the numerator and denominator of the transfer function. That is,

num = [b0 b1 ...  bn]
den = [1   a1 ...  an]

The command

[r,p,k] = residue(num,den)

finds the residues (r), poles (p), and direct terms (k) of a partial-fraction expansion of
the ratio of two polynomials B(s) and A(s).

The partial-fraction expansion of B(s)/A(s) is given by

(B–4)

Comparing Equations (B–1) and (B–4), we note that p(1)=–p1, p(2)=–p2 , p ,
p(n)=–pn ; r(1)=a1, r(2)=a2 , p , r(n)=an . [k(s) is a direct term.]

EXAMPLE B–4 Consider the following transfer function,

B(s)

A(s)
=

2s3 + 5s2 + 3s + 6

s3 + 6s2 + 11s + 6

B(s)

A(s)
=

r(1)

s - p(1)
+

r(2)

s - p(2)
+ p +

r(n)

s - p(n)
+ k(s)

B(s)

A(s)
=

num
den

=
b0 sn + b1 sn - 1 + p + bn

sn + a1 sn - 1 + p + an

 = A1 + t2Be-t,

 = e-t + 0 + t2e-t

 = l-1 c 1

s + 1
d + l-1 c 0

(s + 1)2 d + l-1 c 2

(s + 1)3 d
 f(t) = l-1 CF(s) D
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For this function,

num= [2  5  3  6]
den = [1  6  11  6]

The command

[r,p,k] = residue(num,den)

gives the following result:

872 Appendix B / Partial-Fraction Expansion

[r,p,k] = residue(num,den)

r =

-6.0000
-4.0000
3.0000

p =

-3.0000
-2.0000
-1.0000

k =

2

(Note that the residues are returned in column vector r, the pole locations in column vector p, and
the direct term in row vector k.) This is the MATLAB representation of the following partial-
fraction expansion of B(s)/A(s):

Note that if p(j)=p(j+1)=p=p(j+m-1) Cthat is, pj=pj+1=p=pj+m-1 D , the
pole p(j) is a pole of multiplicity m. In such a case, the expansion includes terms of the form

For details, see Example B–5.

r(j)

s - p(j)
+

r(j + 1)Cs - p(j) D 2 + p +
r(j + m - 1)Cs - p(j) Dm

 =
-6

s + 3
+

-4

s + 2
+

3

s + 1
+ 2

 
B(s)

A(s)
=

2s3 + 5s2 + 3s + 6

s3 + 6s2 + 11s + 6



EXAMPLE B–5 Expand the following B(s)/A(s) into partial fractions with MATLAB.

For this function, we have

num = [1  2  3]
den = [1  3  3  1]

The command

[r,p,k] = residue(num,den)

gives the result shown next:

B(s)

A(s)
=

s2 + 2s + 3

(s + 1)3 =
s2 + 2s + 3

s3 + 3s2 + 3s + 1
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It is the MATLAB representation of the following partial-fraction expansion of B(s)/A(s):

Note that the direct term k is zero.

B(s)

A(s)
=

1

s + 1
+

0

(s + 1)2 +
2

(s + 1)3

num = [1  2  3];
den = [1  3  3  1];
[r,p,k] = residue(num,den)

r =

1.0000
0.0000
2.0000

p =

-1.0000
-1.0000
-1.0000

k =

[]



C

874

Appendix

In this appendix we first review the determinant of a matrix, then we define the adjoint
matrix, the inverse of a matrix, and the derivative and integral of a matrix.

Determinant of a Matrix. For each square matrix, there exists a determinant.The
determinant of a square matrix A is usually written as or det A. The determinant has
the following properties:

1. If any two consecutive rows or columns are interchanged, the determinant changes
its sign.

2. If any row or any column consists only of zeros, then the value of the dererminant
is zero.

3. If the elements of any row (or any column) are exactly k times those of another
row (or another column), then the value of the determinant is zero.

4. If, to any row (or any column), any constant times another row (or column) is
added, the value of the determinant remains unchanged.

5. If a determinant is multiplied by a constant, then only one row (or one column) is
multiplied by that constant. Note, however, that the determinant of k times an
n*n matrix A is kn times the determinant of A, or 

@kA @ = kn @A @

@A @

Vector-Matrix Algebra



This is because

6. The determinant of the product of two square matrices A and B is the product of
determinants, or 

If B=n*m matrix and C=m*n matrix, then 

det(In+BC)=det(Im+CB)

If and D=m*m matrix, then

where S=D-CA�1 B.
If , then

where T=A-BD�1 C.
If or then

Rank of Matrix. A matrix A is said to have rank m if there exists an m*m sub-
matrix M of A such that the determinant of M is nonzero and the determinant of every
r*r submatrix (where ) of A is zero.

As an example, consider the following matrix:

A = D1 2   3 4
0 1 -1 0
1 0   1 2
1 1   0 2

T
r � m + 1

det cA B
0 D

d = det A �det D

det cA 0
C D

d = det A �det D

C = 0,B = 0

det cA B
C D

d = det D �det T

D Z 0

det cA B
C D

d = det A �det S

A Z 0

@AB @ = @A @ @B @

kA = Dka11 ka12 p ka1m

ka21 ka22 p ka2m

o o o
kan1 kan2 p kanm

T
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Note that =0. One of a number of largest submatrices whose determinant is not
equal to zero is

Hence, the rank of the matrix A is 3.

Minor Mij. If the ith row and jth column are deleted from an n*n matrix A,
the resulting matrix is an (n-1)*(n-1) matrix. The determinant of this 
(n-1) � (n-1) matrix is called the minor Mij of the matrix A.

Cofactor Aij. The cofactor Aij of the element aij of the n*n matrix A is defined
by the equation 

Aij=(�1)i�jMij

That is, the cofactor Aij of the element aij is (�1)i�j times the determinant of the matrix
formed by deleting the ith row and the jth column from A. Note that the cofactor Aij of
the element aij is the coefficient of the term aij in the expansion of the determinant ,
since it can be shown that 

If are replaced by then

because the determinant of A in this case possesses two identical rows. Hence, we obtain

Similarly,

Adjoint Matrix. The matrix B whose element in the ith row and jth column equals
Aji is called the adjoint of A and is denoted by adj A, or

B=(bij)=(Aji)=adj A

That is, the adjoint of A is the transpose of the matrix whose elements are the cofactors
of A, or

adj A = DA11 A21 p An1

A12 A22 p An2

o o o
A1n A2n p Anm

T

a
n

k = 1
akiAkj = dij @A @

a
n

k = 1
ajkAik = dji @A @

aj1Ai1 + aj2Ai2 + p + ajnAin = 0     i Z j

aj1, aj2, p , ajn,ai1, ai2, p , ain

ai1Ai1 + ai2Ai2 + p + ainAin = @A @
@A @

C1 2   3
0 1 -1
1 0    1

S
@A @
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Note that the element of the jth row and ith column of the product A(adj A) is

Hence, A(adj A) is a diagonal matrix with diagonal elements equal to , or 

A(adj A)= I

Similarly, the element in the jth row and ith column of the product (adj A)A is

Hence, we have the relationship 

A(adj A)=(adj A)A= I (C–1)

Thus

where Aij is the cofactor of aij of the matrix A. Thus, the terms in the ith column of A�1

are l/ times the cofactors of the ith row of the original matrix A. For example, if

then the adjoint of A and the determinant are respectively found to be@A @
A = C1   2   0

3 -1 -2
1   0 -3

S
@A @

G
A11@A @ A21@A @ p

An1@A @
A12@A @ A22@A @ p

An2@A @
o o o

A1n@A @ A2n@A @ p
Ann@A @
WA-1 =

adj A@A @ =

@A @
a

n

k = 1
bjkaki = a

n

k = 1
Akjaki = dij @A @
@A @ @A @a

n

k = 1
ajkbki = a

n

k = 1
ajkAik = dji @A @
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G Wadj A=

= C3   6 -4
7 -3    2
1    2 -7

S
` 3 -1
1   0

`    - `1 2
1 0
`     `1   2

3 -1
`

- `3 -2
1 -3

`    `1   0
1 -3

`   - `1   0
3 -2

`
`-1 -2
  0 -3

`   - `2   0
0 -3

`    `   2   0
-1 -2

`



and

=17

Hence, the inverse of A is

In what follows, we give formulas for finding inverse matrices for the 2*2 matrix
and the 3*3 matrix. For the 2*2 matrix

the inverse matrix is given by

For the 3*3 matrix

the inverse matrix is given by

A = C a b c

d e f

g h i

S     where @A @ Z 0

A-1 =
1

ad - bc
c d -b

-c a
d

A = ca b

c d
d        where ad - bc Z 0

A- 1 =
adj A@A @ = C 3

17
6

17 - 4
17

7
17 - 3

17
2
17

1
17

2
17 - 7

17

S
@A @
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G W
`d e

g h
`  - ` a b

g h
`    ` a b

d e
`

- `d f

g i
`    ` a c

g i
`   - ` a c

d f
`A- 1 =

1@A @
` e f

h i
`   - ` b c

h i
`    `b c

e f
`

Note that

There are several more useful formulas available. Assume that A=n*n matrix,
B=n*m matrix, C=m*n matrix, and D=m*m matrix. Then

[A + BC]- 1 = A- 1 - A- 1 B[Im + CA- 1 B]- 1 CA- 1

(A- 1)* = (A*)- 1

(A- 1)¿ = (A¿)- 1

(A- 1)- 1 = A



If and then

If then

If then

Finally, we present the MATLAB approach to obtain the inverse of a square matrix.
If all elements of the matrix are given as numerical values, this approach is best.

MATLAB Approach to Obtain the Inverse of a Square Matrix. The inverse of
a square matrix A can be obtained with the command

inv(A)

For example, if matrix A is given by

then the inverse of matrix A is obtained as follows:

A = C1 1 2
3 4 0
1 2 5

S

cA B
C D

d - 1

= c T- 1 -T- 1 BD- 1

-D- 1 CT- 1 D- 1 + D- 1 CT- 1 BD- 1 d
@D @ Z 0, T = A - BD - 1 C, and @T @ Z 0,

cA B
C D

d - 1

= cA- 1 + A- 1 BS- 1 CA- 1 -A- 1 BS- 1

-S- 1 CA- 1 S- 1 d
@A @ Z 0, S = D - CA- 1 B, @S @ Z 0,

cA 0
C D

d - 1

= c A- 1 0
-D- 1 CA- 1 D- 1 d

cA B
0 D

d - 1

= cA- 1 -A- 1 BD- 1

0 D- 1 d
@D @ Z 0,@A @ Z 0
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A = [1  1  2;3  4  0;1  2  5];
inv(A)

ans =

2.2222 �0.1111 �0.8889
�1.6667 0.3333 0.6667

0.2222 �0.1111 0.1111



That is

MATLAB Is Case Sensitive. It is important to note that MATLAB is case sen-
sitive.That is, MATLAB distinguishes between upper- and lowercase letters.Thus, x and
X are not the same variable. All function names must be in lowercase, such as inv(A),
eig(A), and poly(A).

Differentiation and Integration of Matrices. The derivative of an n*m matrix
A(t) is defined to be the n*m matrix, each element of which is the derivative of the
corresponding element of the original matrix, provided that all the elements aij(t) have
derivatives with respect to t. That is,

Similarly, the integral of an n*m matrix A(t) is defined to be

Differentiation of the Product of Two Matrices. If the matrices A(t) and B(t)
can be differentiated with respect to t, then

Here again the multiplication of A(t) and dB(t)/dt [or dA(t)/dt and B(t)] is, in gener-
al, not commutative.

d

dt
[A(t)B(t)] =

dA(t)

dt
B(t) + A(t)

dB(t)

dt

G 3
a11(t) dt 3a12(t) dt p 3a1m(t) dt

3a21(t) dt 3a22(t) dt p 3a2m(t) dt

o o o

3an1(t) dt 3a2n(t) dt p 3anm(t) dt

W3A(t) dt = a 3aij(t) dt b =

G
d

dt
a11(t)

d

dt
a12(t) p

d

dt
a1m(t)

d

dt
a21(t)

d

dt
a22(t) p

d

dt
a2m(t)

o o o
d

dt
an1(t)

d

dt
an2(t) p

d

dt
anm(t)

Wd

dt
 A(t) = a d

dt
 aij(t) b =

A- 1 = C    2.2222 -0.1111 -0.8889
-1.6667    0.3333    0.6667
  0.2222 -0.1111    0.1111

S
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Differentiation of A21(t). If a matrix A(t) and its inverse A�1(t) are differen-
tiable with respect to t, then the derivative of A�1(t) is given by 

The derivative may be obtained by differentiating A(t)A�1(t) with respect to t. Since

and

we obtain

or

dA- 1(t)

dt
= -A- 1(t)

dA(t)

dt
A- 1(t)

A(t)
dA- 1(t)

dt
= -

dA(t)

dt
A- 1(t)

d

dt
[A(t)A- 1(t)] =

d

dt
I = 0

d

dt
[A(t)A- 1(t)] =

dA(t)

dt
A- 1(t) + A(t)

dA- 1(t)

dt

dA- 1(t)

dt
= -A- 1(t)

dA(t)

dt
A- 1(t)
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A
Absolute stability, 160
Ackermann’s formula:

for observer gain matrix, 756–57
for pole placement, 730–31

Actuating error, 8
Actuator, 21–22
Adjoint matrix, 876
Air heating system, 150
Aircraft elevator control system, 156
Analytic function, 860
Angle:

of arrival, 286
of departure, 280, 286

Angle condition, 271
Asymptotes:

Bode diagram, 406–07
root loci, 274–75, 284–85

Attenuation, 165
Attitude-rate control system, 386
Automatic controller, 21
Automobile suspension system, 86
Auxiliary polynomial, 216

B
Back emf, 95

constant, 95

Bandwidth, 474, 539
Basic control actions:

integral, 24
on-off, 22
proportional, 24
proportional-plus-derivative, 25
proportional-plus-integral, 24
proportional-plus-integral-plus-

derivative, 35
two-position, 22–23

Bleed-type relay, 111
Block, 17
Block diagram, 17–18

reduction, 27–28, 48
Bode diagram, 403

error in asymptotic expression of, 403
of first-order factors, 406–07, 409
general procedure for plotting, 413
plotting with MATLAB, 422–25
of quadratic factors, 410–12
of system defined in state space,

426–27
Branch point, 18
Break frequency, 406
Breakaway point, 275–76, 285–86, 351
Break-in point, 276, 281, 285–86, 351
Bridged-T networks, 90, 520
Business system, 5
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C
Canonical forms:

controllable, 649
diagonal, 650
Jordan, 651, 653
observable, 650

Capacitance:
of pressure system, 107–09
of thermal system, 137
of water tank, 103

Cancellation of poles and zeros, 288
Cascaded system, 20
Cascaded transfer function, 20
Cauchy–Riemann conditions, 860–61
Cauchy’s theorem, 526
Cayley–Hamilton theorem, 668, 701
Characteristic equation, 652
Characteristic polynomial, 34
Characteristic roots, 652
Circular root locus, 282
Classical control theory, 2
Classification of control systems, 225
Closed-loop control system, 8
Closed-loop system, 20
Closed-loop frequency response, 477
Closed-loop frequency response curves:

desirable shapes of, 492
undesirable shapes of, 492

Closed-loop transfer function, 19–20
Cofactor, 876
Command compensation, 630
Compensation:

feedback, 308
parallel, 308
series, 308

Compensator:
lag, 323, 503–04
lag–lead, 332–34, 511–13
lead, 312–13, 495–96

Complete observability, 683–84
conditions for, 684–85
in the s plane, 684

Complete output controllablility, 714
Complete state controllability, 676–81

in the s plane, 680–81
Complex-conjugate poles:

cancellation of undesirable, 520
Complex function, 859
Complex impedence, 75
Complex variable, 859
Computational optimization approach to

design PID controller, 583–89
Conditional stability, 299–300, 510–11
Conditionally stable system, 299–300,

458, 510–11
Conduction heat transfer, 137

Conformal mapping, 447, 462–64
Conical water tank system, 152
Constant-gain loci, 302–03
Constant-magnitude loci (M circles),

478–79
Constant phase-angle loci (N circles),

480–81
Constant vn loci, 296
Constant z lines, 298
Constant z loci, 296
Control actions, 21
Control signal, 3
Controllability, 675–81

matrix, 677
output, 681

Controllable canonical form, 649, 688
Controlled variable, 3
Controller, 22
Convection heat transfer, 137
Conventional control theory, 29
Convolution, integral, 16
Corner frequency, 406
Critically damped system, 167
Cutoff frequency, 474
Cutoff rate, 475

D
Damped natural frequency, 167
Damper, 64, 132
Damping ratio, 165

lines of constant, 296
Dashpot, 64, 132–33
Dead space, 43
Decade, 405
Decibel, 403
Delay time, 169–70
Derivative control action, 118–20, 222
Derivative gain, 84
Derivative time, 25, 61
Detectability, 688
Determinant, 874
Diagonal canonical form, 694
Diagonalization of n*n matrix, 652
Differential amplifier, 78
Differential gap, 23, 24
Differentiating system, 231
Differentiation:

of inverse matrix, 881
of matrix, 880
of product of two matrices, 880

Differentiator:
approximate, 617

Direct transmission matrix, 31
Disturbance, 3, 26
Dominant closed-loop poles, 182
Duality, 754



E
eAt:

computation of, 670–71
Eigenvalue, 652

invariance of, 655
Electromagnetic valve, 23
Electronic controller, 77, 83
Engineering organizational system, 5–6
Equivalent moment of inertia, 234
Equivalent spring constant, 64
Equivalent viscous-friction coefficient,

65, 234
Evans, W. R., 2, 11, 269
Exponential response curve, 162

F
Feedback compensation, 308–09, 342, 519
Feedback control, 3
Feedback control system, 7
Feedback system, 20
Feedforward transfer function, 19
Final value theorem, 866
First-order lag circuit, 80
First-order system, 161–64

unit-impulse response of, 163
unit-ramp response of, 162–63
unit-step response of, 161–62

Flapper, 110
valve, 156

Fluid systems:
mathematical modeling of, 100

Free-body diagram, 69–70
Frequency response, 398

correlation between step response
and, 471–74

lag compensation based on, 502–11
lag–lead compensation based on,

511–17
lead compensation based on, 493–502

Full-order state observer, 752–53
Functional block, 17

G
Gain crossover frequency, 467–69
Gain margin, 464–67
Gas constant, 108

for air, 142
universal, 108

Gear train, 232
system, 232–34

Generalized plant, 813, 815–17
diagram, 810–16, 853–54

H
H infinity control problem, 816
H infinity norm, 6, 808
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Hazen, 2, 11
High-pass filter, 495
Higher-order systems, 179

transient response of, 180–81
Hurwitz determinants, 252–58
Hurwitz stability criterion, 252–53, 255–58

equivalence of Routh’s stability 
criterion and, 255–57

Hydraulic controller:
integral, 130
jet-pipe, 147
proportional, 131
proportional-plus-derivative, 134–35
proportional-plus-integral, 133–34
proportional-plus-integral-plus-

derivative, 135–36
Hydraulic servo system, 124–25
Hydraulic servomotor, 128, 130, 156
Hydraulic system, 106, 123–39, 149

advantages and disadvantages of, 124
compared with pneumatic system, 106

I
Ideal gas law, 108
Impedance:

approach to obtain transfer function,
75–76

Impulse function, 866
Impulse response, 163, 178–79, 195–97

function, 16–17
Industrial controllers, 22
Initial condition:

response to, 203–11
Initial value theorem, 866
Input filter, 261, 630
Input matrix, 31
Integral control, 220
Integral control action, 24–25, 218
Integral controller, 22
Integral gain, 61
Integral time, 25, 61
Integration of matrix, 880
Inverse Laplace transform:

partial-fraction expansion method for
obtaining, 867–73

Inverse Laplace transformation, 862
Inverse of a matrix:

MATLAB approach to obtain, 879
Inverse polar plot, 461–62, 537–38
Inverted-pendulum system, 68–72, 98
Inverted-pendulum control system,

746–51
Inverting amplifier, 78
I-PD control, 591–92
I-PD-controlled system, 592, 628–29, 643

with feedforward control, 642
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J
Jet-pipe controller, 146–47
Jordan blocks, 679
Jordan canonical form, 651, 695, 706–07

K
Kalman, R. E., 12, 675
Kirchhoff’s current law, 72
Kirchhoff’s loop law, 72
Kirchhoff’s node law, 72
Kirchhoff’s voltage law, 72

L
Lag compensation, 321
Lag compensator, 311, 321, 502

Bode diagram of, 503
design by frequency-response method,

502–11
design by root-locus method, 321, 323
polar plot of, 503

Lag network, 82, 542
Lag–lead compensation, 330, 335, 338,

377, 511–18
Lag–lead compensator:

Bode diagram of, 558
design by frequency-response method,

513–17
design by root-locus method, 331–32,

380–82
electronic, 330–32
polar plot of, 512

Lag–lead network:
electronic, 330–32
mechanical, 366

Lagrange polynomial, 708
Lagrange’s interpolation formula, 708
Laminar-flow resistance, 102
Laplace transform, 862

properties of, 865
table of, 863–64

Lead compensator, 311, 493
Bode diagram of, 494
design by frequency-response method,

493–502
design by root-locus method, 311–18
polar plot of, 494

Lead, lag, and lag–lead compensators:
comparison of, 517–18

Lead network, 542
electronic, 82
mechanical, 365

Lead time, 5
Linear approximation:

of nonlinear mathematical models, 43
Linear system, 14

constant coefficient, 14

Linear time-invariant system, 14, 164
Linear time-varying system, 14
Linearization:

of nonlinear systems, 43
Liquid-level control system, 157
Liquid-level systems, 101, 103–04, 140–41
Log-magnitude curves of quadratic

transfer function, 411
Logarithmic decrement, 237
Logarithmic plot, 403
Log-magnitude versus phase plot, 403,

443–44
LRC circuit, 72–73

M
M circles, 478–79

a family of constant, 479
Magnitude condition, 271
Manipulated variable, 3
Mapping theorem, 448–49
Mathematical model, 13

MATLAB commands:
MATLAB:
obtaining maximum overshoot with,

194
obtaining peak time with, 194
obtaining response to initial condition

with, 266
partial-fraction expansion with,

871–73
plotting Bode diagram with, 422–23
plotting root loci with, 290–91
writing text in diagrams with, 188–89
[A,B,C,D] = tf2ss(num,den), 40, 656,

698
bode(A,B,C,D), 422, 426
bode(A,B,C,D,iu), 426–27
bode(A,B,C,D,iu,w), 422
bode(A,B,C,D,w), 422
bode(num,den), 422
bode(num,den,w), 422, 425, 551
bode(sys), 422
bode(sys,w), 552
c = step(num,den,t), 190
for loop, 243, 249, 584
[Gm,pm,wcp,wcg,] = margin(sys),

468–69
gtext ('text'), 189
impulse(A,B,C,D), 195
impulse(num, den), 195
initial(A,B,C,D,[initial condition],t), 209
inv(A), 879
K = acker(A,B,J), 736
K = lqr(A,B,Q,R), 798
K = place(A,B,J), 736



MATLAB commands (Cont.)
Ke = acker(A',C',L)', 773
Ke = acker(Abb,Aab,L)', 773
Ke = place(A',C',L)', 773
Ke = place(Abb',Aab',L)', 773
[K,P,E] = lqr(A,B,Q,R), 798
[K,r] = rlocfind(num,den), 303
logspace(d1,d2), 422
logspace(d1,d2,n), 422–23
lqr(A,B,Q,R), 797
lsim(A,B,C,D,u,t), 201
lsim(num,den,r,t), 201
magdB = 20*log10(mag), 422
[mag,phase,w] = bode(A,B,C,D), 422
[mag,phase,w] = bode(A,B,C,D,iu,w),

422
[mag,phase,w] = bode(A,B,C,D,w),

422
[mag,phase,w] = bode(num,den), 422
[mag,phase,w] = bode(num,den,w),

422, 476
[mag,phase,w] = bode(sys), 422
[mag,phase,w] = bode(sys,w), 476
mesh, 192
mesh(y), 192, 249
mesh(y'), 192, 249
[Mp,k] = max(mag), 476
NaN, 799
[num,den] = feedback(num1,den1,

num2,den2), 20–21
[num,den] = parallel(num1,den1,

num2,den2), 20–21
[num,den] = series(num1,den1,

num2,den2), 20–21
[num,den] = ss2tf(A,B,C,D), 41, 657
[num,den] = ss2tf(A,B,C,D,iu), 41–42,

58, 657
[NUM,den] = ss2tf(A,B,C,D,iu), 59,

659
nyquist(A,B,C,D), 436, 441–42
nyquist(A,B,C,D,iu), 441
nyquist(A,B,C,D,iu,w), 436, 441
nyquist(A,B,C,D,w), 436
nyquist(num,den), 436
nyquist(num, den,w), 436
nyquist(sys), 436
polar(theta,r), 545
printsys(num,den), 20–21, 189
printsys(num,den,'s'), 189
r = abs(z), 544
[r,p,k] = residue(num,den), 239, 871–72
[re,im,w] = nyquist(A,B,C,D), 436
[re,im,w] = nyquist(A,B,C,D,iu,w), 436
[re,im,w] = nyquist(A,B,C,D,w), 436
[re,im,w] = nyquist(num,den), 436
[re,im,w] = nyquist(num,den,w), 436
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[re,im,w] = nyquist(sys), 436
residue, 867
resonant_frequency = w(k), 476
resonant_peak = 20*log10(Mp), 476
rlocfind, 303
rlocus(A,B,C,D), 295
rlocus(A,B,C,D,K), 290, 295
rlocus(num,den), 290–91
rlocus(num,den,K), 290
sgrid, 297
sortsolution, 584
step(A,B,C,D), 184, 186
step(A,B,C,D,iu), 184
step(num,den), 184
step(num,den,t), 184
step(sys), 184
sys = ss(A,B,C,D), 184
sys = tf(num,den), 184
text, 188
theta = angle(z), 544
w = logspace(d2,d3,100), 425
y = lsim(A,B,C,D,u,t), 201
y = lsim(num,den,r,t), 201
[y, x, t] = impulse(A,B,C,D), 195
[y, x, t] = impulse(A,B,C,D,iu), 195
[y, x, t] = impulse(A,B,C,D,iu,t), 195
[y, x, t] = impulse(num,den), 195
[y, x, t] = impulse(num,den,t), 195
[y, x, t] = step(A,B,C,D,iu), 184
[y, x, t] = step(A,B,C,D,iu,t), 184
[y, x, t] = step(num,den,t), 184, 190
z = re+j*im, 544
End of MATLAB commands

Matrix exponential, 661, 669–674
closed solution for, 663

Matrix Riccati equation, 798, 800
Maximum overshoot:

in unit-impulse response, 179
in unit-step response, 170, 172
versus z curve, 174

Maximum percent overshoot, 170
Maximum phase lead angle, 494, 498
Measuring element, 21
Mechanical lag–lead system, 366
Mechanical lead system, 365
Mechanical vibratory system, 236
Mercury thermometer system, 151
Minimal polynomial, 669, 704–06
Minimum-order observer, 767–77

based controller, 777
Minimum-order state observer, 752
Minimum-phase system, 415–16
Minimum-phase transfer function, 415
Minor, 876
Modern control theory, 7, 29

versus conventional control theory, 29
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Motor torque constant, 95
Motorcycle suspension system, 87
Multiple-loop system, 458–59

N
N circles, 480–81

a family of constant, 481
Newton’s second law, 66
Nichols, 2, 11, 398
Nichols chart, 482–85
Nichols plots, 403
Nonbleed-type relay, 111
Nonhomogeneous state equation:

solution of, 666–67
Noninverting amplifier, 79
Nonlinear mathematical models:

linear approximation of, 43–45
Nonlinear system, 43
Nonminimum-phase systems, 300–01,

415, 417
Nonminimum-phase transfer function,

415, 488
Nonuniqueness:

of a set of state variables, 655
Nozzle-flapper amplifier, 110
Number-decibel conversion line, 404
Nyquist, H., 2, 11, 398
Nyquist path, 545
Nyquist plot, 403, 439–40, 443

of positive-feedback system, 535–37
of system defined in state space, 440–43

Nyquist stability analysis, 454–62
Nyquist stability criterion, 445–54

applied to inverse polar plots, 461–62

O
Observability, 675, 682–88

complete, 683–85
matrix, 653

Observable canonical form, 650, 692
Observation, 752
Observed-state feedback control system,

761
Observer, 753

design of control system with, 786–93
full-order, 753
mathematical model of, 752
minimum-order, 767–73

Observer-based controller:
transfer function of, 761

Observer controller:
in the feedback path of control system,

787, 790–93
in the feedforward path of control

system, 787–90
Observer-controller matrix, 762

Observer-controller transfer function,
761–62

Observer error equation, 753
Observer gain matrix, 755

MATLAB determination of, 773
Octave, 405
Offset, 258
On-off control action, 22–23
On-off controller, 22
One-degree-of-freedom control system,

593
op amps, 78
Open-loop control system, 8

advantages of, 9
disadvantages of, 9

Open-loop frequency response curves:
reshaping of, 493

Open-loop transfer function, 19
Operational amplifier, 78
Operational amplifier circuits, 93–94

for lead or lag compensator:
table of, 85

Optimal regulator problem, 806
Ordinary point, 861
Orthogonality:

of root loci and constant gain loci,
301–02

Output controllability, 681
Output equation, 31
Output matrix, 31
Overdamped system, 168–69
Overlapped spool valve, 146
Overlapped valve, 130

P
Parallel compensation, 308–09, 342–43
Partial-fraction expansion, 867–73

with MATLAB, 871–73
PD control, 373
PD controller, 614–15
Peak time, 170, 172, 193
Performance index, 793
Performance specifications, 9
Phase crossover frequency, 467–69
Phase margin, 464–67

versus z curve, 472
PI controller, 2, 614–15
PI-D control, 590–92
PID control system, 572–77, 583, 587,

617–21, 628–29, 642–43
basic, 590
with input filter, 629
two-degrees-of-freedom, 592–95

PID controller, 567, 577, 614–16, 620, 632
modified, 616
using operational amplifiers, 83–84



Pilot valve, 124, 130
PI-PD control, 592
PID-PD control, 592
Plant, 3
Pneumatic actuating valve, 117–18
Pneumatic controllers, 144–45, 154–55
Pneumatic nozzle-flapper amplifier, 110
Pneumatic on-off controller, 115
Pneumatic pressure system, 142
Pneumatic proportional controller, 112–16

force-balance type, 115–16
force-distance type, 112–15

Pneumatic proportional-plus-derivative
controller, 119–20

Pneumatic proportional-plus-integral
control action, 120–22

Pneumatic proportional-plus-integral-
plus-derivative control action,
122–23

Pneumatic relay, 111
bleed type, 111
nonbleed type, 111
reverse acting, 112

Pneumatic systems, 106–23, 153
compared with hydraulic system, 106

Pneumatic two-position controller, 115
Polar grids, 297
Polar plot, 403, 427–28, 430, 432
Pole: 861

of order n, 861
simple, 861

Pole assignment technique, 723
Pole-placement:

necessary and sufficient conditions for
arbitrary, 725

Pole placement problem, 723–35
solving with MATLAB, 735–36

Positive-feedback system:
Nyquist plot for, 536–37
root loci for, 303–07

Positional servo system, 95–97
Pressure system, 107, 109
Principle of duality, 687
Principle of superposition, 43
Process, 3
Proportional control, 219
Proportional control action, 24
Proportional controller, 22
Proportional gain, 25, 61
Proportional-plus-derivative control:

of second-order system, 224
of system with inertia load, 223

Proportional-plus-derivative control
action, 25

Proportional-plus-derivative controller,
22, 542

892 Index

Proportional-plus-integral control action,
24

Proportional-plus-integral controller, 22,
121, 542

Proportional-plus-integral-plus-
derivative control action, 25

Proportional-plus-integral-plus-
derivative controller, 22

Pulse function, 866

Q
Quadratic factor, 410

log-magnitude curves of, 411
phase-angle curves of, 411

Quadratic optimal control problem:
MATLAB solution of, 804

Quadratic optimal regulator system,
793–95

MATLAB design of, 797

R
Ramp response, 197
Rank of matrix, 875
Reduced-matrix Riccati equation, 795–97
Reduced-order observer, 752
Reduced-order state observer, 752
Reference input, 21
Regulator system with observer

controller, 778–86, 789
Relative stability, 160, 217, 462
Residue, 867
Residue theorem, 527
Resistance:

gas-flow, 107
laminar-flow, 101–02
of pressure system, 107, 109
of thermal system, 137
turbulent-flow, 102

Resonant frequency, 430, 470
Resonant peak, 413, 430, 470

versus z curve, 413
Resonant peak magnitude, 413, 470
Response:

to arbitrary input, 201
to initial condition, 203–11
to torque disturbance, 221

Reverse-acting relay, 112
Riccati equation, 795
Rise time, 169–171

obtaining with MATLAB, 193–94
Robust control:

system, 16, 806–17
theory, 2, 7

Robust performance, 7, 807, 812
Robust pole placement, 735
Robust stability, 7, 807, 809
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Root loci:
general rules for constructing, 283–87
for positive-feedback system, 303–07

Root locus, 271
method, 269–70

Routh’s stability criterion, 212–18

S
Schwarz matrix, 268
Second-order system, 164

impulse response of, 178–79
standard form of, 166
step response of, 165–75
transient-response specification of, 171
unit-step response curves of, 169

Sensor, 21
Series compensation, 308–09, 342
Servo system, 95, 164–65

design of, 739–51
with tachometer feedback, 268
with velocity feedback, 175–77

Servomechanism, 2
Set point, 21
Set-point kick, 590
Settling time, 170, 172–73

obtaining with MATLAB, 194
versus z curve, 174

Sign inverter, 79
Simple pole, 861
Singular points, 861
Sinusoidal signal generator, 486
Sinusoidal transfer function, 401
Small gain theorem, 809
Space vehicle control system, 367, 538–39
Speed control system, 4, 148
Spool valve:

linealized mathematical model of, 127
Spring-loaded pendulum system, 98
Spring-mass-dashpot system, 66
Square-law nonlinearity, 43
S-shaped curve, 569
Stability analysis, 454–62

in the complex plane, 182
Stabilizability, 688
Stack controller, 115
Standard second-order system, 189
State, 29
State controllability:

complete, 676, 678, 680
State equation, 31

solution of homogeneous, 660
solution of nonhomogeneous, 666–67
Laplace transform solution of, 663

State-feedback gain matrix, 724
MATLAB approach to determine,

735–36

State matrix, 31
State observation:

necessary and sufficient conditions for,
754–55

State observer, 751–77
design with MATLAB, 773
type 1 servo system with, 746

State observer gain matrix: 755
Ackermann’s formula to obtain, 756–57
direct substitution approach to obtain,

756
transformation approach to obtain, 755

State space, 30
State-space equation, 30

correlation between transfer function
and, 649, 656

solution of, 660
State-space representation:

in canonical forms, 649
of nth order system, 36–39

State-transition matrix, 664
properties of, 665

State variable, 29
State vector, 30
Static acceleration error constant,

228, 421
determination of, 421–22

Static position error constant,
226, 419

Static velocity error constant,
227, 420

Steady-state error, 160, 226
for unit parabolic input, 229
for unit ramp input, 228
in terms of gain K, 230

Steady-state response, 160
Step response, 699–700

of second-order system, 165–69
Summing point, 18
Suspension system:

automobile, 86–87
motorcycle, 87

Sylvester’s interpolation formula, 673,
709–713

System, 3
Sytem types, 419

type 0, 225, 230, 419, 433, 487–88
type 1, 225, 230, 420, 433, 487–88
type 2, 225, 230, 421, 433, 487–88

System response to initial condition:
MATLAB approach to obtain, 203–11

T
Tachometer, 176

feedback, 343
Taylor series expansion, 43–45



Temperature control systems, 4–5
Test signals, 159
Text:

writing on the graphic screen, 188
Thermal capacitance, 137
Thermal resistance, 137
Thermal systems, 100,136–39
Thermometer system, 151–52
Three-degrees-of-freedom system, 645
Three-dimensional plot, 192

of unit-step response curves with
MATLAB, 191–93

Traffic control system, 8
Transfer function, 15

of cascaded elements, 73–74
of cascaded systems, 20
closed-loop, 20
of closed-loop system, 20
experimental determination of, 489–90
expression in terms of A, B, C, and D, 34
of feedback system, 19
feedforward, 19
of minimum-order observer-based

controller, 777
of nonloading cascaded elements,

77
observer-controller, 762, 780–82
open-loop, 19
of parallel systems, 20
sinusoidal, 401

Transfer matrix, 35
Transformation:

from state space to transfer function,
41–42, 657

from transfer function to state space,
40–41, 656

Transient response, 160
analysis with MATLAB, 183–211
of higher-order system, 180
specifications, 169, 171

Transport lag, 417
phase angle characteristics of, 417

Turbulent-flow resistance, 102
Two-degrees-of-freedom control system,

593–95, 599–614, 636–41, 646–47
Two-position control action, 22–23
Two-position controller, 22
Type 0 system, 225, 230, 488

log-magnitude curve for, 419, 488
polar plot of, 433

Type 1 servo system:
design of, 743–51
pole-placement design of, 739–46

Type 1 system, 420
log-magnitude curve for, 420, 488
polar plot of, 433

894 Index

Type 2 system, 421
log-magnitude curve for, 421, 488
polar plot of, 433

U
Uncontrollable system, 681
Undamped natural frequency, 165
Underdamped system, 166–67
Underlapped spool valve, 146
Unit acceleration input, 247
Unit-impulse response:

of first-order system, 163
of second-order system, 178

Unit-impulse response curves:
a family of, 178
obtained by use of MATLAB, 196–97

Unit-ramp response:
of first-order system, 162–63
of second-order system, 197–200
of system defined in state space,

199–200
Unit-step response:

of first-order system, 161
of second-order system, 163, 167, 169

Universal gas constant, 108
Unstructured uncertainty:

additive, 852–53
multiplicative, 809
system with, 809

V
Valve:

overlapped, 130
underlapped, 130
zero-lapped, 130

Valve coefficient, 127
Vectors:

linear dependence of, 674
linear independence of, 674

Velocity error, 227
Velocity feedback, 176, 343, 519

W
Watt’s speed governor, 4
Weighting function, 17

Z
Zero, 861

of order m, 862
Zero-lapped valve, 130
Zero placement, 595, 597, 612

approach to improve response charac-
teristics, 595–97

Ziegler–Nichols tuning rules, 11, 568–77
first method, 569–70
second method, 570–71
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